
71

Exact Formulation of Stochastic EIVIQ Model for an
Unreliable Production System

$\mathrm{B}.\mathrm{C}$ . Giri and T. Dohi
Department of Information Engineering, Hiroshima University,

1-4-1 Kagamiyama, Higashi-Hiroshi-ma $7^{\iota}f\mathit{9}$-8527, Japan.

Abstract
The paper presents an exact formulation of stochastic EMQ model for an unreliable production
system under a general framework in which the time to machine failure, corrective and preven-
tive repair times are taken as random variables. The criteria for the existence and uniqueness
of the optimal production time are derived under arbitrary as well as specific failure and re
pair time distributions. For exact financial implications of the lot sizing decisions, the model
is further analyzed based on the net present value (NPV) approach. Numerical examples are
devoted to find the optimal production policies of the developed models and examine the sen-
sitivity of some model-parameters. Computational results show that the decision based on the
NPV approach is superior to that based on the long-run average cost approach, though the
performance level strongly depends on the pertinent failure and repair distributions.

1. Introduction

The Economic Manufacturing Quantity (EMQ) problem is one of the oldest inventory/produc-

tion control problem being investigated from time to time under various realistic situations.
Most of the EMQ models developed in the literature assume that the production process is
perfectly reliable $i$ . $e.$ , the facility never fails and hence its maintenance is ignored. The issue
of interdependence between production and maintenance policies was raised first by McCall
[1] who suggested that simulation perhaps is the most appropriate tool for analyzing a pr0-

$\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{y}$ problem in an unreliable environment. Bielecki and Kumar [2] showed that
there exists a range of parameter values describing an unreliable manufacturing system for
which zero inventory policy is exactly optimal even when the production capacity is uncertain.
The steady state distribution of the inventory level and some important system characteristics
related to both machine utilization and service level to customers in an unreliable production
environment were obtained by Posner and Berg [3]. Groenevelt et al. [4] analyzed the effects
of machine breakdowns and corrective maintenance on economic lot sizing decisions. Assuming
exponential inter-failure time and instantaneous repair, they showed that the optimal lot size is
greater than that of the corresponding classical EMQ model. In the subsequent article [5], they
investigated the issue of safety stocks required to meet a managerially prescribed service level
under a simplified assumption of exponential failure time and randomly distributed repair time.
After the seminal works by Groenevelt et al. $[4,5]$ , a number of EMQ models with stochastic
machine breakdowns and repairs have been reported in the literature, $e.g.$ , see Kim and Hong
[6], Abboud [7], Dohi et al. $[8,9]$ , Makis and Fung [10] and their references.

The studies on EMQ problems with stochastic machine breakdown and repairs have been
performed assuming negligible corrective repair time and without PM (Groenevelt et al. [4],
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Kim and Hong [6] $)$ , constant corrective repair time and without PM (Kim et al. [11]), arbitrarily

distributed corrective repair time and without PM (Abboud [7]). Preventive maintenance (PM)

with negligible time is defined as a part of machine set up in Dohi et $al$ $[8]$ . EMQ models

without PM or with negligible PM time can not provide appropriate production-maintenance

strategies especially when the production environment is unreliable. On the other hand, optimal

lot sizing policies of the EMQ models have been derived by minimizing the long-run average
cost in the steady state, assuming that the system will continue to operate over an infinite
planning horizon. The average cost approach does not reflect the time value of money. In
economy, money is endowed with time and its value ought to reduce as time passes if a greater

economic change or revolution does not take place. Since the cost of capital tied up in inventory

is included as part of the inventory carrying cost, so in theory, a more correct approach woul be

to determine the control variables by minimizing the net present value (NPV) of the expected

total cost over all future time.

The purpose of this paper is to present an exact formulation of stochastic EMQ model for an
unreliable production system under a general framework in which the time to machine failure,

corrective and preventive repair times are assumed to be random variables. Moreover, it is

aimed to study the proposed model under the NPV or discounted cash flow (DCF) approach,

for exact financial implications of the lot sizing decisions.

2. The general EMQ model

Notations:
$X$ : non-negative i.i.d. random variable denoting time to machine failure

$Fx(t)$ : failure time distribution with p.d.f. $fx(t)=$ dFx(t)/dt
$G_{1}(l_{1})$ : corrective repair time distribution with p.d.f. $g_{1}(l_{1})$ and mean $m_{1}^{-1}(>0)$

$G_{2}(l_{2})$ : preventive repair time distribution with p.d.f. $g_{2}(l_{2})$ and mean $m_{2}^{-1}(>0)$

$p(>0)$ : production rate
$d(<p)$ : demand rate
$C_{0}(>0)$ : set up cost
$C_{1}(>0)$ : corrective repair cost per unit time

$C_{2}(<C_{1})$ : preventive repair cost per unit time
$C_{i}(>0)$ : inventory holding cost per unit product per unit time
$C_{s}(>0)$ : shortage cost per unit product

$Q(>0)$ : order quantity
$\beta$ $(>0)$ : discount factor

Model description

Consider a single-unit single-item production system in which the facility may fail at most
once during a production phase. The production process starts at time $t=0$ with the aim of
producing a lot of size $Q$ . If the machine failure does not occur until time $t=Q/p$ then the
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production process is stopped and preventive repair is carried out to return back the machine to
the same initial working condition before the start of the next production cycle. If, however, the
machine fails before producing $Q$ units then the corrective repair action is started immediately.
During preventive or corrective repair, the demand is met first from the accumulated inventory.
If there is sufficient stock to meet the demand during machine repair then the next production
starts when the on-hand inventory is exhausted. Since the repair time is assumed to be a
random variable, the on-hand inventory may be depleted before the repair is completed. Th$\mathrm{e}$

shortages, if occured, are not delivered after machine repair. To avoid an unrealistic decision
making, we assume $\underline{Q}\leq Q\leq\overline{Q}$ , where $\underline{Q}$ and $\overline{Q}$ , the lower and upper limits of the production
lot size, respectively are prescribed in advance by the decision maker.

We define the time interval between two successive production start points as one (repeating)
cycle. Then, by conditioning on the time to machine failure, the mean time length of one cycle
can be obtained as

TO(Q) $=$ $\int_{0}$

”
$\mathrm{E}$ [$\mathrm{d}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of a cycle $|X=t$] $fx\{t)dt$

$=$ $\int_{0}^{Q/p}\{$$\int_{0}^{(p-d)t/d}\frac{pt}{d}dG_{1}(l_{1})+\int_{(p-d)t/d}^{\infty}(t+l_{1})dG_{1}(l_{1})]dF_{X}(t)$

$+$ f7\infty /p $\{$$\int_{0}^{(p-d)Q/(pd)}\frac{Q}{d}dG_{2}(l_{2})+\int_{(p-d)Q/(pd)}^{\infty}(Q/p +l_{2})dG_{2}(l_{2})]dF_{X}(t),(1)$

where each term in the right hand side of (1) corresponds to an event represented by the bound
of integration. Similarly, by conditioning on the time to machine failure, the expected total
cost for one cycle can be obtained as

$S_{0}(Q)$ $=$ $C_{0}+C_{1} \int_{0}Q/p$ $\int_{0}$

”

$l_{1}dG_{1}(l_{1})lF \mathrm{x}(t)+C_{2}\int_{Q/p}^{\infty}\int_{0}$

”

$l_{2}dG_{2}(l_{2})dF_{X}(t)$

$+C_{i}[ \int_{0}^{Q/p}\frac{(p-d)pt^{2}}{2d}dF_{X}(t)+\int_{Q/p}^{\infty}\frac{(p-d)Q^{2}}{2pd}dF_{X}(t)]$

$+C_{s}d \int_{0}^{Q/\mathrm{p}}\int_{\mathrm{C}\mathrm{p}-d)t/d}^{\infty}\{l_{1}-\frac{(p-d)t}{d}\}dG_{1}(l_{1})dF_{X}(t)$

$+C_{s}d \mathrm{f}_{/p}^{\infty}\int_{[p-}^{\infty}d)Q/(pd)$ $\{l_{2}-\frac{(p-d)Q}{pd}\}dG_{2}(l_{2})dF_{X}(t)$ . (2)

By the well-known renewal reward theorem (Ross [12]), the expected cost per unit time in the
steady state is given by

$C_{0}(Q)= \lim_{tarrow\infty}\frac{\mathrm{E}[\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}1\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{n}(0,t]]}{t}=S_{0}(Q)/T_{0}(Q)$ . (3)

The problem is to seek the optimal production lot size $Q^{*}$ which minimizes $C(Q)$ , subject to
$\underline{Q}\leq Q^{*}\leq\overline{Q}$ . For convenience, let $t_{0}=Q/p$ Then $\underline{t0}=\underline{Q}$/p and $\overline{t0}=\overline{Q}$/p become the
lower and upper limits of $t_{0}$ , respectively. Define the numerator of the derivative of $C(t_{0})=$
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$S$ (to)/T (to) where $S(t\mathrm{o})=S_{0}(pt\mathrm{o})$ and $T(t\mathrm{o})=T\circ(pt_{0})$ , with respect to $t_{0}$ divided by $1-F_{X}(t_{0})$

as $q(t_{0})$ , $i.e.$ ,

$q(t_{0})$ $=$ $[r\mathrm{x}(t_{0})\{$ $C_{1}m_{1}^{-1}-C_{2}m_{2}^{-1}+C_{s}d$ ($m_{1}^{-1}-mil)$ $+C_{s}d$ $\int_{0}^{(p-d)t_{0}/d}G_{1}(l_{1})dl_{1}$

$-C_{s}d \int_{0}^{(p-d)t_{0}/d}G_{2}(l_{2})dl_{2}\}+(p-d)\{\frac{C_{i}pt_{0}}{d}-C_{S}G_{2}$ $( \frac{(p-d)t_{0}}{d})\}]T(t_{0})$

- $\{$$r_{X}(t_{0}) \{(m_{1}^{-1}-m_{2}^{-1})+\int_{0}^{(p-d)t_{0}/d}G_{1}(l_{1})dl_{1}-\int_{0}^{(p-d)t_{0}/d}G_{2}(l_{2})dl_{2}\}$

$+ \frac{(p-d)}{d}G_{2}(\frac{(p-d)t_{0}}{d})+1]S(t_{0})$,

where $r_{X}(t)=fx(t)/(1-F_{X}(t))$ is the failure (hazard) rate which is assumed to be a continuous
and differentiable function of time $t$ . Differentiating $\mathrm{q}(\mathrm{t}\mathrm{o})$ with respect $t_{0}$ , we get

$\frac{dq(t_{0})}{dt_{0}}$ $=$ $\phi(t\mathrm{o})T(t_{0})+\psi(t_{0})[C_{s}dT(t_{0})-S(t_{0})]$ ,

where $\mathrm{S}(\mathrm{t}\mathrm{O})=\frac{dr_{X}(t_{0})}{dt_{0}}$

$\psi(t0)$ $= \frac{dr_{X}(t_{0})}{dt_{0}}\{$

($C_{1}m_{1}^{-1}-C_{2}m_{2}^{-1}$ ) $+C\dot{.}p\mathrm{p}-d\vec{d}$ ,

$(m_{1}^{-1}-m_{2}^{-}\mathrm{F}$ $\int_{0}^{(p-d)t_{0}/d}G_{1}(l_{1})dl_{1}-\int_{0}^{(p-d)t_{0}/d}G_{2}(l_{2})dl_{2}\}+\frac{(p-d)^{2}}{d^{2}}$

$\cross g_{2}(\frac{(p-d)t_{0}}{d})+\underline{(p}d\underline{)}\overline{\tau}r_{X}(t_{0})\{G_{1}(\frac{(p-d)t_{0}}{d})-G_{2}(\frac{(p-d)t_{0}}{d})\}$ .
The problem is now reduced to finding the optimal production time $t_{0}^{*}$ $(t4\leq t_{0}^{*}\leq\overline{t_{0}})$ which
minimizes $C(t_{0})$ . To derive the criteria for the existence and uniqueness of $t_{0}^{*}$ , we make the
following assumptions:
(A-1) $\phi(\overline{t_{0}})>0.$

(A-2) $G_{1}(\cdot)$ and $G_{2}(\cdot)[G_{1}>G_{2}]$ are both continuous $\mathrm{m}\mathrm{d}$ increasing functions in the interval
[0, $(p-d)\underline{t0}$ /d] such that $\psi(t\mathrm{p}\geq 0.$

(A-3) The opportunity loss per unit demand $C_{s}d$ and the long-run average cost $\mathrm{C}(\mathrm{t}\mathrm{o})$ are
such that $C_{s}d<C(t_{0})<C_{s}d$ $+\phi(\overline{t_{0}})/\psi(tAl$ $t_{0}\in\llcorner t_{0}$ , $\overline{t_{0}\mathrm{J}}$ .

Theorem 1: Suppose that the failure time distribution $F\chi(t)$ is IFR (Increasing Failure Rate).
Under assumptions (A-I)-(A-3), (i) if $q(\underline{t_{0}})<0$ and $q(\overline{t_{0}})>0$ then there exists a finite a $\mathrm{d}$

unique optimal production time $t_{0}^{*}$ $(0<t\mathit{0} <t_{0}^{*}<\overline{t_{0}}<\infty)$ satisfying the non-linear equation
$q(t_{0}^{*})=0.$

(ii) If $q(\circ t0\leq 0$ then $C(t\mathrm{o})$ is a decreasing function of $t0\in\llcorner t0$, $\overline{t_{0}\rfloor}$ and therefore, the optimal
production time is $t_{0}^{*}=\overline{t_{0}}$. If $\mathrm{q}(\mathrm{t}\mathrm{o})\geq 0$ then $\mathrm{C}(\mathrm{t}\mathrm{o})$ is an increasing function of $t_{0}\in\llcorner t_{0}$, $t\mathrm{Q}$ and
hence the optimal production time is $t_{0}^{*}=\underline{t_{0}}$ .
$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}$ The proof of the first part of the theorem is straightforward as $q(t_{0})$ is an increasing
function in the interval $\mathrm{H}$, $\urcorner t0$ by assumptions (A-I)-(A-3). The second part of the theorem
follows directly.

Remarks: If $m_{1}\leq m2$ , i.e., the preventive repair rate is not less than that of the corrective
repair then the assumptions (A-1) and (A-2) are clearly validated. Again, these assumptions
are trivially true when $m_{2}arrow\infty i.e$ . the regular repair is instantaneous.
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The case of exponential failure and exponential repair:

Let $F_{X}(t)=1-$ $\exp\{-\lambda t\}$ , $\lambda(>0);G_{1}(l_{1})=1\cdot\exp\{-\mu_{1}l_{1}\}$ , $\mu_{1}>0$ and $G_{2}(l_{2})=1$ .

$\exp\{-\mu_{2}l_{2}\}$ , $\mu_{2}>0$ . Then, the expected cost per unit time in the steady state is Ci (to) $=$

$S_{1}$ (to) / $T_{1}$ (to) where

$S_{1}(t_{0})$ $=$ $C_{0}+ \frac{C_{1}}{\mu_{1}}(1-e^{-\lambda t_{0}})+\frac{C_{2}}{\mu_{2}}e^{-\lambda t_{0}}+\frac{C_{i}(p-d)p}{2d}\{\frac{2}{\lambda^{2}}(1-e^{-\lambda t_{0}})$

$- \frac{2t_{0}}{\lambda}e^{-\lambda t_{0}}\}+\frac{C_{s}d\lambda}{\mu_{1}}\{\frac{1-e^{-\{\lambda+\mu_{1}(\frac{p-d}{d})\}t_{0}}}{\lambda+\mu_{1}(\mathrm{E}_{\frac{-d}{d}})}\}+\frac{C_{s}d}{\mu_{2}}e^{-\{\lambda+\mu_{2}(\frac{p-d}{d})\}t_{\mathrm{O}}}$ ,

$T_{1}(t_{0})$ $=$
$\frac{p}{d\lambda}(1-e^{-\lambda t_{0}})+\frac{1}{\mu_{2}}e^{-\{\lambda+}\# 2(*^{-d})\}t_{0}+\frac{\lambda}{\mu_{1}}\{\frac{1-e^{-\{\lambda+\mu_{1}(^{\mathrm{a}}\frac{-d}{d})\}t_{\mathrm{O}}}}{\lambda+\mu_{1}(\frac{p-d}{d})}\}$ .

To derive the criteria for the existence and uniqueness of the optimal production time $t_{0}^{*}$ , we
define

$q_{1}(t_{0})=$
$e^{-\mu 2(*^{-d})t_{0]}}$

$R=\{\lambda+\mu_{2}(R_{\frac{-d}{d}})\}e^{-\mu_{2}(^{\epsilon}\frac{-d}{d})\overline{t_{0}}}-\lambda e^{-\mu_{1}(^{2}\frac{-d}{d})\underline{t_{0}}}$.
and make the following assumptions:
(A-4) $R\leq 0$ and $C_{1}$ (to) is bounded below by $C_{S}d$ .
(A-5) $R\geq 0$ and $C_{1}$ (to) is bounded by $Csd$ and $C_{s}d+$ Cip/R

Theorem 2: Under assumption (A-4) or (A-5) (i) if $q_{1}(t\Delta$ $<0$ and $q_{1}(\overline{t_{0}})>0$ then the unique
optimal production time ${}^{t^{*}}\mathrm{o}(\underline{t0}<t_{0}^{*}<$ $\mathrm{E}\mathrm{i}$ which minimizes Ci(to) is given by a positive re 1
root of the non-linear equation $q_{1}(t_{0})=0.$

(ii) If $q_{1}(\overline{t_{0}})\leq 0$ then the optimal production time is $t_{0}^{*}=\overline{t_{0}}$. On the other hand, if $q_{1}\mathrm{Q}t2$ $0$

then $t_{0}^{*}=\underline{t_{0}}$ .
$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}$ The necessary condition for a minimum of Ci (to) gives Ci(to) $=0.$ Differentiation of
$q_{1}(t_{0})$ with respect to $t_{0}$ yields

$\frac{dq_{1}(t_{0})}{dt_{0}}=$ $\mathrm{a}^{d}[C_{i}pT_{1}(t_{0})+\{\lambda e^{-\mu 2(^{\mathrm{Z}}\frac{-d}{d})t_{0}}1$ $\mu_{2}(R_{\frac{-d}{d}})e^{-\mu 2}(\frac{\mathrm{p}-d}{d})t_{0}-\lambda^{(\mapsto)t_{0\}}}e^{-\mu 1}a^{d}$

$\cross\{C_{s}dT_{1}(t_{0})-S_{1}(t_{0})\}]$

The first part of the theorem follows since $dq_{1}(t_{0})/dt_{0}>0$ for all $t_{0}\in\llcorner t_{0},\neg t_{0}$ , by assumption
(A-4) or (A-5). The proof of the second part is similar to that of Th orem 1.

3. The net present value analysis

The present value of the expected inventory holding cost per cycle can be formulated as

$H_{c}(t_{0})$ $=$ $C_{i}[ \int_{0}^{t_{0}}\{$ $\int_{0}^{t}(p-d)ye^{-\beta y}dy+\int_{t}pt/dpt$ $-dy)$ $e^{-\beta y}dy\}dFx(t)$

$+ \int_{t_{0}}^{\infty}\{$ $\int_{0}^{t_{0}}(p-d)ze^{-\beta z}dz+\int_{t_{\mathrm{O}}}^{pt_{0}}/d$ $(pt\mathit{0}-dz)$ $e^{-\beta z}dz\}$ $dF_{X}(t)]$



78

Similarly, the present value of the expected shortage cost per cycle is

$S_{c}(t_{0})$ $=$ $C_{s}d[ \int_{0}^{t_{0}}\int_{(p-d)t/d}^{\infty}\int_{0}^{l_{1}-(p-d)t/d}e^{-\beta(u+_{d}^{L^{t}})}dvdG_{1}(l_{1})dF_{X}(t)$

$+ \int_{t_{0}}^{\infty}\int_{(p-d)t_{0}/d}^{\infty}\int_{0}^{l_{2}-(p-d)pt_{0}/d}e^{-\beta(v+pt_{0}/d)}dvdG_{2}(l_{2})dF_{X}(t)]$

and the present value of the expected repair costs for one cycle is

$R_{c}(t_{0})$ $=$ $C_{1} \int_{0}^{t_{\mathrm{O}}}\int_{0}$

”
$\int_{0}^{l_{1}}e^{-\beta(t+y_{1})}dy_{1}dG_{1}(l_{1})dF_{X}(t)$

$+C_{2}$ $\int_{t_{0}}^{\infty}\int_{0}^{\infty}\int_{0}^{l_{2}}e^{-(t_{0}+y_{2})}’ dy_{2}dG_{2}(l_{2})dF_{X}(t)$ .

Hence, the NPV of the expected total cost for one cycle is given by

$S_{\beta}(t_{0})$ $=$ $C_{0}+H_{c}(t_{0})+S_{\mathrm{c}}(t_{0})+R_{c}(t_{0})$ .

The NPV of mean unit cost after one cycle, can be obtained as

$\delta_{\beta}(t_{0})$ $=$ $\int_{0}^{t_{\mathit{0}}}\{\int_{0}^{(p-d)t\int d}e^{-\ _{d}\underline{t}}dG_{1}(l_{1})+ \int_{(\mathrm{p}-d)t/d}^{\infty}e^{-\beta(t+l_{1})}dG_{1}(l_{1})\}dF_{X}(t)$

$+ \int_{t_{0}}^{\infty}\{\int_{0}^{(p-d)t_{0}\prime d}e^{-\beta p}$ t01d
$dG_{2}(l_{2})+ \int_{(p-d)t_{0}/d}^{\infty}e^{-(t_{0}+l_{2})}$’ $dG_{2}(l_{2})\}dF_{X}(t)$ .

Hence, the NPV of the expected total cost over the time horizon $[0, \infty)$ , when the initial point
in time is taken to be the starting point of a production lot, is

$TC_{\beta}(t_{0})$ $=$ $\sum_{n=0}^{\infty}S_{\beta}(t_{0})[\delta_{\beta}(t_{0})]^{n}=\frac{S_{\beta}(t_{0})}{1-\delta_{\beta}(t_{0})}$ . (4)

By perturbation of the instantaneous discount rate, we can easily establish the following rela-
tionship:

$C(t_{0})= \lim_{\betaarrow 0}\beta\cdot TC_{\beta}(t_{0})$ , (5)

where the evaluation of the limiting value in the right hand side of (5) is due to the l’Hospital’s
theorem. Our objective is to find the optimal production time $t_{0}^{*}(\underline{t_{0}}\leq t_{0}^{*}$ $\mathrm{z}$ $\neg t_{0}$ which minimizes
$TC_{\beta}(t_{0})$ .
The case of exponential failure and exponential repair :

For exponential failure and exponential repair time distributions as defined in the previous
section, the NPV of the expected total cost per cycle can be obtained as

$S_{1\beta}(t_{0})$ $=$ $C_{0}+ \frac{\lambda C_{1}}{\beta+\mu_{1}}\{\frac{1-e^{-(\lambda+\beta)t_{0}}}{\lambda+\beta}\}+\frac{C_{2}}{\beta+\mu_{2}}e^{-(\lambda+\beta)t_{0}}$

$+\mathrm{n}$
$[(p-d)(1-e^{-\lambda t}$” $\frac{\lambda p}{\lambda+\beta}\{1-e^{-(\lambda+\beta)t_{0}}\}+\frac{\lambda d}{\lambda+\beta p/d}$

$\mathrm{x}\{1-e^{-(\lambda+9)}$t$0$ }] $+ \frac{C_{i}}{\beta^{2}}[(p-d)e^{-\lambda t_{0}}-pe^{-(\lambda+\beta)t_{0}}+de^{-(\lambda+_{d})t_{0]}}\$

$+ \frac{C_{s}d\lambda}{\beta+\mu_{1}}[\frac{1-e^{-\{\lrcorner}\lambda+\oplus+^{u4}\not\in^{\underline{-d)}}\}t_{0}}{\lambda+\beta p/d+\mu_{1}(p-d)/d}+\frac{C_{s}d}{\beta+\mu_{2}}e"+f+^{\mu \mathrm{a}}\not\in^{-\Delta^{d}}\}t_{0]}$

.
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On the other hand, the NPV of mean unit cost after one cycle is

$\delta_{1\beta}(t_{0})$ $\equiv$ $\lambda[\frac{1-e^{-(\lambda+_{d}^{\Phi})t_{0}}}{\lambda+\Phi,d},]-\frac{\lambda\beta}{\beta+\mu_{1}}[\frac{1-e^{-\{\lambda+_{d}^{\underline{\beta}p}+\frac{\mu_{1}(p-d)}{d}\}t_{0}}}{\lambda+\Phi+\frac{\mu_{1}(p-d)}{d},d}]$

$+e^{-_{d}^{\underline{\beta}\mathrm{p}t}\Delta}[e^{-}\mathrm{k}t_{0}$ $- \frac{\beta}{\beta+\mu_{2}}e^{-}\{\mathrm{A}+^{\mu}$ $(pdd^{-)_{\}}}t0]$ .

The necessary condition for a minimum of $TC_{1\beta}(t_{0})=S_{1\beta}(t_{0})/(1-\delta_{1\beta}(t_{0}))$ gives

$W_{1\beta}(t_{0})$ $=$ $[ \{\frac{C_{1}\lambda}{\beta+\mu_{1}}-\frac{C_{2}(\lambda+\beta)}{\beta+\mu_{2}}\}e^{\frac{\beta(p-d)t_{0}}{d}}-\frac{C_{i}p}{\beta}\{1-e^{\frac{\beta(p-d)t_{0}}{d}}\}$

$+ \frac{C_{s}d\lambda}{\beta+\mu_{1}}e^{-^{\mu(p-d)t}}\infty_{d}-\frac{C_{s}}{\beta+\mu_{2}}\{\beta p+d\lambda+\mu_{2}(p-d)\}e^{-^{\mu(}\ovalbox{\tt\small REJECT}_{d]}^{p-d)t}}$

$\cross[1-\delta_{1\beta}(t0)]$ $-[ \frac{\lambda\beta}{\beta+\mu_{1}}e^{-^{\mu(p}\infty^{-d)t}}+\frac{\beta p}{d}-\frac{\beta^{2}p+\lambda\beta d+\mu_{2}(p-d)\beta}{(\beta+\mu_{2})d}$

$\cross e^{-e}$ $]S_{1\beta}(t_{0})=0.$

It can be shown that $W_{1\beta}(t\mathrm{o})$ behaves as an increasing function in $\llcorner t_{0}$ , $t*$ when the annualized
cost is bounded by $C3d$ (lower bound) and $Csd+$ $ft_{\beta}/p_{\beta}$ (upper bound)

where $\phi_{\beta}=[\beta\{\frac{C_{1}\lambda}{\beta+\mu_{1}}-\frac{C_{2}(\lambda+\beta)}{\beta+\mu_{2}}\}+C_{i}p]e^{\frac{\beta(p-d)\overline{t_{0}}}{d}}>0$,

$\psi_{\beta}=\frac{\mu_{2}\{\beta \mathrm{p}+\lambda d+\mu_{2}(p-d)\}}{d(\beta+\mu_{2})}e^{-\infty_{d}}-\frac{\lambda\mu_{1}}{\beta+\mu_{1}}\mu(p-d)\overline{t}e^{-_{d}^{\underline{\mu_{1}(\mathrm{p}-d)\underline{t_{0}}}}}\geq$ 0.
Therefore, if $W_{1\beta}(t_{0})$ $<0$ and $W_{1\beta}(\neg t_{0}>0$ then, as before, the unique optimal production time
$t_{0}^{*}$ $(\underline{t0}\leq t_{0}^{*}\leq\overline{\iota_{0}})$ can be obtained by solving the non-linear equation $W$15(t0) $=0.$

4. Numerical example

We take the following parameter values for the model with exponential failure and exponential
repair (corrective and preventive) time distributions: $d=30$, $p=150$, $C_{0}=500$ , $C_{i}=$

$0.5$ , $C_{s}=$ 1.25, $C_{1}=250$ , $C_{2}=120$ , $/’ 1=4$, $\mu_{2}=10$ , $\beta$ $=0.05$ , $\underline{Q}=200$ , $\overline{Q}=700.$ The
influence of the failure rate $\lambda$ , repair rates $\mu_{1}$ and $\mu_{2}$ on the optimal production policy are
shown in Tables 1 and 2.

Table 1 Influence of A on the optimal production policy.

Average cost model
A $0*$ $C_{1}(t_{0}^{*})$

$0.1$ 1.90597 115.368
0.2 1.96814 120.108
0.3 2.03427 125.086
0.4 2.10463 130.318
0.5 2.17949 135.819
0.6 2.25906 141.604
0.7 2.34357 147.684
0.8 2.43317 154.070
0.9 2.52799 160.769
1.0 2.62806 167.784

NPV model
$\overline{t_{0}^{*}}-$ $-^{T\overline{C_{1\beta}}\overline{(}t_{0}^{*})}$

1.80920 2640.98
1.85634 2751.71
1.9054 2867.25
1.95654 2987.77
2.00960 3113.41
2.06459 3244.29
2.12145 3380.46
2.18010 3521.94
2.24042 3668.68
2.30227 3820.58
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Table 2 Influence of $\mu_{1}$ and 742 on the optimal production policy in the average cost model.

$(\mu_{1}, \mu_{2})=(k, 10$) $(\mu_{1}, \mu_{2})=(4, h)$

$k$
$t_{0}^{*}$ $C_{1}^{-}(t_{0}^{*})$

$t_{0}^{*}$ $C_{1}\overline{(0})*$

1 2.08324 144.032 34871 136.330
22.10052 135.071 21523 133.114
3.10358 131.922 1698131.975
4 2.10463 130.318 14653 131.392
5 2.10512 129.347 13262 131.037
610538 128.696 12332 130.799
7 2.10553 128.229 11666 130.628
8 10563 127.878 11165 130.499
810570 127.604 10776 130.399
10 10575 127.385 10463 130.318

Prom Table 1, it is to be noted that as the failure rate increases, the optimal production time,
the expected cost rate and the NPV of the expected total cost over an infinite time horizon all
increase gradually. Further, the optimal production lot size in average cost model is greater
than the true optimum value based on discounting. Table 2 shows that the average cost rate
has a decreasing trend with the increase in the corrective or preventive repair rate. For a
meaningful comparison, we calculate the NPVs of the expected total cost over an infinite time
span based on the optimal decisions of the NPV and average cost models. The results given in
Table 3 indicates that the decision based on the NPV approach is more accuare than that of
the long-run average cost approach.

Table 3 Comparison of the NPVs of the expected total cost based on optimal
decisions of the NPV and average cost models when A $=0.3.$

$\beta$ $t_{0-NPV}^{*}$ $t_{0-AVG}^{*}$ $TC_{1\beta}(t_{0-NPV}^{*})$ $TC_{1\beta}(t_{0-AVG}^{*})$ $V-VV_{1}$ $\mathrm{x}$ $100$

$(V_{1})$ (V) (%)
0.05 L90545 2.03427 2867.25 2871.30 0.14
0.10 .79131 2.03427 1626.40 1634.36 0.49
0.15 .69023 2.03427 1218.20 1229.60 0.93
0.20 .60054 2.03427 1017.41 1031.60 1.39
0.25 .52066 2.03427 899.08 91 .36 1.81
0.30 .44923 2.03427 821.68 839.35 2.1

$t_{0-NPV}^{*}(t_{0-AVG}^{*})$ : optimal production time in the NPV (average cost) model.

5. Concluding remarks

In this paper, we have presented an exact formulation of EMQ model with stochastic machine
breakdown and repair under a general framework in which the time to machine failure, corrective
and preventive repair times are assumed to be random variables. The long-run average cost
in the steady state has been taken as a criterion for optimality. Moreover, for exact financial
implications of the lot sizing decision, the proposed model has been studied based on the net
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present value (NPV) approach. To compare the performance of the traditional long-run average
cost approach and the NPV approach, we have considered the NPVs of the expected total cost
based on the optimal decisions of the two models. It has been observed $\mathrm{f}o\mathrm{m}$ the numerical
study that the decision based on the average cost model is inferior and can even be significantly
worse than that of the NPV model.
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