gooooooooo 13720 20040 39-43

Oscillation theorems of quasilinear elliptic
equations with arbitrary nonlinearities

BEXRF F4%Y (Tomomitsu Teramoto)
JRBK%E  FHREIES (Hiroyuki Usami)

1 Introduction and Main Results

In asymptotic theory of differential equations it is an important probrem to
determine whether solutions of equations under consideration are oscillatory
or not. We will establish oscillation criteria for solutions of quasilinear elliptic
equations with the leading term A,u =div(|Du|[™ 2Du). To begin with we
give the definition of oscillation precisely:

Definition. A continuous function defined in an exterior domain in R¥,
N = 2, is said to be oscillatory if there is a sequence of its zeros diverging to
oo; otherwise nonoscillatory.

Let us consider the equation
Amu+a(z)f(u) =0 (1)
under the following conditions:
(i) N22,m>1land N >m;

(ii) a is a nonnegative continuous function difined in an exterior domain in
RY,
(iii) f € C(R\{0}; R\{0}) is an odd function satisfying f(u) > 0 for u > 0.

Throughout.the article by a solution of (1) is meant a function u which
is defined near oo and satisfies (1) there.

Notation. Let a.(r) and a*(r) be continuous functions defined near +oo

satisfying
02 au(lz]) Salz) Sa*(lz)), |zl 2o,

where rq > 0 is a sufficiently large number.
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When f(u) = |[u|”'u, 0 > 0, oscillation criteria for (1), which can be
regarded as generalizations of earilier results in [1, 5], have been obtained in
[4]. The case of m = 2 has been treated in [3]. The arguments developed in
these works are mainly based on asymptotic analysis of ordinary differential
equations. We here intend to unify these results by proceeding further in
this direction.

Our main results are as follows:

Theorem 1. Let a. be nondecreasing near +o0o. Then every solution of (1)
is oscillatory if

/°° rN=la,(r)f (cr‘%:—‘?) dr=o00 forallc>0. @

To see the sharpness of Theorem 1 we give an existence theorem of
nonoscillatory weak solutions:

Theorem 2. Let r™aT a.(r) be nondecreasing near +0o0. Then (1) has a
positive (weak) solution u satisfying

cllml'%r—'? Suz) £ czla:|"1;"n_f'irl a.e.—% 3)
near oo for some constants cy,cy > 0 provided that
o0 N-m
/ rN-la*(r)f (c'r"m) dr < oo for some c > 0. 4)
Remark 1. When a(z) has radial symmetry, we can construct the positive
solution referred in Theorem 2 as a radial function.
For the autonomous equation
Apu+ f(u) =0 (5)

we can completely characterize oscillatory behavior of every solution via The-
orems 1 and 2 as shown below:

Corollary 1. Every solution of (5) is oscillatory if and only if

/w rNolf (r“y"r?—“-z;") dr = oo.

Theorem 1 is not applicable to (1) when a, is not nondecreasing. However
the following may be applicable in such a case:



Theorem 3. Let N > 2 (and m = 2), and

liminf z]'a(z) >0 for somel £ 2.
j&]—o0

Then every solution of
Au+a(z)f(u) =0

is oscillatory if
/ pV-1-l-¢ f (TZ—N ) dr =00 for somee > 0. (6)

Remark 2. (i) We conjecture that analogous results to Theorem 3 hold for
(1) with m # 2.
(ii) The condition “e > 0” in (6) can not be weakened to “c = 0”.

Example. Let us consider the equation

) _ ;
+——u= >
Ay + ‘ml2u 0, N23 (7

for |z} 2 1, where A > 0 is a constant. It is known that:
(a) every solution of (7) is oscillatory if

A> (N —-2)?%/4

(b) there is a positive solution of (7) of the form |z|?, where p is a real root
of the quadratic equation p? + (N +2)p+ A =0 if

A E (N -2)?%/4.

These facts show that the monotonicity of a, required in the assumption of
Theorem 1 can not be dropped, and that (ii) of Remark 2 is true.

2 Sketch of proofs

We only give the main ideas of the proofs here. The detailed proofs will
appear in forthcoming papers. To prove Theorem 1 we prepare an improtant
proposition of comparison type.

Proposition 1. If PDE (1) has a nonoscillatory solution u, then the ordi-
nary differential equation '

PN bV 20) + au(r) f(v) =0 ®)
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has a positive solution v satisfying

0 < v(r) £ min|u(z)]

|zl=r
for sufficiently large .

The following, which reduces oscillation criteria for PDE (1) to those for
ODE (8), is an immediate consequence of Proposition 1:

Corollary 2. If ODE (8) does not have eventually positive solutions near
+00, then every solution of PDE (1) is oscillatory.

To prove Theorem 1 it suffices to show that ODE (8) has no eventually
positive solutions under condition (2). Theorem 3 can be proved similarly.
The details are, however, omitted.

We turn to the proof of Theorem 2. Our proof is based on the supersolution-
subsolution method which is described in [2}, for example.
Let v(r) be a positive solution of the ODE

PN (V1P ) +at () f(0) = O ©

for r 2 1y, sufficiently large. Then, the function 4(z) = v(r), r = |z, is a
(weak) supersolution of PDE (1). In fact, we obtain
Ami(s) + a(2) f(a(z))
== (PN () (1) + a(e)f (o)
PN (¢ N1y (r) |2 () + a* (r) f(v(r)) = 0.

We seek a positve solution of (9) as a positive solution of the integral equation

1

oo m-1 00 m=1
v(r)=1:[n:rf s mot {b"“l—(;;__;> / tN‘la*(t)f(v(t))dt} ds,

r

where b > 0 is a suitable constant. Indeed, by employing the Schauder-
Tychonoff fixed point theorem we can construct a positive solution v;(r)
of this integral equation under condition (4) satisfying vi(r) ~ byr~ T as
r — oo with some constant by > 0. On the other hand, for a constant
by € (0,b;) the function vy(r) = byr~ Wt = |z|, is obviously a subsolution
of (1). Since v;(|z|) 2 v2(|z]) near co, we get a positive (weak) solution u of
(1) satisfying v1(|z|) € u(z) < vo(|z|) a.e.—z near oo by the supersolution-
subsolution method. This u(z) clearly satisfies (3) for some c; and c; > 0.
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