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1. Introduction. We are concerned with the oscillation problem for the nonlinear
differential equation

$( \phi_{p}(x’))’+\frac{1}{t^{p}}g(x)=0,$ $t>0,$ (1)

where $\phi_{p}(y)$ is a real-valued function defined by $\phi_{p}(y)=|y|^{p-2}y$ with $p>1$ a fixed real
number, and $g(x)$ is a continuous function on $\mathbb{R}$ satisfying the signum condition

$xg(x)>0$ if $x\neq 0$ (2)

and a suitable smoothness condition for the uniqueness of solutions of the initial value
problem. By virtue of a continuation result in $[3, 7]$ , we can prove that all solutions of
(1) are continuable in the future. Hence, it is worth while to discuss whether solutions of
(1) are oscillatory or not.

By an oscillatory solution we mean one having an infinite number of zeros on $0<t<$
$\infty$ . Otherwise, the solution is said to be nonoscillatory. Hence, a nonoscillatory solution
eventually keeps either positive or negative. It is called a positive (or negative) solution.

To begin with, we consider a very simple case. When $p=2$ and $!/(x)$ $=\lambda x$ with $\lambda>0$

a parameter, equation (1) reduces to the Euler differential equation

$x”+ \frac{\lambda}{t^{2}}x=0,$ $t>0.$ (3)

It is well-known that all nontrivial solutions of (3) are oscillatory if A $>1/4$ and are
nonoscillatory if ) $\leq 1/4.$ In other words, 1/4 is the lower bound for all nontrivial solutions
of (3) to be oscillatory. Such a number is generally called the oscillation constant (for
example, see $[4, 9])$ .

Two natural questions now arise: (i) what is the oscillation constant for the linear
equation

$x’+ \frac{1}{t^{2}}\{\frac{1}{4}+\lambda\delta(t)\}x=0,$ $t>0,$ (4)

where A is a positive parameter, and $\delta(t)$ is a positive and continuous function?
(ii) what is the oscillation constant for the nonlinear equation

$x”+ \frac{1}{t^{2}}\{\frac{1}{4}+\lambda h(x)\}x=0,$ $t>0,$ (5)

where A is a positive parameter, and $h(x)$ is a positive and continuous function?
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As to the first question, by means of Sturm’s comparison theorem, we see that if
$\lim_{tarrow\infty}\delta(t)>0,$ then all nontrivial solutions of (4) are oscillatory for any A $>0.$ More
delicate and interesting case is that

$\delta(t)[searrow] 0$ as $tarrow\infty$ .

When $\delta(t)=1/(\log t)^{2}$ , equation (4) is called the Riemann-Weber version of the Euler
differential equation. It is famous that the oscillation constant is also 1/4 for equation
(4) with $\delta(t)=1/(\log t)^{2}$ .

Recently, Sugie and Kita [8] have studied the nonlinear differential equation

$x’+ \frac{1}{t^{2}}g(x)=0,$ $t>0.$ (6)

Using the following their results, we can give an answer to the second question.

Theorem A. Assume (2) and suppose that there eists $a$ A with A $>1/16$ such that

$\frac{g(x)}{x}\geq\frac{1}{4}+\frac{\lambda}{(\log|x|)^{2}}$

for $|x|$ sufficiently large. Then all nontrivial solutions of (6) are oscillatory.

Theorem B. Assume (2) and suppose that

$\frac{g(x)}{x}\leq\frac{1}{4}+\frac{1}{16(\log|x|)^{2}}$

for $x>0$ or $x<0_{f}|x|$ sufficiently large. Then all nontrivial solutions of (6) are
nonoscillatory.

Prom Theorems A and $\mathrm{B}$ , we see that the oscillation constant for equation (5) is 1/16
provided $h(x)=1/(\log|x|)^{2}$ for $|x|$ sufficiently large. Of course, Theorems A and $\mathrm{B}$ cover
almost the delicate case that

$t>0$ (8)

$\frac{g(x)}{x}[searrow]\frac{1}{4}$
$\mathrm{s}$ $|x|arrow\infty$ .

Next, consider the case that $g(x)=\lambda\phi_{p}(x)$ . Then equation (1) becomes the half-linear
differential equation

$( \phi_{p}(x’))’+\frac{\lambda}{t^{p}}\phi_{p}(x)=0,$ $t>0.$ (7)

Since equation (7) coincides with equation (3) when $p=2,$ we may regard (7) as a
generalization of (3). As a matter of fact, the oscillation constant is $((p-1)/p)^{p}$ for
equation (7) (see [1, 2]). This drives us to the further question what are the oscillation
constants for the equations

$( \phi_{p}(x’))’+\frac{1}{t^{\mathrm{p}}}\{(\frac{p-1}{p})^{p}+$ A6$(t)\}\phi_{p}(x)=0,$

$t>0,$ (9)
and

$( \phi_{p}(x’))’+\frac{1}{t^{p}}\{(\frac{p-1}{p})^{p}+$ $h(x)$ $\}\mathrm{F}_{p}(x)$ $=0,$

respectively.
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Elbert and Schneider [2] have already discussed the oscillation problem for equation
(8) and gave the following result.
Theorem C. Consider equation (8) with $\delta(t)=1/(\log t)^{2}$ . Then the oscillation constant
is $Yp/2$ , where

$\gamma_{p}=(\frac{p-1}{p})^{p-1}$

Theorem $\mathrm{C}$ is an improvement of the above result concerning the Riemann-Weber
version of the Euler differential equation. Hence, it is safe to say that the question for
equation (8) is solved. However, that for equation (9) remains unsettled. The purpose of
this paper is to give an oscillation theorem which can be applied even to the case that

$\frac{g(x)}{\phi_{p}(x)}[searrow](\frac{p-1}{p})^{p}$ as $|x|arrow\infty$ .

Our main result is stated as follows:
Theorem 1. Assume (2) and suppose that

$\frac{g(x)}{\phi_{p}(x)}\geq(\frac{p-1}{p})^{p}+\frac{\lambda}{(\log|x|)^{2}}$ (10)

for $|x|$ sufficiently large, where

$\lambda>\frac{1}{2}(\frac{p-1}{p})^{p+1}$

Then all nontrivial solutions of (1) are oscillatory.

Remark 1. Since Theorem 1 coincides with Theorem A when $p=2,$ Theorem 1 is a
complete generalization of Theorem A.

2. Preliminary. To prove Theorem 1, we prepare some lemmas below. As space is
limited, we have to omit the proofs.

Lemma 2. Let $T$ be a positive number. Suppose that a positive function $f\in C^{2}[T, \infty)$

satisfies
$(\phi_{p}(f’(t)))’<0$ for $t\geq T.$

Then $f’(t)$ is also positive for $t\geq T\Gamma$

From Lemma 2, we see that each positive solution of (1) has the following property.

Lemma 3. Assume (2) and suppose that equation (1) has a positive solution. Then the
solution tends to oo as t $arrow\infty$ .

Using the s0-called “Riccati technique” and a straightforward calculation, we have the
following two lemmas on some differential inequalities of the first order.

Lemma 4. Let s $=\log$ t. Suppose that the differential inequality

$\dot{\xi}+$ $(p-1)$ $\{\xi^{B}\overline{p}-\overline{1}-\xi+\frac{(p-1)^{p-1}}{p^{p}}\}\leq 0,$ $\cdot=\frac{d}{ds}$

has a positive solution on $[s_{0}, \infty)$ with $s_{0}>0.$ Then the solution is decreasing and tends
to $\gamma_{p}$ as $sarrow\infty$ .
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Lemma 5. Let s $=\log$ t. Suppose that the differential inequality

$\dot{\xi}+$ $(p-1)$ $\{\xi^{f}\overline{p}-\overline{1}-\xi+\frac{(p-1)^{p-1}}{p^{p}}\}+\lambda\delta(e^{s})\leq 0$

has a positive solution on $[s_{0}, \infty)$ with $s_{0}$ $>0,$ where A is a positive parameter and $\delta(e^{s})$

is a positive and continuous function for $s\geq s_{0}$ . Then all nontrivial solutions of (8) are
nonoscillatory.

3. Proof of our main theorem. The proof is by contradiction. Suppose that
equation (1) has a nonoscillatory solution $x(t)$ . Then, without loss of generality, we may
assume that $xo$) is eventually positive. Let $L$ be a large number satisfying the assumption
(10) for $|x|>L.$ By Lemma 3, there exists a $7>0$ such that

$x(t)>L$ for $t\geq T.$

As in the proof of Lemma 2, we see that $x’(t)>0$ for $t\geq T.$

Let $s=\log t$ and put $u(s)=x(t)$ . Then equation (1) is transformed into the equation

$(\phi_{p}(\dot{u})).-(p-1)\phi_{p}(\dot{u})+g(u)=0$ (11)

and $u(s)$ is a positive solution of (11). Note that

$u(s)>L$ and $\dot{u}(s)=tx’(t)>0$

for $s\geq\log$ T. Hence, $\phi_{p}(u(s))=u(s)^{p-1}$ and $\phi_{p}(\dot{u}(s))=\dot{u}(s)^{p-1}$ for $s\geq\log$ T\wedge

Define
$\xi(s)=\frac{\phi_{p}(\dot{u}(s))}{\phi_{p}(u(s))}$ .

Then $\xi(s)>0$ for $s\geq\log T$ Differentiating $\xi(s)$ and using (10) and (11), we have

$\dot{\xi}(s)=.\frac{(\phi_{p}(\dot{u}(s)))\phi_{p}(u(s))-(p-1)\phi_{p}(\dot{u}(s))u(s)^{p-2}\dot{u}(s)}{\phi_{p}(u(s))^{2}}$

$= \frac{(\phi_{p}(\dot{u}(s)))}{\phi_{p}(u(s))}$

.
- $(p-1)( \frac{\dot{u}(s)}{u(s)})p$

$=$ $(p-1) \frac{\phi_{p}(\dot{u}(s))}{\phi_{p}(u(s))}-\frac{g(u(s))}{\phi_{p}(u(s))}-(p-1)(\frac{\dot{u}(s)}{u(s)})^{p}$

$\leq(p-1)\xi(s)-(\frac{p-1}{p})^{p}-\frac{\lambda}{\{\log u(s)\}^{2}}-(p-1)\xi(s)\overline{p}R-\overline{1}$

$=-(p-1) \{\xi(s)^{\underline{E}}\overline{\mathrm{p}}\overline{1}-\xi(s)+\frac{(p-1)^{p-1}}{p^{p}}\}-\frac{\lambda}{\{\log u(s)\}^{2}}$ (12)

for $s\geq\log$ T. Hence, from Lemma 4 we see that

$\xi(s)[searrow] yp$ as $sarrow\infty$ . (13)

Since A $>((p-1)/p)^{p+1}$ /2, we can choose an $\epsilon_{0}>0$ so small that

$\frac{1}{2}(\frac{p-1}{p})^{p+1}<\frac{\gamma_{p}}{2}(\frac{p-1}{p}+2\epsilon_{0})^{2}<$ A(14)
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$t>0$ (15)

By (13) we can find an $s_{1}>\log T$ such that

$\xi(s)^{\frac{1}{\mathrm{p}-1}}=\frac{\dot{u}(s)}{u(s)}\leq\frac{p-1}{p}+\epsilon_{0}$

for $s\geq$ si. Integrating the both sides of this inequality, we obtain

$u(s)\leq u(s_{1})e^{(^{\mathrm{a}}\frac{-1}{p}+\epsilon_{0})(s-s_{1})}$ for $s\geq s_{1}$ ,

and therefore, there exists an s2 $>s_{1}$ such that

$L<u(s)\leq e^{(_{\mathrm{p}}^{\mathrm{L}^{-\underline{1}}}+2\epsilon_{0})s}$ for $s\geq s_{2}$ .

Prom this estimation and (12), we see that

$\dot{\xi}(s)\leq-(p-1)\{\xi(s)\overline{\mathrm{p}}-1L-\xi(s)+\frac{(p-1)^{p-1}}{p^{p}}$} $- \frac{\lambda}{(_{p}^{\epsilon=^{1}}+2\epsilon_{0})^{2}s^{2}}$

for $s\geq s_{2}$ . Hence, by Lemma 5 we conclude that all nontrivial solutions of the equation

$( \phi_{p}(x’))’+\frac{1}{t^{p}}\{(\frac{p-1}{p})^{p}+\frac{\lambda}{(\frac{p-1}{p}+2\epsilon_{0})^{2}(\log t)^{2}}$ } $6_{p}(x)$ $=0,$

are nonoscillatory. However, by (14) we have

$\frac{\lambda}{(_{p}^{\mathrm{g}=}1+2\epsilon_{0})^{2}}>\frac{\gamma_{p}}{2}$.

Hence, from Theorem $\mathrm{C}$ , we see that all nontrivial solutions of (15) are oscillatory. This
is a contradiction. We have thus proved the theorem.

4. Application to an elliptic equation. To apply our results, we consider an
elliptic equation of the form

$\Delta_{p}u+F(x, u)=0,$ $x\in\Omega$ , (15)

where $\Omega$ is an exterior domain of $\mathbb{R}^{N}$ with $N\geq 2,$ that is, it contains $G_{a}\mathrm{d}\mathrm{e}\mathrm{f}=\{x\in \mathbb{R}^{N}$ :
$|x|>a\}$ for some $a>0$ , $\Delta_{p}$ is a operator given by

$\Delta_{p}u=\mathit{7}$ : ( $|\nabla u|^{p-2}$ Vu) , $\mathit{7}=(\partial/\partial x_{1}, \partial/\partial x_{2}, \cdots, \partial/\partial x_{N})$,

and $F(x, u)$ is a continuous function on $\Omega \mathrm{x}\mathbb{R}$ satisfying the assumption

$\{$

there is a continuous function 7: $[a, \infty)\cross \mathbb{R}arrow \mathbb{R}$ such that
$uF(x, u)\geq uf(|x|, u)\geq 0$ for $|x|\geq a$ and $u\in \mathbb{R}$ , and
$f(t, u)$ is nondecreasing with respect to $u\in \mathbb{R}$ for each fixed $t\geq a.$

(17)

We call a function $u\in C^{1}(G_{b})$ with $|$ $\mathit{7}u|^{p-2}$ $\mathit{7}u$ $\in C^{1}(G_{b})$ for some $b\geq a$ a solution of
(16) in $G_{b}$ if it satisfies equation (16) at every point $x\in G_{b}$ . We say that a solution of
(16) is oscillation if it keeps neither positive nor negative in any exterior domain.
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A typical case of (16) is the half-linear partial differential equation

$\Delta_{p}u+c(|x|)\phi_{p}(u)=0,$ $x\in\Omega$ . (18)

It is clear that assumption (17) is satisfied with $f(t, u)=c(t)\phi_{p}(u)$ in this case. Kusano
et al. [5, Theorem 2.1] have presented a comparison theorem of Sturm type for equation
(18) and more general half-linear elliptic equations. By virtue of their work, we have the
following result.

Proposition 6. Let $D$ be a bounded domain in $\Omega$ with piecewise smooth boundary $\partial D$ .
If there exists a nontrivial solution $u$ of (18) such that $u=0$ on $\partial D$ , then every solution
except a constant multiple of $u$ vanishes at some point of $D$ .

$x\in\Omega$ (19)

Prom this and Theorem $\mathrm{C}$ , we can get a sufficient condition for all nontrivial solutions
of the equation

$\Delta_{p}u+\frac{1}{|x|p}\{(\frac{p-N}{p})^{p}+\frac{\mu}{(\log|x|)^{2}}\}\phi_{p}(u)=0,$

to be oscillatory.

Theorem 7. Let $N<p.$ If

$\mu>\frac{p-1}{2p}(\frac{p-N}{p})^{p-2}$, (20)

then all nontrivial solutions of (19) are oscillatory.

Proof. Let $u$ (x) be a radial solution of (19) and let $v(t)$ be the function defined by

$v(t)=u(x)$ , $t=|x|$ .

Then we have Vu(x) $=v’(t)x/t$ , and therefore,

$\Delta_{p}(u(x))$ $= \sum_{i=1}^{N}\mathrm{g}$ $( \frac{x_{i}}{t}\phi_{p}(v’(t)))$

$=( \phi_{p}(v’(t)))’+\frac{N-1}{t}\phi_{p}(v’(t))=\frac{1}{t^{N-1}}(t^{N-1}\phi_{p}(v’(t)))’$

Hence, we see that the function $v(t)$ is a solution of the equation

(21)$(t^{N-1} \phi_{p}("))’+t^{N-1-p}\{(\frac{p-N}{p})^{p}+\frac{\mu}{(\log t)^{2}}\}\phi_{p}(v)=0.$

We next define
$w(s)=v(t)$ , $s=t^{\mathrm{L}_{\frac{N}{1}}}p-$.

Then we obtain
$v’(t)= \frac{p-N}{p-1}t^{\frac{1-N}{\mathrm{p}-1}}\dot{w}(s)$,

$\phi_{p}(\mathrm{t}’(t))$ $=( \frac{p-N}{p-1})^{p-1}t1-N\phi_{p}\mathrm{w}(\mathrm{s})$
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and
$(t^{N-1} \phi_{p}(v’(t)))’=(\frac{p-N}{p-1})^{p}s^{\frac{1-N}{p-N}}(\phi_{p}(\dot{w}(s))).$.

From the last equality and (21) it turns out that $w(s)$ satisfies the equation

(22)$(\phi_{p}(\dot{w})).+$ $\mathrm{g}$ $\{(\frac{p-1}{p})^{p}+(\frac{p-1}{p-N})^{p-2}\frac{\mu}{(\log s)^{2}}\}\phi_{p}(w)=0.$

By (20) we have

$( \frac{p-1}{p-N})^{p-2}\mu>\frac{1}{2}(\frac{p-1}{p})^{p-1}=\frac{\gamma_{p}}{2}$ .

Hence, using Theorem $\mathrm{C}$ , we can conclude that all nontrivial solutions of (22) are oscil-
latory. Of course, $w(s)$ is oscillatory, so that it has an infinite number of zeros clustering
at $s=\infty$ . Since $p>N\geq 2,$ the variable $t$ tends to $\infty$ as $s$ increases, and therefore, $vo$)
is also oscillatory. This means that all radial solutions of (19) are oscillatory. Thus, we
can choose a sequence $\{t_{m}\}$ tending to oo such that $u(x)=0$ for $|x|=t_{m}$ . Denote

$G(t_{m}, t_{m+1})=$ $\{x\in \mathbb{R}^{N}:t_{m}<|x|<t_{m+1}\}$

for $m\in$ N. Then $u(x)=0$ for $x\in\partial G(t_{m}, t_{m+1})$ , which is smooth. Hence, from Proposi-
tion 6, we see that every nontrivial solution of (19) has at least one zero on the closure of
$G(t_{m}, t_{m+1})$ . Since this fact is true for arbitrary $m\in$ N, all (non-radial) solutions of (19)
are oscillatory. The proof is complete.

Let us now return to equation (16). We will give an oscillation theorem for equation
(16) without using Sturm’s comparison method, such as Proposition 6.

Naito and Usami [6] have studied more general quasilinear elliptic equations than
equation (16) and clarified the relation with associated quasilinear ordinary differential
equations. The following is an immediate consequence of their result.

Proposition 8. Assume that (17) holds. If every solution of
$(t^{N-1}\phi_{p}(u’))’+t^{N-1}f(t, u)=0,$ $t\geq a$

is oscillatory, then every solution of (16) is also oscillatory.

Consider the case that $f(t, u)=g(u)/t^{p}$ , namely, the equation

$(t^{N-1}\phi_{p}(u’))’+t^{N-1-p}g(u)=0,$ (23)

where $g(u)$ is a continuous and nondecreasing function on $\mathbb{R}$ satisfying the signum condi-
tion (2). By putting $v(\mathit{8})=u(t)$ and $s=t^{L_{\frac{N}{1}}^{-}}p-$ , equation (23) becomes

$( \phi_{p}(\dot{v})).+(\frac{p-1}{p-N})^{p}\frac{1}{s^{p}}g(v)=0.$

Let us assume that $g(u)$ satisfies

$\frac{g(u)}{\phi_{p}(u)}\geq(\frac{p-N}{p})p+\frac{\mu}{(\log|u|)^{2}}$ (24)
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for $|u|$ sufficiently large. Then we have

$( \frac{p-1}{p-N})^{p}\frac{g(u)}{\phi_{p}(u)}\geq(\frac{p-1}{p})^{p}+(\frac{p-1}{p-N})^{p}\frac{\mu}{(\log|u|)^{2}}$ .

Let $\lambda=((p-1)/(p-N))^{p}\mu$. If

$\mu>\frac{p-1}{2p}(\frac{p-N}{p})^{p}$ , (25)

then A $>((p-1)/p)^{p+1}$ /2. Hence, from Theorem 1, we conclude that all nontrivial
solutions of (23) are oscillatory. Moreover, if $F(u, x)$ satisfies

$uF(u, x) \geq\frac{ug(u)}{|x|p}$ (26)

for $|x|\geq a$ and $u\in \mathbb{R}$, then assumption (17) holds. Hence, by Proposition 8, we see
that all nontrivial solutions of (16) are also oscillatory. Thus, combining Theorem 1 with
Proposition 8, we can obtain the following result.

Theorem 9. Let $N<p.$ Suppose that there exist a nondecreasing function $g(u)$ and $a$

positive number $\mu$ satisfying (2) and (24)-(26). Then all nontrivial solutions of (16) are
oscillatory.

Let $\lambda=((p-1)/(p-N))^{p}\mu$. If

$\mu>\frac{p-1}{2p}(\frac{p-N}{p})^{p}$ , (25)

then $\lambda>((p-1)/p)^{p+1}$ /2. Hence, from Theorem 1, we conclude that all nontrivial
solutions of (23) are oscillatory. Moreover, if $F(u, x)$ satisfies

$uF(u, x) \geq\frac{ug(u)}{|x|p}$ (26)

for $|x|\geq a$ and $u\in \mathbb{R}$, then assumption (17) holds. Hence, by Proposition 8, we see
that all nontrivial solutions of (16) are also oscillatory. Thus, combining Theorem 1with
Proposition 8, we can obtain the following result.

Theorem 9. Let $N<p.$ Suppose that there exist a nondecreasing function $g(u)$ and $a$

positive number $\mu$ satisfying (2) and (24)-(26). Then all nontrivial solutions of (16) are
oscillatory.
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