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1 Introduction
In this paper we shall study a new type of predator-prey system

model. As is known, for example see [1, Chapter15], the biologist Um-

berto D’Ancona studied why the predator fish dramatically rose in the

percentages-0f-total-catch of fish in Mediterranean Sea during the years

that spanned World War $\mathrm{I}$ , and the mathematician Vito Volterra an-
swered this question by innovating the equation for the number of in-

dividuals of prey fish $x(t)$ for time $t$ and the number of individuals of

predator fish $y(t)$ for $t$ :

(1.1) $\frac{i(t)}{x(t)}=a-by(t)$ , $\frac{\dot{y}(t)}{y(t)}=-c+dx(t)$ ,

where $a$ , $b$ , $c$ and $d$ are positive constans ;the equilibrium point $(x^{*},y^{*})$ ,

where $x^{*}= \frac{c}{d}$z and $\mathit{1}’=\tau a,$ represents the average of the numbers of

individuals of prey fish and predator fish respectively, the reduced level

of fishing caused by the war may be represented as the increment of $a$

and decrement of $c$ , which implies the increment of $y’$ , and this result

is known as Volterra’s principle [1, p.255]. However does this explana-

tion really answer $\mathrm{D}$ ’Ancona’s question ? First of all he also thought

both numbers of individuals of prey fish and predator fish would have

increased, which is not the case for (1.1). This lack has made the au-
thor reconsider (1.1). Moreover as another lack, (1.1) never explain the

extinction of species ; in fact the mathematical biologist G.F.Gause [2,

Chapter $\mathrm{I}\mathrm{V}$] experimented the predator-prey system of two species of

protozoa and found that the prey first of all extincts while the predator

exists, which yielded the equation

(1.2) $\frac{i}{x(t)}=a-b\frac{y(t)}{\sqrt{x(\mathrm{t})}}$ , $\frac{\dot{y}(t)}{y(t)}=d\ulcorner$ for $x(t)\neq 0.$
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The purpose of this paper is to show a new type of predator-prey system
model, which not only completely answeres $\mathrm{D}$ ’Ancona’s question but
also explains Gause’s expriments. Let $x(t)$ and $y(t)$ be the numbers of
individuals of prey and predator for $t$ respectively, and whenever prey
and predator encounter each other, $x\mathrm{O}$) decreases and $y(t)$ increases.
The relative ratio of $x(t)$ , $\Re_{t}^{1}\frac{dx(t)}{dt}$ , which is an increment of the number
of individuals of prey per unit of the number of individuals of prey, may
depend on the number of individuals of predator per unit of the number
of individuals of prey, that is $\frac{y(t)}{oe(t)}$ , but not on $y(t)$ itself, and hence we
get the equation for $x(\mathrm{t})$

(1.3) $\frac{1}{x(t)}\frac{dx(t)}{dt}=a-b(\frac{y(t)}{x(t)})^{\alpha}$ ,

where $a$ , $b$ and $\alpha$ are positive constants. Similarly the relative ratio of
$y(t), \frac{1}{\overline,y\Gamma t)},\frac{dy(t)}{dt}$ , may depend on the number of individuals of prey per unit

of the number of individuals of predator, that is $\frac{x(t)}{\overline{y}\Pi t}$,, but not on $x(t)$

itself, and hence

(1.4) $\frac{1}{y(t)}\frac{dy(t)}{dt}=-c+d(\frac{x(t)}{y(t)})^{\beta}$ ,

where $c$, $d$ and $\beta$ are positive constants. Since solutions of (1.3) and (1.4)
may be unbounded as $tarrow\infty$ , we shall add the saturation term $g(t)$ to
(1.3), and hence

(1.5) $\frac{1}{x(t)}\frac{dx(t)}{dt}=a-b(\frac{y(t)}{x(t)})^{\alpha}-g(x(t))$ ,

where $g(x)$ is continuous for $x$ $\geq 0$ and $g(x)arrow$ oo as $xarrow\infty$ , which
guarantees the boundedness of solutions for (1.4) and (1.5).

2 Equilibrium points and solution behaviors
Our predator-prey system is the following

(2.1) $\frac{\dot{x}}{x}=a-b(\frac{y}{x})^{\alpha}-g(x)$ , $\frac{\dot{y}}{y}=-c\mathit{1}- d(\frac{x}{y})^{\beta}$

First of all we shall assume the existence of equilibrium point of (2.1),
$(x^{*}, y^{*})$ , where $x^{*}$ is the solution of the equation

(2.2) $g(x)=a-b( \frac{d}{c})$

$F\alpha$
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and

(2.3) $y^{*}=( \frac{d}{c})^{\frac{1}{\beta}}x^{*}$ .

Therefore $x^{\overline{*}}u^{*}$ increases as $c$ decreases, which may answer one ofD’Ancona’s
questions why a reduced level of fishing is more beneficial to the preda-
tor than to their prey. Furthermore we must answer another question
of $\mathrm{D}$ ’Ancona such that the number of individuals of not only predator
but also of prey would increase under the reduced level of fishing, which
means that

(2.4) $\frac{\partial x^{*}}{\partial a}>0$ , $\frac{\partial y^{*}}{\partial c}<0.$

Theorem 1
(2.4) holds if and only if

(2.3) $g’(x)>0,$ $g’(x)x>b \alpha(\frac{d}{c})^{a}F$ for $x=x^{*}$ .

Proof. Since (2.2) yields that $g^{f}(x) \frac{\ }{\mathrm{f}\mathrm{f}a}=1,$ it follows that A $>0$

if and only if $d(x^{*})>0.$ Moreover since $y^{*}=( \frac{d}{c})^{1}F_{X}*$ , we get

$\frac{\partial y^{*}}{\partial c}=-\frac{1}{\beta}(\frac{d}{c})^{1}F\frac{1}{c}x^{*}+$ $( \frac{d}{c})^{1}F\frac{\partial x^{*}}{\partial c}$

and
$g’(x^{*}) \frac{\partial x^{*}}{\partial c}=\frac{b}{c}(\frac{d}{c})^{\alpha}F\frac{\alpha}{\beta}$ .

Therefore

$\frac{\partial y^{*}}{\partial c}=\frac{1}{\beta c}(\frac{d}{c})^{\frac{1}{\beta}}\{-x^{*}+\frac{b\alpha(\frac{d}{\mathrm{c}})^{\alpha}F}{g’(x^{*})}\}$ ,

which completes the proof.

Example 1 We shall treat the case of (2.1) where $g(x)=ex$ for

positive constant $e$ . Then $x^{*}= \frac{1}{\mathrm{e}}(a-b(\frac{d}{c})^{\alpha}F)$ and $y^{*}=( \frac{d}{e})^{1}F_{X}*$ . By

Theorem 1, if $a>b( \alpha+1)(\frac{d}{\mathrm{c}})^{\alpha}F$ , then $\frac{\theta_{l^{l}}}{\partial a}>0$ and $\frac{\partial y^{l}}{\partial c}<0,$ and hence

the reduced level of fishing implies the increment of not only $ux^{\overline{*}}$

.
but also

both $x^{*}$ and $y^{*}$ .
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Volterra’s equation (1.1) is known to be succeeded in the explanation
for insecticide treatments to the cottony cushion scale insect as prey
and a ladybird beetle as predator, where the application of DDT to this
system above all terminated in the increment of the population of scale
insects [1, p.225]. This phenomenon may be explained by (2.1) too. In
fact, we can see that $\pi\partial x^{*}>0$ and $\frac{\theta x^{*}}{\partial \mathrm{c}}<0,$ and hence $x^{*}$ increases if the
amount of increment of $c$ is much larger than the amount of decrement of
$a$ by the application of the insecticide ; namely if DDT is more effective to
$\mathrm{k}\mathrm{i}\mathrm{U}$ the lady bird beetle than to kill the scale insects, then the population
of the scale insects would increase by this application of DDT.

Theorem 2
If $g’(x)>0$ and $\oint(x)x$ -ab $( \frac{d}{\mathrm{c}})^{\frac{\alpha}{\beta}}+\beta c>0$ for $x=x^{*}$ , then $(x^{*},y^{*})$ is
asymptotically stable.

Proof. (2.1) is reduced to

(2.6) $\dot{x}=ax-by^{\alpha}x^{1-\alpha}-g(x)$x, $\dot{y}=-cy$ $f$ $dx^{\beta}y^{1-\beta}$ .

The linear variational system with respect to $(x^{*}, y^{*})$ is

$(\begin{array}{l}\dot{\xi}\dot{\eta}\end{array})=($

$\alpha b$

$( \frac{d}{c})^{\alpha}F-g’(x)x\beta c(\frac{d}{\mathrm{c}})^{1}F$

$-b \alpha(\frac{d}{\mathrm{c}})^{\frac{a-1}{\beta}}-\beta c$ ) $(\begin{array}{l}\xi\eta\end{array})$ ,

and the characteristic equation is

$\lambda^{2}+(g’(x)x-\alpha b(\frac{d}{c})^{\alpha}F+\beta c)A$ $+\beta cg’(x)x=0$

where $x=x^{*}$ , whose roots has negative roots. Thus the proof is com-
pleted.

Remark 1 (2.5) implies the conditions of Theorem 2, and in
the case of Example 1, $(x^{4},y^{*})$ is asymptotically stable if $a+t$ $\beta c>$

$( \alpha+1)b(\frac{d}{\epsilon})^{\alpha}F$

Our system(2.1) may explain Cause’s experiments.

Theorem 3
Assume that $g(x)\geq 0$ for $x\geq 0$ and that ce $\geq 1.$ Tien there exists a
large positive number $A$ such that if $y(0)\geq$ Ax(0) and $x(0)>0,$ then
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exists a Mite positive number $T$ such that $x(t)>0$ and $y(t)>0$ for
$0\leq t$ $<T$ and $x(t)arrow 0$ as $tarrow T,$ $w$ here $y(T)>0.$

Proof Setting $x=r\cos\theta$ and $y=r\sin\theta$ for (2.1) we get

$\dot{\theta}(t)$ $=-(a+c)$ $\sin\theta\cos\theta+b\sin\theta\cos\theta(\tan\theta)^{\alpha}+d\sin\theta\cos\theta(\cot\theta)^{\beta}+g(x)\cos\theta\sin\theta$ ,

where $x=r\cos\theta$ . and hence

$\dot{\theta}(t)\geq-(a + c)$ $\sin\theta\cos\theta+b(\sin\theta)^{\alpha+1}(\cos\theta)^{1-}’+d(\sin\theta)^{1-\beta}(\cos\theta)^{1+\beta}$

for $0<\theta$ $< \frac{\pi}{2}$ . We can take aconstant $\theta_{0},0<\theta_{0}<\frac{\pi}{2}$ , which is
sufficiently close to $\frac{\pi}{2}$ , and furthermore a positive constant $\epsilon$ such that
$\dot{\theta}(t)\geq\epsilon$ for $\theta_{0}<\theta<\frac{\pi}{2}$ . Therefore $\theta(t)$ increases as $t$ increases until
$\theta(t)=\frac{\pi}{2}$ , and $\theta(t)$ approaches $\frac{\pi}{2}$ in finite time, while $x(t)$ and $y(t)$ never
blow up for $t$ . This completes the proof.
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