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We consider the second order ordinary differential equation

(1) $u’+$ $\mathrm{a}(\mathrm{x})f(u)=0,$ $x_{\mathrm{O}}<x<x_{1}$

with the boundary condition

(2) $u(x_{0})=$ u(Xl) $=0,$

where $a\in$ C2 $[\mathrm{z}\mathrm{O}, x_{1}]$ , $a(x)>0$ for $x\in$ [z0, [1], $f\in C^{1}(\mathrm{R})$ , 7 $(!1)>0$ , $f(-s)$ $=-f(s)$
for $5>0.$

By a change of variable, it can be shown that the existence of solutions of the
problem (1) and (2) is equivalent to the existence of radial solutions of the following
Dirichlet problem for elliptic equations in annular domains

$\{$

Au $+K(|x|)f(u)=0$ in $\Omega$ ,

$u=0$ on an,

where $K\in C^{1}$ [ $R_{1}$ , R2], $\Omega=$ $\{x\in \mathrm{R}^{N} : R_{1}<|x|<R_{2}\}$ , $R_{1}>0$ and $N\geq 2.$ (See,
for example, [8] $)$

Note that if $u$ is a solution of (1), so is $-uz$ , because of 7 $(-s)$ $=-f(s)$ . Hence
we consider solutions $u$ of the problem (1) and (2) with $\mathrm{u}’(\mathrm{x}0)>0$ only.

In this paper we study the uniqueness of solutions of the problem (1) and (2)
having exactly $k-1$ zeros in $(x_{0}, x_{1})$ , and hence consider the following problem:

$(\mathrm{P}_{k})$ $\{\begin{array}{l}u,,+a(x)f(u)=0,x_{0}<x<x_{1}u(x_{0})=u(x_{1})=0u,(x_{0})>0u\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{x}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{l}\mathrm{y}k-1 \mathrm{z}\mathrm{e}\mathrm{r}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{n}(x_{0},x_{1})\end{array}$

where $k$ is a positive integer.
For existence of solutions of (Pfc), we refer to [1], [2], [3], [6], [7], [8]. In particular

we shall describe the result in [7]. We thus assume that there exist limits $f_{0}$ and
$f_{\infty}$ such that $0\leq f_{0}$ , $f_{\infty}\leq\infty$ ,

$f_{0}= \mathrm{h}.\mathrm{m}\frac{f(s)}{s}sarrow+0$ and $f_{\infty}= \lim_{sarrow\infty}\frac{f(s_{1}}{s}$

.
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Let $\lambda_{k}$ be the $k$-th eigenvalue of

$\{$

$\varphi’+\lambda a(x)\varphi=0,$ $x_{0}<x<x_{1}$ ,
$\varphi(x_{0})=\varphi(x_{1})=0.$

It is known that
$0<\lambda_{1}<\lambda_{2}<$ , . $1<$ A$k<$ A $k+1$ $<$ . . $($ , $\lim_{k}$

$\lambda_{k}=\infty$ .

The following Theorem A has been obtained in [7].

Theorem A. Let $k$ $\in \mathrm{N}=\{1,2, \ldots\}$ . Then the following (i) and (ii) holds:
(i) if $f_{0}<\lambda_{k}<f_{\infty}$ or $f_{\infty}<\lambda_{k}<f_{0_{J}}$ then $(\mathrm{P}_{k})$ has $at/east$ one solution]
(ii) if $f(s)/s<\lambda_{k}$ for $s>0$ or $\mathrm{f}(\mathrm{s})/\mathrm{s}>\lambda_{k}$ for $s>0,$ then $(\mathrm{P}_{k})$ $Aas$ no solution.

Now we consider the uniqueness of solutions of $(\mathrm{P}_{k})$ .
Assume moreover that either the following (F1) or (F2) holds:

(F1) $( \frac{f(s)}{s})’>0$ for $s>0;$ (F2) $( \frac{f(s)}{s})’<0$ for $s>0.$

The functions

7 $(s)=|s|^{p-1}s$ $(p>1)$ and $f(s)= \frac{s}{1+|s|q}$ $(q>1)$

are typical cases satisfying (F1) and (F2), respectively. From (F1) and (F2) it
follows that $f(s)/s$ is monotone function, and hence we note that the limits $f_{0}$ and
$f_{\infty}$ exist in $[0, \infty]$ .

For the uniqueness of the solutions of $(\mathrm{P}_{k})$ , the following Theorems B-D were
obtained.

It is known that
$0<\lambda_{1}<\lambda_{2}<$ , . $1<\lambda_{k}<\lambda_{k+1}<$ } $\cdot($ , $\lim_{karrow\infty}\lambda_{k}=\infty$ .

The following Theorem Ahas been obtained in [7].

Theorem A. Let $k\in \mathrm{N}=\{1,2, \ldots\}$ . Then the following (i) and (ii
(i) if $f_{0}<\lambda_{k}<f_{\infty}$ or $f_{\infty}<\lambda_{k}<f_{0_{J}}$ then $(\mathrm{P}_{k})$ has at $/east$ one solution;
(ii) if $f(s)/s<\lambda_{k}$ for $s>0$ or $f(s)ls>\lambda_{k}$ for $s>0,$ then $(\mathrm{P}_{k})$ has no solution.

Now we consider the uniqueness of solutions of $(\mathrm{P}_{k})$ .
Assume moreover that either the following (F1) or (F2) holds:

(F1) $( \frac{f(s)}{s})’>0$ for $s>0;$ (F2) $( \frac{f(s)}{s})’<0$ for $s>0.$

The functions
$f(s)=|s|^{p-1}s$ $(p>1)$ and $f(s)=1+\cdot\overline{|s|^{q}}$

$(q>1)$

are typical cases satisfying (F1) and (F2), respectively. From (F1) and (F2) it
follows that $f(s)/s$ is monotone function, and hence we note that the limits $f_{0}$ and
$f_{\infty}$ exist in $[0, \infty]$ .

For the uniqueness of the solutions of $(\mathrm{P}_{k})$ , the following Theorems B-D were
obtained.

Theorem $\mathrm{B}$ (Coffman [1]). Let $k\in$ N, $\nu\in \mathrm{R}$ and $p>1.$ Then the solution
of the following problem exists and is unique:

$\{\begin{array}{l}u’’+x^{\nu}|u|^{p-1}u=0,0<x_{0}<x<x_{1}u(x_{\mathrm{O}})=u(x_{1})=0,u’(x_{\mathrm{O}})>0uhasexactlyk-1zerosin(x_{0},x_{1})\end{array}$

Theorem $\mathrm{C}$ (Coffman-Marcus [2]). Let $k\in \mathrm{N}$ and $\sigma\in$ R. Suppose that
$f$ satisfies (F1), $f_{0}=0$ and $f_{\infty}=\infty$ . Then the solution of the following problem
exists and is unique:

$\{$

$u’+x^{-2-\sigma}f(x^{\sigma}u)=0,$ $0<x_{0}<x<x_{1}$ ,

$\mathrm{u}(\mathrm{x}\mathrm{Q})=\mathrm{u}(\mathrm{x}\mathrm{Q})=0$ , $\mathrm{u}’(\mathrm{x}0)>0$ ,

$u$ has exactly $k-1$ zeros in $(x_{0}, x_{1})$ .
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Theorem $\mathrm{D}$ (Yanagida [9]). Let $k\in$ N. Suppose that

$q\in C^{1}[x_{0}, x_{1}]$ , $q(x)>0$ for $x_{0}\leq x\leq x_{1}$ .

Assume moreover that either the following (i) or (ii) holds:

(i) (F1) holds and $\mathrm{q}\mathrm{f}(\mathrm{x})/\mathrm{q}(\mathrm{x})$ is nonincreasing in $x\in$ [x0, $x_{1}$ ];
(ii) (F2) holds and $\mathrm{q}’(\mathrm{x})/\mathrm{q}(\mathrm{x})$ is nondecreasing in $x\in$ [x0, $x_{1}$ ].

Then the problem

Assume moreover that either the following (i) or (ii) holds:

(i) (F1) holds and $q’(x)/q(x)$ is nonincreasing in $x\in[x_{0}, x_{1}]$ ;
(ii) (F2)holds and $q’(x)/q(x)$ is nondecreasing in $x\in[x_{0}, x_{1}]$ .

Then the pmblem

$\{$

$u’+h(q(x)u)u=0,$ $x_{0}<x<x_{1}$ ,

$u(x_{0})=$ u(x0) $=0,$ $\mathrm{u}(\mathrm{x}\mathrm{O})>0$ ,

$u$ has exactly $k-1$ zeros in $(x_{0}, x_{1})$

has at most one solution, where $h(s)=7(\mathrm{s})/!$ .

Main results in this paper as follows.

Theorem 1. Let $k\in$ N. Assume that either the following (C1) or (C2) holds:
(C1) (F1) holds and $([a(x)]^{-_{F}^{1}})’’\leq 0$ for $x_{0}\leq x\leq x_{1}$ ;
(C2) (F2) holds and $([a(x)]^{-}\tau)’1\geq 0$ for $x_{0}\leq x\leq x_{1}$ .
Then (Pjt) has at most one solution.

Combining Theorem 1 with Theorem $\mathrm{A}$ , we obtain the following result.

Corollary. Let $k\in$ N. Assume that either (C1) or (C2) is satisfied. Then the
following (i) and (ii) hold:

(i) if $f(s)/s=\lambda_{k}$ for sorne $s>0,$ the solution of $(\mathrm{P}_{k})$ exists and is unique]
(ii) if $f(s)/s$ ’ $\lambda_{k}$ for all $s>0,$ then $(\mathrm{P}_{k})$ has no solution.

Example. Consider the problem

(3) $\{$

$u”+(e^{x} \% \mu)|u|^{p-1}u=0,$ $0<x<1,$

$\mathrm{u}(0)=\mathrm{u}(1)=0$ , $\mathrm{u}(0)>0$ ,

ti has exactly $k-1$ zeros in $(0, 1)$ ,

where $p>1$ , $\mu>-1$ and $k\in$ N.
From Theorem A it follows that (3) has at least one solution.
Theorem $\mathrm{D}$ implies that if $-1<\mu\leq 0,$ then the solution of (3) is unique.
Theorem 1 shows that if $\mu\geq$ e/2, then the solution of (3) is unique.
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To prove Theorem 1 we use the shooting method. Namely we consider the solution
$\mathrm{u}(\mathrm{x};\alpha)$ of (1) satisfying the initial condition

$\mathrm{u}(\mathrm{x}\mathrm{q})=0$ and $\mathrm{u}\mathrm{f}(\mathrm{x}\mathrm{O})=\alpha>0$ ,

and observe the behavior of zeros of $u(x;\alpha)$ in $(0, 1]$ , where $\alpha$ is a parameter. We
note that $u(x;\alpha)$ exists on $[x_{0}, x_{1}]$ is unique and satisfies $u\in C^{1}([x_{0}, x_{1}]\cross(0, \infty))$ ,
since $a\in C^{2}[x_{0}, x_{1}]$ and $f\in C^{1}(\mathrm{R})$ .

Let $\mathrm{z}\mathrm{k}(\mathrm{a})$ be the $k$-th zero of $u(x;\alpha)$ in ( $x_{0}$ , Xi] (if $\mathrm{z}\mathrm{k}(\mathrm{a})$ exists). Note that $u(x;\alpha)$

is a solution of $(\mathrm{P}_{k})$ if and only if Zk(ct) $=x_{1}$ . Since
$u(z_{k}(\alpha);\alpha)=0,$ $u’(z_{k}(\alpha);\alpha)\neq 0,$

the implicit function theorem implies that

$z_{k}’( \alpha)=-\frac{u_{\alpha}(z_{k}(\alpha),\alpha)}{u’(z_{k}(\alpha)\cdot\alpha)},\cdot$.

We can show that if (C1) or (C2) holds, then $z_{k}’(\alpha)<0$ or $z_{k}’(\alpha)>0,$ respectively,
by using the similar arguments by Kajikiya [4] and the identity obtained by Korman
and Ouyang [5]. Then we conclude that there exists at most one number $\alpha>0$

such that $z_{k}(\alpha)=x_{1}$ , so that $(\mathrm{P}_{k})$ has at most one solution.

the implicit function theorem implies that

$z_{k}’( \alpha)=-\frac{u_{\alpha}(z_{k}(\alpha),\alpha)}{u’(z_{k}(\alpha)\cdot\alpha)},\cdot$.

We can show that if (C1) or (C2) holds, then $z_{k}’(\alpha)<0$ or $z_{k}’(\alpha)>0,$ respectively,
by using the similar arguments by Kajikiya [4] and the identity obtained by Korman
and Ouyang [5]. Then we conclude that there exists at most one number $\alpha>0$

such that $z_{k}(\alpha)=x_{1}$ , so that $(\mathrm{P}_{k})$ has at most one solution.
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