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Abstract
A test $’:utance$ generator (an instance generator for short) for $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ is a procedure that

produces, given a number $n$ of variables, a 2-CNF formula $F$ of $n$ variables (randomly chosen from
some reasonably large domain), and simultaneously provides one of the optimal solutions for $F$ .
We propose an outline to design an instance generator using an expanding graph of a certain type,
called here an “exact 1/2-enlarger”. We first show a simple algorithm for constructing an exact 1/2-
enlarger, thereby deriving one concrete polynomial-time instance generator GEN. We also show that
an exact 1/2-enlarger can be obtained with high probability from graphs randomly constructed.
Prom this fact, we propose another type of instance generator RGEN; it produces a 2-CNF formula
with a solution which is optimal for the formula with high probability. However, RGEN produces less
structured formulas and much larger class of formulas than GEN’s. In fact, we prove the NP-hardness
of $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ over the set of 2-CNF formulas produced by RGEN.

1 Introduction
For testing the performance of an algorithm for a given problem, it would be useful if we could generate
typical instances of the problem with their solutions. A “test instance generator”, an instance gener-
ator for short, is a procedure that generates typical instances with their solutions. In this paper, we
propose instance generators for $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ , which is a problem of obtaining a maximum assignment,
an assignment satisying the maximum number of clauses of a given a 2-CNF formula.

An instance generator for $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ is a randomized procedure that takes $n$ , the number of vari-
ables, and produces a pair of a 2-CNF formula of $n$ variables and its maximum assignment. For a
“reasonable” instance generator, we would like to require some hardness, e.g., $\mathrm{N}\mathrm{P}$-hardness, for solving

$\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}$P.T over the formulas produced. Unfortunately, $\mathrm{h}\mathrm{o}$ wever, $\mathrm{t}11^{i_{\backslash }}!$ follow ing proposition suggests
that there doesn’t seem to exist a polynomial-time generator producing such hard instances.

Proposition 1.1 Unless NP $=$ $\mathrm{c}\mathrm{o}\mathrm{N}\mathrm{P}$ , there is no polynomial-time instance generator $\mathrm{G}$ such that
$\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ over $\mathrm{F}(\mathrm{G})$ is $\mathrm{N}\mathrm{P}$-hard where 7”(G) is a set of 2-CNF formulas produced by G.

Thus, instead of “computational hardness”, we below consider “structural hardness” for formulas
produced. Let $F$ be a 2-CNF formula and $T$ be an assignment. We denote by $\mathrm{u}\mathrm{n}\mathrm{s}\mathrm{a}\mathrm{t}\tau(F)$ a set of
unsatisfied clauses of $F$ under $T$ . If $T$ is a maximum assignment, $\mathrm{u}\mathrm{n}\mathrm{s}\mathrm{a}\mathrm{t}_{T}(F)$ is called hole of $F$ , and
denoted by hole(F). Since $2\mathrm{S}\mathrm{A}\mathrm{T}$ is solvable in polynomial time, we should produce formulas with
large hole; that is, if a 2-CNF formula $F$ is of size $m$ and has a hole of size a constant $c$ , a maximum
satisfying assignment for $F$ can be found by running an algorithm solving $2\mathrm{S}\mathrm{A}\mathrm{T}$ in at most $\sum_{i=0}^{\mathrm{c}}$ $(\begin{array}{l}mi\end{array})$

times, which is a polynomial of $m$ . Thus, we require our generator to produce formulas with hole of
size more than any constant. On the other hand, we would like to produce formulas with small size,
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that is, those with few clauses because it is considered relatively easy to solve $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ on 2-CNF
formulas with large size. Thus, the number of clauses of fo rmulas produced should be kept linear to
the number of variables. More specifically to say above all, for some constant $\alpha>0$ and $\beta>0,$ and
for every number $n$ of variables, we require the following conditions for all formulas $F$ produced:

(1) $|F|\leq$ an and (2) $|$ hole(F) $|\geq\beta|F|$ ,

Of course, there is a trivial way to produce formulas satisfying these conditions; just producing a set of
four clauses $(x\vee y)$ , ( $\mathrm{x}$ Vy), $(\overline{x}\vee y)$ , and $(\overline{x}\vee\overline{y})$ for pairs $x$ and $y$ of variables. This case bears $4=$ 0.25. In
this paper, while it is hard to formally specify “nontriviality” , we aim at producing nontrivial formulas
satisfying these two conditions.

Our idea is to use directed graphs with a certain “expansion” property. Here we explain an outline
of producing 2-CNF formulas briefly. Let $X$ be a variable set $\{\mathrm{x}\mathrm{i}, \cdots, x_{n}\}$ , and $V$ be a vertex set
$\{\mathrm{v}\mathrm{i}, \cdots, v_{n}\}$ . We first construct a directed graph $G$ (that has some nice property) over $V$ , and then
use it to produce a 2-CNF formula over $X$ as follows: First, we label every vertex of $V$ some literal of
$X$ by a (random) permutation $\pi$ over $\{1, \cdots, n\}$ . Then, regarding each edge $(v_{i},v_{j})$ of $G$ as a logical
expression $x_{\pi(i)}\Rightarrow x_{\mathrm{r}}$,(j), we produce a clause $(\overline{x_{\pi(i)}}\vee x_{\pi(.\cdot j)})$ equivalent to the logical expression. The
2-CNF formula produced is a collection of such clauses.

We intuitively explain how the expansion property is used. Suppose that a 2-CNF formula $F$ over
$X$ is obtained from a directed graph $G=(V,E)$ over $V$ . Let us further suppose that all vertices $v_{i}\in V$

are simply labeled with a positive literal $x_{i}\in X.$ Now consider any assignment $T$ to the variables
of $X$ . The vertex set is divided into two sets; namely $P$ and $N$ , which are sets of vertices assigned
respectively true and false under the assignment $T$ . Then under $T_{:}$ a clause produced from an edge
{ $\mathrm{v}\mathrm{i},$ $Vj)$ is unsatisfied if and only if $v_{i}\in P$ and $v_{j}\in N.$ Hence, the number of unsatisfied clauses under
$T$ is the number of edges from $P$ to $N$ , i.e., the number of cut edges.

This observation suggests that in order to have a 2-CNF formula $F$ with large hole, we need a graph
with many cut edges for all cuts. More specifically, we would like to have a graph with the expansion
property defined in Definition 2.2 of the next section. Furthermore, in order to keep the number of
clauses linear to $n$ , we require that the number of edges is linearly bounded by $n$ , say en for some
constant $c$ . We call a graph with such properties an $(n, c, \delta)$ -enlarger. Recall that we also provide a
maximum assignment at the same time. For this end, we need to provide a cut such that the smallest
ratio of cut edges is precisely known. (See Definition 2.3 of the next section.) An $(n, c, \delta)$ -enlarger
having such a cut is called an exact $(n, c, \delta)$ -enlarger. Once an exact $(n, c, \delta)$-enlarger is given, by
following the outline explained above, we can produce a 2-CNF formula and its maximum assignment;
we actually use two exact $(n, c, \delta)$ -enlargers of $\delta$ $=1/2.$ (Below, an exact $(n, c, 1/2)$ -enlarger will be
simply called an exact 1/2-enlarger.)

For presenting a concrete generator following the outline above, we first show an algorithm that,
for a given $n$ , constructs an exact 1/2-enlarger within polynomial time of $n$ . The algorithm is based on
the explicit construction of expanders [1]. Then, we give our polynomial-time instance generator GEN
that produces 2-CNF formulas satisfying the conditions (1) and (2). We also investigate the probability
that an exact 1/2-enlarger is constructed from random graphs, that is equivalent to the probability that
every randorn graphs $G$ $=(\mathrm{t}’..,$ $E1$, has some expansion property (see Lemma 2.1) so that those random
graphs derive an exact 1/2-enlarge. We show that under a certain edge degree, this probability is high.
Using this graph $G$ constructed ffom random graphs, and following the outline above, we can again
obtain a 2-CNF formula and its maximum assignment if the graph $G$ is indeed an exact 1/2-enlarger.
This gives us a slightly weaker instance generator RGEN; while RGEN produces a 2-CNF formula and its
maximum assignment with high probability, there is some chance that the assignment provided with a
formula is not optimal, which happens rarely. On the other hand, compared with formulas produced by
GEN, those produced by RGEN have the following advantages: (i) they have less structure, and (ii) they
have a better hole ratio $\beta$ . We also show that RGEN produces formulas with reasonable hardness, by
demonstrating that $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ is $\mathrm{N}\mathrm{P}$-hard on the set $\mathrm{F}(\mathrm{R}\mathrm{G}\mathrm{E}\mathrm{N})$ , the set of formulas produced by RGEN.
Rom Proposition 1.1, this result about hardness would be impossible for $\mathrm{F}(\mathrm{G})$ such that $\mathrm{G}$ always
produces a pair of formulas and its maximum assignment.

A full version of this paper is available online [2].
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2 Explicit Construction of Exact Enlarger
In this section, we first review an expander used for producing instances, and obtain a precise value
about the edge degree needed to construct a desired graph. Let $G=(U, V, E)$ be an undirected bipartite
graph such that $U=\{u_{1}, \cdots, u_{n}\}$ and $V=\{v_{1}, \cdots, v_{n}\}$ . Throughout this paper, a graph may have
multiple edges, but doesn’t have any self-loops. We denote by $\mathrm{X}(S)$ for $S\subset U$ the number of edges
from $S$ to vertices of $V$ having the different index numbers from $S$ ; that is, $\mathrm{A}(5)=$ { $\mathrm{u}\mathrm{i},$ $v_{j})\in E$ :
$u_{i}\in S$ and $v_{j}\in V$ and $i\neq j$ }.

Definition 2.1 An $(n, c, \delta)$ -expander is an undirected bipartite graph $G=(U, V, E)$ such that $|U|=$

$|V|=n$ , $|E|\leq en,$ and for any subset $S$ of $U$ , $|\mathrm{A}(5)|\geq\delta\cdot(1-|S|/n)\cdot|$ $5|$ .
Our definition of an expander is a little different from [1]’s; The definition above is w.r.t. $|\Delta(S)|$ ,

i.e., the number of edges emanated ffom $S$ while an expander of [1] is defined w.r.t. the number of
neighbors, which are defined as vertices of $V$ connected to vertices of $S$ . But for our definition, we
can also derive the same theorem as [1]’s: that says for any $n$ such that $n=h^{2}$ for some integer $h$ , an
$(n, 7, \delta)$-expander can be explicitly constructed where $\delta=(2-\sqrt{3})/2$ .

Below, we $\mathrm{s}$ imply call an $(.n, c, \delta)$ expander a $\delta$-expander in the case that the values $/\iota$ and $c$ are
given in the context. As is seen below, our generators need $\delta$-expanders such that $\delta\geq 2/3$ . The graph
$G$ constructed by [ $1\mathrm{j}$ ’s method is not such one because the ratio $\delta’=(2-\sqrt{3})/2$ is less than 2/3. But,
note that our definition of an expander is w.r.t. the number of edges (not vertices). Thus, by using
random permutations on vertices, we construct 1 isomorphic $\delta’$-expanders and then merge them to a
single graph, thereby yielding a 2/3-expander. Note that this resulting expander has $l\cdot 7n(=35n)$

edges; that is, it is an $(n, 35,2/3)$-expander. In the following sections, we denote by $(n, c_{0}, \delta_{0})$ expander
such an expander, where $c_{0}=35$ and $\delta_{0}=2/3.$

Next, we introduce our new notions called an “enlarger” and an “exact enlarger” , and show their
explicit constructions.

Definition 2.2 An $(n, c, \mathit{6})$-enlarger $G=(V, E)$ is a directed graph such that $|V|=n,$ $|E|\leq cn,$ and
for any subset $S$ of $V$ such that $|$ $5|\leq|V|/2$ , $|$ $5$ $\mathrm{x}$ $(V- 5)$ $\cap E|\geq \mathit{6}|S|$ , and $|$ ( $V$ -S) $\mathrm{x}S\cap E|\geq\delta|S|$ .

Again, we simply call an $(n,c, \delta)$-enlarger a $\delta$-enlarger in the case that the values $n$ and $c$ are given
in the context. Observe that a directed graph $G=(V, E)$ of $|V|=n$ constructed from two isomorphic
$(n, c_{0},5 )$-expander $G_{1}=(U, W, E_{1})$ and $G_{2}=(U, W,E_{2})$ such a way of $E=$ { $(v_{\dot{\iota}},v_{j})$ : $\{\mathrm{u}\mathrm{i},$ $w_{j})$ $\in$

$E_{1}\}$ $\cup$ {(ui,Vj) : $(u_{\dot{1}},w_{j})\in E_{2}$ }, is an $(n, 2c_{0}, \delta_{0})$ -enlarger.

Lemma 2.1 For any graph $G=(V, E)$ constructed in the way above, we have that for any subset $S$

of $V$

$|S\chi_{}..\langle V-S$) $\cap E|\geq 2\delta_{0}(1-\frac{|S|}{n})|S|$ , and $|(V-S)\mathrm{x}S\cap E|\geq 2\delta_{0}(1$ - $\frac{|S|}{n})|S|$ .

By definition of enlarger, for any subsets $S$ and $T$ of $V$ such that $S\cup T=V$ , $S$
”

$T=\phi$ , and
$|S|=|$ $\mathrm{i}$

$|$ , the following inequalities hold: $|$ $5$ $\mathrm{x}$ $T\cap E|\geq\lceil$6rc/2$\rceil$ and $|T\mathrm{x}$ $S\cap E|\geq\lceil$6yz/2$\rceil$ . For our
generators, among all those partitions of $(S, T)$ , we need a $\delta$-enlarger having an “optimal” partition for
which the inequalities above hold at equality, which we call an “exact enlarger”.

Definition 2.3 An exact $(n,c, \delta)$ -enlarger $G=(V, E)$ is an $(\mathrm{n},\mathrm{c}, \mathit{6})$-enlarger which has a partition
$(U, W)$ of $V$ with $|U|=|$ $ $|$ such that

$|U\mathrm{x}W\cap E|=\lceil\delta$ . $n/2\rceil$ , and $|W\mathrm{x}U$
”

$E|=\lceil 6$ . $n/2$].

Here, we show the construction of an exact $(n, 2c_{0}+ 1/2, 1\prime 2)$-enlarger from two $(n/2, 2c_{0}, \delta_{0})-$

enlargers. We first construct two $(n/2, 2c_{0}, \delta_{0})$-enlargers $L=(U, E_{l})$ and $R$ $=(W, E_{r})$ , where $U=$
$\{\mathrm{u}\mathrm{i}, \cdots,\mathrm{u}_{n’ 2}\}$ and $W=$ {vi, $\cdots,w_{n/2}$ }. Then, we construct a graph $G=(V, E)$ defined as $V=U\cup W$

and $E=E_{l}\cup E_{\mathrm{r}}\cup$ $4\cup B,$ where $A=$ {(ui,Vj) : $1\leq i\leq n/4$}, and $B=$ { $(\mathrm{u}\mathrm{i}$ ,Vj) : $n/\mathit{4}$ $+1\leq i\leq n/2$ }.
In what follows, we call a correspondence between $U$ and $W$ defined by $A$ and $B$ a one-tO-One balanced
correspondence.
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Lemma 2.2 For any $n$ , the graph $G=(V, E)$ of $|V|=n$ constructed in the way above is an $(n,$ $2c_{0}1-$

$1/2$ , 1/2)-enlarger.

Proof. Consider a graph $G=(V, E)$ constructed by the way with $|V|=n.$ We first count the number
of edges of $G$ . Since $G$ is composed of two $(n/2,2\mathrm{c}\mathrm{o}\delta_{0})$-enlargers and additional $n/2$ edges, the number
of edges is 2 . $(2c_{0}\cdot n/2)$ $+n/2,$ which is $(2c_{0}+1/2)|V|$ , where $|V|=n.$

Next, we show that $G$ is a 1/2-enlarger. Consider an arbitrary $S\subset V$ of size at most $n/2$ . Let
$S=S_{U}\cup S_{W}$ , where $S_{U}\subset U$ and $S_{W}\subset W.$ We count the number of edges from $S$ to $V$ –S. (A
similar argument holds for $|(V-S)$ $\mathrm{x}S\cap E|.)$ Since $|$ $5|\leq nf$2, and the construction of $G$ is symmetric,
it suffices to prove for the following two cases:

(I) : $|S_{U}|$ , $|S_{W}| \leq\frac{n}{4}$ , and (II) $)$ : $|S_{U}| \geq\frac{n}{4}$ and $|S_{W}| \leq\frac{n}{4}$ .

It is obvious for the first case ffom the definition of $\delta_{0}$-enlarger. In the second case, by Lemma 2.1,
we have that

$|S_{U}$ $\cross(U-S_{U})\cap E_{t}|\geq 2\delta_{0}(|S_{U}|-\frac{|S_{U}|^{2}}{7l2},’)$ : and

$|S_{W} \cross(W-S_{W})\cap E_{r}|\geq 2\delta_{0}(|S_{W}|-\frac{|S_{W}|^{2}}{n/2})$

By combining the two inequalities above, we have that

$|$ $5$ $\mathrm{x}(V-S)\cap(E_{l}\cup E_{r})|\geq 2\delta_{0}(|S_{U}|+|S_{W}|-\frac{|S_{U}|^{2}}{n/2}-\frac{|S_{W}|^{2}}{n/2}$ ). (1)

This bound is the number of edges from $S$ to $V-S$ within the subgraphs $L$ and $R$ ; There are some
more edges, that is, those of $A\cup B.$ For obtaining the lower bound for the number of those additional
edges, we let $|S_{U}|$ $=n/4$ $+$ nx/4 and $|S_{W}|=ny/\mathit{4}$ by parameters $x$ and $y$ . Then, for fixed values of $x$

and $y$ such that $0\leq x,y\leq 1,$ we estimate the minimum number of those edges. Rom the construction
of $A$ and $B$ , it is easy to see that the following claim holds. (See the figure below.)

Case (i) Case (ii)

Figure 1: Two Cases

Claim 1 For fixed values of $x$ and $y$ , $|S$ $\mathrm{x}$ $(V-S)$ I $(A\cup B)|$ is minimized in the case that $S_{U}\supset$

$\{u_{n/4+1}, \cdots, u_{n/2}\}$ and $S_{W}\subset\{w_{1}, \cdots, w_{n/4}\}$ , and one of the followings holds:

Case (i) : $\forall(u,w)\in A[w\in S_{W}\Rightarrow u\in S_{U}]$ ,

Case (ii) : $\forall(u, w)\in 4[u\in S_{U}\Rightarrow w\in Sw]$ .
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Note that Case (i) is for $x\geq y$ and Case (ii) is for $x\leq y.$ We show that $G$ is a 1/2-enlarger for any
$x$ , $y$ such that $0\leq x,$ $y\leq 1$ in both cases. Since the proofs of those two cases are similar, we only show
it for Case (i). It is easy to see that $|S$ $\mathrm{x}(V- 5)$ $\cap A|=(x-y)\cdot n/4$ . By combining this equality and
inequality (1), we have that

$S\mathrm{x}(V-S)\cap E|$ $\geq$ $2 \delta_{0}(|S_{U}|+|S_{W}|-\frac{|S_{U}|^{2}}{n/2}-\frac{|S_{W}|^{2}}{n/2})+\frac{x-y}{4}n$

$=$ $4$ $(\delta_{0}(1-x^{2}-y^{2}+2y)+x-y)1$

Recall $|S|=n \oint 4$ $+(n/4)x+$ (n/4)y; thus, for proving that $G$ is a 1/2-enlarger, it suffices to show

. $(\delta_{0}(1-x^{2}-y^{2}+2y)+x-y)$ $\geq\frac{[perp]}{2}$ . $( \frac{n}{4}+\frac{n}{4}x+\frac{n}{4}y)$

Applying $\delta_{0}=2/3,$ the inequality above is equivalent to the following $(*):(x-3/8)^{2}+(y+1/8)^{2}\leq$ 13/32.
That means $G$ is a 1/2-enlarger if $(x,y)$ is within the circle defined by $(^{*})$ . On the other hand, in Case
(i), $x$ and $y$ must satisfy the following bounds: $y2$ $0$ , /S $x$ , and $y\leq-x+$ l. (The last bound follows
from $|S|=|S_{U}|\dotplus|S_{W}|\leq$ n/2.) In other words, the do main of $(..c, y)$ is within the triangle defined by
these three inequalities. Note that this triangle is within the circle defined by $(*)$ since its three vertices
$(0, 0)$ , $(1, 0)$ , 1/2, 1/2) all satisfy $(*)$ . Thus, we conclude any pair of $x$ and $y$ in the domain satisfies
$(*)$ . II

Prom the construction, it is clear that $(U, W)$ is a partition for which the number of edges between
$U$ and $W$ is exactly 1/2 $\cdot n/2$ in both directions. This proves the following main theorem of this section.

Theorem 2.3 For any $n$ , the graph $G=(V, E)$ of $|V|=n$ constructed in the way explained above, is
an exact $(n, 2c_{0}+ 1/2, 1/2)$ -enlarger.

3 Generating Algorithms
In this section, we first show an outline for instance generators by presenting a concrete generator GEN.
For producing a 2-CNF formula of $n$ variables, we use exact 1/2-enlargers having $n$ vertices as follows:

Algorithm 1 GEN (input $n$ : a number of variables)

step 1: Let $X=\{x_{1}, \cdots, x_{n}\}$ be a set of variables, and $V=\{v_{1}, \cdots, v_{n}\}$ be a vertex set.
Divide $V$ into two sets $U=\{v_{1}, \cdots, v_{n/2}\}$ and $W=\{v_{n/2+1}, \cdots, v_{n}\}$ .

step 2: Construct independently two exact ($n,$ $2c_{0}+$ lf2, 1/2)-enlargers $G_{k}=(V, E_{k})$ for
$k=1,2$ on $U$ and $W$ .

step 3: Choose a random assignment $t:t_{1}$ , $\cdots$ , $t_{n}\in\{0,1\}$ to $X$ and a random permuta-
tion $\pi$ over $X$ . Then, label each vertex of the two graphs as follows: $l_{1}(v_{i})=x_{\pi(i)}^{t}.\cdot$ for
$v_{i}\in V$ of $G_{1}$ , and $l_{2(’}v_{i}$ ) $=x_{\pi(i)}^{t_{i}}$ for $v_{i}\in U$ of $G_{2}$ anci $l_{2(’}v_{i}$ ) $=x_{\pi(i)}^{t.\oplus 1}$

. for $v_{\dot{\mathrm{t}}}\in W$ of $G_{2}$ ,
where $x_{\pi(:)}^{t_{\dot{\mathrm{t}}}}$ is $x_{\pi(i)}$ if $t_{i}=1,$ and otherwise $\overline{x_{\pi(i)}}$ .

step 4: Define a set $F$ of clauses as follows: $F=$ { $(\overline{l_{k}(u)}\vee$ h(vi) : $(u,$ $v)\in E_{k},$ $k=1,2$}.
Set an assignment $T_{0}$ to be To(zi) $=t_{1}$ , $\cdots$ , and To(zi) $=t_{n}$ .

Theorem 3.1 For any pair of a 2-CNF formula $F$ and an assignment $T_{0}$ produced by GEN, we have
that $|F|=$ 141n, hole(F) $=n/4,$ and $T_{0}$ is a maximum assignment for $F$ .

As is mentioned in Introduction, we require the ratio of hole to the size of $F$ as large as possible.
We calculate the precise value of the ratio. By the theorem above, the ratio of hole is

hole(F) $)$

$-\underline{nf4}\approx 0.0\mathrm{O}\mathrm{W}7730496$ .
$|F|$

-

$141n$
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3.1 A generator based on random graphs
The generator GEN uses exact 1/2-enlargers based on expanders given by the explicit construction of
[1]’s method. Even though we use randomness several times in GEN, it might be still possible that the
formulas produced by GEN have a certain structure. On the other hand, it has been known that random
graphs mostly have the expansion property. Here, we 11 discuss the possibility of producing instances
from random graphs, which leads to a generator RGEN.

Recall the explicit construction of an exact 1/2-enlarger; By the proof of Lemma 2.2, we can conclude
that the procedure outputs an exact 1/2-enlarger if for each graph $G=(V, E)$ composing the exact
1/2-enlarger, it satisfies the two conditions presented in Lemma 2.1 for every subset of $V$ . Note that
due to the symmetry, if $G$ satisfies the one condition for all subsets of $V$ , so does $G$ the other condition
for all subsets of $V$ . That is, in what follows, we will consider only the first condition: for every subset
of $V$ ,

$|S\cross(V-S)\cap E|\geq 2\delta_{0}$ $(1-|S|/|V|)$ $|S|$ . (2)

We first estimate the probability that the random graph satisfies (2) where $\mathit{6}=1/2$ (not $\delta=2/3,$

this is for an easier calculation) for any subset of $V$ of size up to $n/2$ (not $n$ ). After that, using the
value, we obtain the probability $\mathrm{f}\mathrm{o}1$ $\mathit{6}=2/3$ and size up to $n$ .

Here, we define the probability space for a random graph $G=(V, E)$ of $|V|=n;$ For each $et\in V,$

we choose $d$ edges emanating ffom $u$ by sampling with replacement $d$ vertices from $V$ independently
and uniformly. The sampling with replacement means that there can be multi-edges emanating ffom a
vertex, or even exist a vertex having no edges ffom itselfi

Lemma 3.2 The random graph $G=(V, E)$ described above satisfies (2) where $\mathit{6}=1/2$ for any subset
$S\subset V$ of size $\leq n/2,$ with probability at least $p$ , where $p=$ (1-2r)/(l $-r$), and $r=de^{2}\cdot 2^{5/2-d}$ .

Next, we extend the upper bound on the size of $S$ to $n$ ; it is easily done by generating two random
graphs $G_{1}=(V, E_{1})$ and $G_{2}=(V, E_{2})$ , and construct $G=(V, E)$ defined as; $E=\{(u, v)$ : $(u, v)\in$

$E_{1}$ or $(v, u)\in E_{2}\}$ . We claim that with probability at least $p^{2}$ , the graph $G$ satisfies (2) for every subset
of $V$ .

Finally, we extend the value of $\delta$ to 2/3; it is also done in the same way. We generate another
random graph and simply merge them. Then, we have that with probability at least $p^{4}$ , the random
graph satisfies (2) with $\delta=2/3$ for every subset of $V$ . Therefore, we conclude that the probability we
obtain one exact $1$ /2-enlarger from random graphs is at least $(p^{4})^{2}=p^{8}$ .

Now, we estimate the specific degree of edges Such that the probability that two exact 1/2-enlargers
are obtained from random graphs, which is at least $(p^{8})^{2}$ , is high. For this end, by taking $d=15,$
for example, we have $p^{16}>$ 0.992911; that is, the success probability, the probability of obtaining two
exact 1/2-enlargers, is more than 99%. Thus, under this choice of parameter $d$ , we can conclude that,
for more than 99% of 2-CNF formulas produced by RGEN, the assignments provided with formulas are
indeed maximum assignments.

Notice also that the number $m$ of edges (or clauses) is $m=2\cdot(15+0.5)\cdot n=31n$ when $d=15,$
which is about one fifth of the number of clauses produced by GEN. Thus, the ratio of unsatisfied clauses
to $m$ becomes five times in compensation for small chance of providing non-maximum assignments.

3.2 Hardness of instances by RGEN

We have proposed two types of generators; producing formulas and also providing their maximum
assignments although for RGEN it is with high probability. This is because RGEN uses random graphs
to produce formulas. On the other hand, it can be considered that the randomness makes RGEN to
produce hard formulas to solve. Here, we define the problem of those instances and discuss about the
hardness to solve such formulas.

Balanced MIN-ASSIGNCUT
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Instance: Two vertex sets $U$ and $W$ with $|U|=|W|$ , and two directed graphs $G_{i}=(V_{i}, E_{i})$

for $i=1,2$ as follows: We define $V_{i}$ as $U\cup W.$ Moreover, for each graph $G_{i}$ , there
exists a one tO-One balanced correspondence between $U$ and $W$ for $i$ — 1, 2.

Question: Let $S=$ (Tt) $\cup(\overline{T}\cap W)$ , and for any subset $T$ of $V$ , let cost (T) be $\sum_{i-- 1,2}-c_{i}$ ,
where $c_{1}=|T$ $\mathrm{x}7$

”
$E_{1}|$ , and $\mathrm{c}_{2}=|S\mathrm{x}S$ $\cap E_{2}|$ . Then, what is a subset $T$ of $V$ such

that cost(T) is minimized?

It is easy to see that the problem above is $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ where instances for the problem is restricted
to a subset of 2-CNF formulas. Moreover, all of those instances can be produced by RGEN. This follows
from the following observation. Let $X$ be a set of variables and $t$ be an assignment to $X$ . In the
problem above, we consider $X$ as $V$ , and correspond $t$ to cut $T_{t}$ of $V$ such that for each edge $e$ and its
corresponding clause Ce, cost(T) $)$ is increased by $e$ if and only if $C_{e}$ is not satisfied under the assignment
$t$ .

Thereby, if we prove the hardness of the problem above, we can conclude that RGEN surely produces
hard formulas as well. Thus, the theorem to prove here is as follows:

Theorem 3.3 Balanced MIN-ASSIGNCUT is NP-hard.

This theorem can be proven by a sequence of reductions starting with a variant of $\mathrm{N}\mathrm{A}\mathrm{E}3\mathrm{S}\mathrm{A}\mathrm{T}$ , where
the number of occurrences of variables is a constant.
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