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Abstract

In this paper, we study the learning efficiency of a subclass of simple deterministic languages. We
define a superclass of very simple grammars and show that the class is identifiable in the limit from
positive data by presenting an algorithm which updates its conjectures in polynomial time in the
size of provided data. Moreover, we investigate an algorithm which decides the inclusion problem
for the class efficiently, which is a sub-algorithm of the learning algorithm.

1 Introduction
While there are few subclasses of context-free grammars (CFGs) known to be learnable efficiently from
positive data only, Yokomori [6] shows that the class of very simple grammars (VSGs) is identifiable in
the limit from positive data by an algorithm which updates its conjecture in polynomial time in the size
of provided data. In this paper, we define a superclass of very simple grammars, called the right-unique
simple grammars (RSGs) and show that the class is also efficiently learnable by an algorithm, which is
based on the learning algorithm for VSGs by Yokomori. Our algorithm has a sub-algorithm which decides
the inclusion whether $L(G’)\subseteq L(G)$ between an RSG $G$ and an arbitrary CFG $G’$ , which is based on
(and runs faster than) the algorithm for the inclusion problem for VSGs proposed by Wakatsuki and
Tomita [5].

For more detailed discussion (in particular for the proofs of the lemmas and theorems omitted in this
paper) on the issues treated in this paper, see the master’s thesis by Yoshinaka [7], from which this paper
excerpts. The thesis includes a slight improvement on the algorithm for the inclusion problem for RSGs.

2 Preliminaries
$\epsilon$ denotes the empty string and $\emptyset$ denotes the empty set. $|\cdot$ $|$ denotes the length of the string or the
cardinality of the set. A context-free grammar (CFG) $G$ is denoted by a 4-tuple $(N, \Sigma, P, S)$ where $N$ is
the finite set of nonterminal symbols, $\Sigma$ is the finite set of terminal symbols disjoint ffom $N$ , $P$ is the
finite set of production rules and $S\in N$ is the start symbol. Nonterminals are denoted by upper case
letters from the beginning of the alphabet, $A$ , $B$ , . . . etc. and terminals are denoted by lower case letters
ffom the beginning of the alphabet, $a$ , $b$ , . .. etc. Sequences of nonterminals are denoted by lower case
letters from the beginning of the Greek alphabet, $\alpha$ , $\beta$ , $\ldots$ etc. and sequences of terminals (strings) are
denoted by lower case letters from the end of the alphabet, $x$ , $y$ , . . . etc. We define a binary relation $\Rightarrow G$

as $\Gamma\Rightarrow\subset$ A for $\Gamma$ , A $\in$ $(\mathrm{I}\cup N)^{*}$ iff (if and only if) $\Gamma=$ AIAA3, A $=\Delta_{1}\Delta_{2}\Delta_{3}$ and $Aarrow$ $\Delta_{2}\in P.$ We
some times write $\Rightarrow$ instead of $\Rightarrow G$ if no confusion occurs. $\mathrm{S}$ is the transitive closure of $\Rightarrow$ . $\Rightarrow^{*}$ is the
reflexive and transitive closure of $\Rightarrow$ . We define the language $L(G)$ by a grammar $G$ as $L(G)=L(G, S)$
where $L(G, A)=\{w\in\Sigma^{*}|A\Rightarrow^{*}w\}$ . A CFG $G$ is reduced iff for every nonterminal $A\in N,$ there is
$xyz\in L(G)$ such that $S\Rightarrow^{*}xAz\Rightarrow xyz*$ .
Definition 1. A positive data of a language $L$ is a surjection from the set of natural numbers $\mathrm{N}$ to $L$ .

For a positive data $R$ of $L$ , let $R_{n}$ denote $\{R(0), \ldots, R(n-1)\}$ . An algorithm $A$ converges to $G$ for
$R$ iff there is $k\in \mathrm{N}$ such that $A(R_{n})=G$ for all $n\geq k,$ where $A(R_{n})=G$ means that the output of $A$ is
$G$ for the input Rn. We say that A learns a class $\mathcal{L}$ of languages if for any $L\in \mathcal{L}$ and any positive data
$R$ for $L$ , $A$ converges to $G$ such that $L(G)=L.$

The term “the efficiency of a learning algorithm” is controversial. Since the size of the input data $R_{n}$

increases infinitely, every learning algorithm can be modified into more “efficient” one which updates its
conjecture faster. In order to make the discussion constructive, we introduce the following two common
constraints, which is satisfied by our learning algorithm for RSGs.

数理解析研究所講究録 1375巻 2004年 106-112



107

Definition 2. A grammar $G$ is consistent with $L$ iff $L\subseteq L(G)$ . A learning algorithm $A$ is consistent iff
the output is always consistent with the input, i.e., $R_{n}\subseteq A(R_{n})$ for every positive data $R$ and a natural
number $n$ . An algorithm $A$ is conservative iff $R(n)\in A(R_{n})$ implies $4(7?_{n+1})$ $=A(R_{n})$ for every $R$ and
$n$ .

Th$\mathrm{e}$ learning algorithm for VSGs by Yokomori [6] updates its conjecture in $\mathcal{R}_{n}^{|\Sigma|}$ under the above two
constraints, where $\mathcal{R}_{n}=\sum_{0\leq k<n}|R(k)|$ is the tot\^a length of the input data $R_{n}.1$ In this paper, we
define a superclass of VSGs and discuss its learning efficiency.

Definition 3. A CFG $G$ is in Greibach normal form if every production rule is in the form of $Aarrow$

$a\alpha$ for some $a\in C$ and $\alpha\in N’.$ A CFG $G$ in Greibach normal form is a simple grammar iff $Aarrow a\alpha$ , $Aarrow$

$a\beta\in P$ implies $\alpha=\beta$ . A simple grammar $G$ is very simple iff $Aarrow a\alpha$ , $Barrow a\beta\in P$ implies $A=$

$B$ and $\alpha=\beta$ . A simple grammar $G$ is right-unique iff $Aarrow a\alpha$ , $Barrow a\beta\in P$ implies $\alpha=\beta$ .

The class of RSGs is a proper superclass of VSGs. The following example of an RSG expresses
formulas of first order logic, which cannot be expressed by a VSG since a VSG cannot distinguish
‘variables” (represented by the nonterminal $V$ below) from “terms” (by $T$).

Example 4. Let an RSG be such that $N=\{S,T, V, C, L, R\}$ , $\Sigma=\{\mathrm{p},\mathrm{q}, \mathrm{f},\mathrm{g}, \mathrm{a},\mathrm{b}, \mathrm{x}, \mathrm{y}, \neg, \vee, \exists, (, ), .\}$, $\mathrm{m}\mathrm{d}$

$P=\{Sarrow\neg S$ , $Sarrow$ VLSCSR, $Sarrow\exists VS$, $Sarrow \mathrm{p}LTR$ , $Sarrow \mathrm{q}LTCTR$ , $Tarrow \mathrm{f}LTR$ , $Tarrow$ gLTCTR,
$Tarrow \mathrm{a}$ , $Tarrow \mathrm{b}$ , $Tarrow \mathrm{x}$ , $Tarrow \mathrm{y}$ , $Varrow \mathrm{x}$ , $Varrow \mathrm{y}$ , $Carrow.$ , $Larrow$ $(, Rarrow)\}$ . Then, for example, there is a
derivation $S\Rightarrow\neg S\Rightarrow\urcorner \mathit{3}VS$ $\Rightarrow\neg\exists \mathrm{x}S\Rightarrow$ $w\mathit{3}\mathrm{x}\mathrm{p}LTR$

$\Rightarrow\neg*$ ]xp(/) ! $\neg$ 3xp(gLTCTR) $\Rightarrow^{*}\neg 3\mathrm{x}\mathrm{p}(\mathrm{g}(\mathrm{a}.\mathrm{x}))$.

Angluin [1] shows that the class of $k$-reversible languages is learnable from positive data efficiently
for any natural number $k$ , where a regular language $L$ is $k$ -reversible iff $\{x_{1}yz_{1}, x_{2}yz_{1}, x_{1}yz_{2}\}\subseteq L$

and $|y|=k$ implies $X2yz2\in L$ . While it is shown by Yokomori [6] that if $L$ is a regular and very
simple language then $L$ is zer0-reversible, in contrast, there is a regular and right-unique simple language
$L$ which is not $k$-reversible for any $k$ , e.g., $L=\{ac^{n}de, ac^{n}df, bc^{n}de|n\geq 0\}$ defined by an RSG as
$P=\{Sarrow aCF, Sarrow bCE, Carrow cC, Carrow d, Earrow e,Farrow e, Farrow f\}$.

Theorem 5. The class of RSGs is closed under none of the following; union, intersection, complement,
concatenation, Kleene closure $(*, +-)$ , ( $\in$-ffee) homomorphism, inverse homomorphism, or reversal.

3 A $\mathrm{L}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{n}\acute{\mathrm{l}}\mathrm{n}\mathrm{g}$ $\mathrm{A}\circ \mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}$ for RSGs
Under the constraint of the consistency and conservatism, a learning algorithm must output a grammar
which represents a minimal language in the languages including the input data. The following function
defined on an RSG is very important to study the properties of RSGs.

Definition 6 (shape). For an RSG $G$ , a function $\#\mathrm{G}$ mapping from $(\Sigma\cup N)^{*}$ to the set of integers $\mathbb{Z}$

is defined as follows;. $\# c(a)=|$ cr $|-$ $1$ for $Aarrow a\alpha$. $\# c(A)=-1$ for $A\in N$. $\neq_{G}(\Gamma\Delta)= G(\Gamma)+\neq_{G}(\Delta)$ (homomorphism)
We call $\# G$ the shape of $G$ .

A function $c : $\Sigma^{*}arrow \mathrm{N}$ is defined as follows;. $c $(\epsilon)=0$. $\_{G}(x)=\max${1-#c $(x’)|x$’ is a proper prefix of $x$} for $x\neq\epsilon$

If $a\Rightarrow*x\beta$ , then $\#(\alpha)=*(x\beta)$ (i.e., $j(x)$ $=|\beta|-|$a $|$ ). $\mathrm{t}(\mathrm{x})$ denotes the necessary and sufficient
length of a sequence of nonterminals to derive $x$ by a left-most derivation, because $|\beta’|$ $=|\alpha|+\#(x’)\geq 1$

for $\alpha\Rightarrow^{*}x’\beta’\Rightarrow+\mathrm{x}\mathrm{O}$. That is, $\alpha\Rightarrow*x\beta$ implies $\alpha’\Rightarrow*x\beta’$ for the prefix at’ of length $(rr) of $\alpha$ and
$|\beta’|=x)+\#(x)$ .
Lemma 7 (right-uniqueness). For two derivations $\alpha_{1}\Rightarrow*$? $x\beta_{1}$ and a2 $*i$ $x\beta_{2}$ , if $|01|=|\mathrm{c}\mathrm{b}2|=x)$ ,
then $\beta_{1}=\beta_{2}$ .

Yokomori additionally claims that the algorithm satisfies the condition for polynomial time identification proposed by
Pitt [4]. The author does not think the conclusion is false but has a question on his proof.
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Definition 8 (consistent shape). The shape $\#$ of some RSG (a homomorphism $\#$ from $\Sigma^{*}$ to $\mathbb{Z}$ such
that $\#(a)\geq-1$ for all $a\in$ $\Sigma$ ) is consistent with a language $L$ iff there is an RSG $G$ whose shape is $\#$

such that $L\subseteq L(G)$ .
Lemma 9. A shape $\#$ is consistent with $L$ iff (1) $\#(w)=-1$ and (2) $\#(\mathrm{t}1’)$ $\geq 0$ for all the proper
prefixes $w’$ of $w$ for every $w\in L.$ The condition (2) can be replaced with (2’) $(w)=l, where $(w)=
$\max${ $1-\#(x’)|x$’ is a proper prefix of $x$ }.

If $\#$ is consistent with $L$ , then $zay\in L$ implies $\#(a)<|y|$ .
Corollary 10. For a provided data $R_{n}$ , all the consistent shapes can be enumerated in finite steps
$O( \mathcal{R}_{n}^{|\Sigma|-1})(\mathcal{R}_{n}=\sum_{0\leq k<n}|7?(k)|)$.

In order to obtain the set of consistent shapes more fast, in practice, it is a good idea to construct
and solve the simultaneous linear equations which represent the condition (1) of Lemma 9, that is,
$\sum_{a\in\Sigma}$ $(\mathrm{o}\mathrm{c}\mathrm{c}(a, w)\cdot$ $\#(\mathrm{a}))$ $=-1$ for each $w\in R_{n}$ where $\mathrm{o}\mathrm{c}\mathrm{c}(a,w)$ denotes the number of occurrences of $a$

in $w$ . But, unfortunately, such a strategy does not improve the worst-case time complexity theoretically.
Suppose that an input $R_{n}$ and a consistent shape $\#$ are given. Let $\mathcal{G}_{\#}=\{G|\# c=\neq\}$ be the subclass

of RSGs whose shapes are all $\#$ . Then, it is easy to find the minimum grammar Go in $\mathcal{G}\neq$ such that
$R_{n}\subseteq L(G_{0})$ as follows. We assume that the right side of each rule of each grammar in $\mathcal{G}_{\#}$ is in the form
of $?_{a}arrow$ oAO|0 ... $A_{a,\#(a)}$ and the set of nonterminals is $N_{\#}=\{S\}\cup\{A_{a,i}|a\in\Sigma,0\leq i\leq*(a)\}$ . This
assumption loses no generality. Then, we determine the left side of the rules of $G_{0}$ by simulating the
derivations of all $n$ $\in$ Rn. We can complete such a simulation without fail. For example, suppose a shape
$\#(\mathrm{a})$ $b$ , $c,d)$ $=(1,0, -1, -1)$ given. The right side of the rules of $G\circ$ is determined as

$?_{a}arrow$ $\mathrm{a}\mathrm{A}0\mathrm{A}\mathrm{i}$ $?b$ $arrow bB0$ , $?_{\mathrm{C}}arrow$? $c$ , $7d$ $arrow d.$

If abcbd $\in R_{n}$ , then we simulate the derivation as
$S\Rightarrow$ aA0Ai4 $abB_{0}A_{1}\Rightarrow abcA_{1}\Rightarrow$ a6c6B0 $\Rightarrow$ abcbd,

and therefore, the rules are determined as follows;

$Sarrow aA_{0}A_{1}$ , $A_{0}arrow bB\circ$ , $A_{1}arrow bB_{0}$ , $B_{0}arrow c$ , $B_{0}arrow d.$

As seen above, the distinctions between RSGs in $\mathcal{G}_{\#}$ are what nonterminals are in ? for each $a\in$

E. In other words, (the equivalence classes of) $\mathcal{G}*$ forms a finite Boolean algebra isomorphic to the
power set $\mathcal{M}_{\#}$ of $\Sigma$

$\mathrm{x}N\#$ . The correspondence between $G\in \mathcal{G}\neq$ and $M_{G}\in \mathcal{M}\#$ is that $A_{b,k}arrow$

$aA_{a,0}$ ... $A_{a,\neq(a)}$ is in $G$ iff $(a, \text{\^{A}} k)$ $\in MG.$ Then it is easy to verify that $L(G_{1})\cap L(G_{2})=L(G_{1} \cap G_{2})$

holds, where $\cap$ is defined as $G=G_{1}$ \cap $G_{2}$ iff $M_{G}=M_{G_{1}G_{2}}\cap M$ . This assures that if $\#$ is consistent with
a language $L$ then the minimum grammar Go in $\mathcal{G}_{\#}$ such that $L\subseteq L(G_{0})$ is uniquely determined.

Summarizing the above, for a given input,. We can enumerate shapes consistent with the input.. We can compute the minimum consistent grammar with the input for a given shape consistent with
the input.

The minimum grammar for a fixed shape is, however, not necessarily a minimal grammar in all the
consistent RSGs with the input. There are a number of consistent shapes for the input. The remained
task is to choose a minimal grammar in the minimum grammars. For this task, it is enough to show an
algorithm which decides the inclusion of RSGs with different $\mathrm{s}\mathrm{h}\mathrm{a}\mathrm{p}\mathrm{a}\mathrm{e}.2$ We present such an algorithm in
the next section.
Corollary 11. The inclusion problem for RSGs which are constructed ffom a provided data & and
consistent shapes can be solved in $O(|\Sigma|^{4}\mathcal{R}_{n}^{10})$ steps.

Therefore, we can choose a minimal grammar consistent with a given input. Moreover, it is easy to
see that the algorithm converges to an RSG which represents the target language, because (1) the set $s_{n}$

of shapes consistent with $R_{n}$ is finite, (2) $s_{n}\subseteq s_{n+1}$ if all the terminals of the target grammar appear in
$R_{n}$ , and (3) finitely many essentially different grammars have a same shape ($\mathcal{M}_{\#}$ is finite).

Theorem 12. The algorithm in Figure 1 learns the class of right-unique simple grammars conservatively
and consistently, which updates its conjecture in $O(|\Sigma|^{4}\mathcal{R}^{|\Sigma|+9})$ steps.

$2\mathrm{Y}\mathrm{o}\mathrm{k}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{i}$ $[6]$ shows that we can choose a minimal VSG in a number of VSGs without deciding the inclusion. But such
a method is not applicable to RSGs. That is a main difference between Yokomori’s algorithm and ours.
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Algorithm; Learning RSGs
Input $R_{n}=\{R(0), \ldots, R(n-1)\}$ and the previous conjecture $G$ ;

if $R(n-1)\in L(G)$ then output $G$ and halt; fi
let $S=$ $\mathrm{E}$ $|-1$ $\leq$ #(a) $<|y_{a}|\}$ , where $|y_{a}|= \min\{|y||xay\in R_{n}\}$ ;
eliminate inconsistent shapes with $R_{n}$ from $S$ ;
if $S=\emptyset$ then output “this is not a right-unique simple language.” and halt;
let $\mathcal{G}$ be $\emptyset$ ;
for $\neq_{i}\in S$ do construct the minimum grammar $G_{i}$ whose shape is $\neq_{i}$ and add $G_{t}$ to $\mathcal{G}$ ; od
by comparing each grammar in $\mathcal{G}$ , output a minimal grammar and halt;

End Algorithm

Figure 1: A Learning Algorithm for RSGs

4 An algorithm for Inclusion Problems of RSGs
It is already shown that the inclusion problem for some superclasses of right-unique simple grammars
is decidable by Linna [3] and Greibach and Friedman [2]. But these algorithms, which take exponential
time in $\mathcal{R}_{n}$ , are not enough efficient to be adopted as a sub algorithm of our learning algorithm. On
the other hand, Wakatsuki and Tomita [5] show that the inclusion problem for VSGs is decidable in
polynomial time in the thicknesses of compared grammars. The thickness $r$ ; of a CFG $G$ is defined as
$\tau c$ $= \max\tau_{G}A\in N(A)$ for $\tau_{G}(A)=\min_{A\Rightarrow^{*}w}|w|$ . Because the length of a shortest string in the language by a CFG

cannot be bounded by a polynomial in the description size of the grammar generally, it is thought to be
reasonable to adopt the thickness as a parameter for an evaluation of the computational complexity of
an algorithm which treats CFGs. Based on their algorithm, we investigate an algorithm which decides
the inclusion problem for RSGs more efficiently than theirs.

Theorem 13. For an RSG $G=$ $(N, \Sigma, P, S)$ and an arbitrary CFG $G’=(N’, \Sigma, P’, S’)$ in Greibach
normal form, the question whether $L(G’)\subseteq L(G)$ is decidable in $O(|\Sigma|^{4}|N|^{2}|G’|^{6}\tau_{G}^{2},)$ by the algorithm
in Figure 2, where $|G’|$ denotes the description size of $G’$ defined as $|G$

’
$|= \sum_{A’arrow}aa’($ $P’(3+|\alpha’|)$ .

Note that, though we assume that $G’$ is in Greibach normal form here for a convenience, but that is
inessential restriction at all.

Our algorithm checks whether $\#\mathrm{G}$ is consistent with $L(G’)$ first. This is a necessary condition for
$L(G’)\subseteq L(G)$ . Through this section, we assume that both $G$ and $G’$ are reduced.

Definition 14 (extended shape). Suppose that $\neq_{G}$ is consistent with $L(G’)$ . In such a case, we can
define $\# c(A’)$ for $A’\in N’$ by identifying $A’$ as a string in $L(G’, A’)$ .. $\neq_{G}(A’)=\#$ $\mathrm{x}(y)$ for some $A\Rightarrow^{*}$

;’ $y$

This is well defined, because for different two strings $y_{1}$ , $y_{2}\in L(G’, A’)$ and a derivation $S’\Rightarrow^{*}G’xA’z\Rightarrow*$

$xy_{i}z$ , we obtain $\# c(xy_{i}z)=-1$ and $\# c(A’)=\# c(y_{i})=-1-\# c$ (xz). In addition, we define $c(A’)$ as
follows;. $\_{G(\Gamma)=\max\{\_{G}(y)|\Gamma’\Rightarrow G’y\}}*$ for $\Gamma\in$ $(\mathrm{I}\cup N’)^{*}$ ,. $G $( \mathrm{A}’)=\max\{ c(y)|A’\Rightarrow^{*}\subset$’ 1: in particular.
It is easy to see that $A’)$ and $(\Gamma ) has a finite value if $l\subset$ is consistent with $L(G’)$ .
Lemma 15. Suppose that $\neq_{G}$ is consistent with $L(G’)$ . Then,. $\neq_{G}(A’)=\# c(a\alpha’)$ for all rules $A’arrow a\alpha’\in P’$ of $G’$ ,. $\_{G}(A’)=\max\{\_{G}(a\alpha’)|A’arrow a\alpha’\in P’\}$ ,. $G (r) . . . $X_{m}$ ) $=$ $\max\{-\# c(X_{1}\ldots X_{k-1})+ c(X_{k})|1\leq k\leq m\}$ for $X_{:}\in$

$\mathrm{f}^{\mathrm{I}}\mathrm{t}$ $\cup N’$ .

The algorithm in Figure 2 decides the consistency of $\# G$ with $L(G’)$ in Stage 1. The correctness of
the procedure is guaranteed by the above lemma.

Suppose that we obtain a conclusion that $\# c$ is consistent with $L(G’)$ (otherwise $L(G’)$ \not\subset $L(G)$ ).
Secondly, the algorithm emulates the derivations of $G’$ by $G$ in Stage 2. We conclude $L(G’)\subseteq L(G)$ iff
this emulation has been done with no errors. Although $L(G’)$ may be infinite, we can do that. Hereafter,



110

we write $\#\sim$ and \sim $ for the extended $fc$ and $\_{G}$ computed in Stage 1. The rules of $G’$ are represented by a
set of trees. Each tree corresponds to one nonterminal of $G’$ and there is a path from the root node which
represents a rule in $G’$ . Thus, each tree $T_{A’}$ represents the derivations of $L(G’, A’)$ . For example, the
trees which represent the rules $\{A’arrow a, A’arrow aB’, B’arrow bC’, B’arrow bB’D’\}$ are described as follows:

$T_{A’}$ : $T_{B’}$ :
$a$ $b$

$B$ ’
$\mathrm{O}$

$B$ ’ c’ $D$’

$\mathrm{O}$ $\mathrm{O}$ $\mathrm{O}$

For each node in $T_{A’}$ , we say the address of the node is $\langle A’arrow a\alpha’\rangle$ if the path ffom the root node is $\langle a\alpha’\rangle$

(i.e., the edges on the path are labeled with $a,A_{1}’$ , . . . , $A_{|\alpha|}’$, in this order where $\alpha’=A_{1}’$ . . . $A_{|\alpha|}’$, ). Note
that, in this case, there is a rule $A’arrow G^{\mathrm{t}}$ $\alpha’\alpha’$’ for some $\alpha’’\in N^{\prime*}$ but not necessarily a rule $A’arrow c^{z}$ $a\alpha’$ .
We call the node whose address represents a rule in $G’$ final node (indicated by double circles in the
above). All the leaf nodes are final nodes, but the converse is not necessary.

Each node is labeled with a sequence of subsets of $N\cup\overline{N}$ where $\overline{N}$ is a twin of $N$ (however the labels
of root nodes consist of subsets of $\overline{N}$ only), while each edge is, in contrast, labeled with a single terminal
or nonterminal in $G’$ . The length of the label on the node of address $\langle A’ - a\alpha’\rangle$ is $\simA’)+*(a\alpha’)\sim$ and
the length of the label on the root node of $T_{A’}$ is $A’)$ . In particular, the length of the label on every
final node in $T$, ’ is $\simA’)+\#(A’)\sim$ . The algorithm begins with the forest called skeleton forest whose all
node labels are sequences of the empty sets. The algorithm adds some members of $N\cup\overline{N}$ to labels on
nodes step by step in order to complete the forest as in Figure 2. Hereafter we use upper case letters from
the end of the alphabet, $X$ , $\mathrm{Y}$, $Z$ , .. . for subsets of $N\cup\overline{N}$ and upper case letters of the Greek alphabet,
$\Gamma$ , $\Delta$ , $\Theta$ , . . . for sequences of subsets of $N\cup\overline{N}$.

Suppose that the forest is completed (this means $L(G’)\subseteq L(G)$ ) and that the root node of $T_{A’}$ is
labeled with $X_{1}$ ... $X_{m}(m=A’))\sim$ , $\overline{A_{i}}\in X_{i}$ , $A’\Rightarrow c^{\mathrm{r}}$ $a\alpha’\beta’\Rightarrow^{*}$ ay/3’, and the node of address $\langle A’arrow a\alpha’\rangle$ is
labeled with $\mathrm{Y}_{1}$ ... $\mathrm{Y}_{n}(n=m+\#(a\alpha’))\sim$ . Then, there are $B_{1}$ , $\ldots$ , $B_{n}$ such that $A_{1}$ ... $A_{m}\Rightarrow^{*}c$ ayBi . .. $B_{n}$ ,
where $B_{i}\in \mathrm{Y}_{t}$ for $1\leq i\leq\overline{\}(ay)+\#(ay)\sim$ and $\overline{A_{j-\#(ay)}\sim}=\overline{B_{j}}\in \mathrm{Y}_{\mathrm{j}}$ for $(ay)+#(ay)<i $\leq n.$ In other
words, $B_{i}\in N$ is determined by $y$ but independently from any $A_{i}$ by the right-uniqueness and $\overline{B_{j}}\in\overline{N}$

appears only when it has already appeared before deriving $y$ . This is the difference between $N$ and $\overline{N}$ .
In an uncompleted forest, thus, the algorithm updates each node label as follows: Suppose that

an edge labeled with $A’$ connects a node labeled with $\Gamma$ and its child node in some tree. If there are
nonterminals which appear in $\Gamma$ but not in the label on the root node of $T_{A’}$ , then we must add them
into the appropriate position in the label on the root node of $T_{A’}$ . If some final node of $T_{A’}$ is labeled
with nonempty sets, then by referring $\Gamma$ and the labels on the root node and the final nodes of $T_{A’}$ , we
determine what nonterminals in $N\cup\overline{N}$ should be added to appropriate position in the label on the child
node. Therefore, recursively we can determine all the labels on nodes in the forest.

If it occurs that there are a tree $T_{A^{J}}$ and $\overline{A}\in X$ where the root node of $T_{4^{\mathrm{t}}}$ is labeled with $X\Gamma$ such
that $A’arrow G^{z}$ $a\alpha’\in P’$ but $Aarrow$( $a\alpha\not\in P$ for any $at\in N^{*}$ , then the algorithm concludes $L(G’)Z$ $L(G)$ .
Excluding such a case, when it occurs that the algorithm cannot modify any labels on trees, the algorithm
concludes $L(G’)\subseteq L(G)$ . The algorithm terminates in finite steps, since each $X$ in each node label has
the upper bound $N\cup\overline{N}$.

The formal definitions of notations used in the algorithm is given as follows:

Definition 16. Let $\Gamma=X_{1}$ . . . $X_{n}$ , A $=\mathrm{Y}_{1}$ . . . $\mathrm{Y}_{m}$ and $\Theta=Z_{1}\ldots$ $Z\iota$ .. $\Gamma\subseteq$ Aiff $n=m$ and $X_{\dot{l}}\subseteq \mathrm{Y}_{i}$ for all $i$ .. $\mathrm{e}$ $=\Gamma\cap\Delta$ iff $n=m=l$ and $Z_{1}$. $=X_{i}\cap \mathrm{Y}_{\dot{l}}$ for all $i$ .. $\Theta$ $=\Gamma\cup\Delta$ iff $n=m=l$ and $Z_{\dot{l}}=X_{1}\cup \mathrm{Y}_{1}$. for all $i$ .. Pre(I, $k$) $=X_{1}$ ... $X_{k}$ is defined only if $k\leq n.$. Start(A’) denotes the label on the root node of $T_{A’}$ .. Final(A’) denotes the union of labels on the final nodes of $T_{A’}$ .. $\overline{X}=$ {$\mathbb{Z}|A\in X$ or $\overline{A}\in X$ }, and $\overline{\Gamma_{1}\Gamma_{2}}=\overline{\Gamma_{1}}\overline{\Gamma_{2}}$
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. Roughly speaking, Derive(F, $A’$ ) (or Derive(I, $a$ )) expresses the sequences of nonterminals which
appear when some elements of $\Gamma$ derive strings in $L(G’, A’)$ (or $a$ respectively).
Let $\Gamma=X_{1}\ldots$ $X_{n}$ and $Aarrow c$ $aB_{1}$ . . . $B_{k}$ for some $A\in N.$ Then Derive(F, ’

$a$ ) is defined as

Derive(I, $a$ ) $=\{B_{1}\}\ldots$ $\{B_{k}\}X_{2}\ldots$ $X_{n}$ .

For Final(i4’) $=\mathrm{Y}_{1}$ . . . Y\sim $(A’) $+\mathrm{i}(A’)$
, Derive(I, $A’$ ) is defined as

Derive $(\Gamma, A’)=\Delta_{1}\emptyset^{n-}\sim$ $4’)\cup\emptyset^{m}\Delta_{2}\emptyset n-A’)\cup\emptyset\Delta_{3}A’)+\#(A’)\sim\sim\sim$

where $m= \max\{0, \#(A’)\}\sim$ ,
$\mathrm{s}_{1}$

$=N^{A’)+\#(A’)}\cap\sim-$ Final(A$’$ ),

$\Delta_{2}=Z_{1}$ . . . $Z_{k}$ where $k= \min\{A’),A’)\sim\sim+\#(A’)\}\sim$

and $Z_{i}=$ { $A|A\in X_{i-\#(A)}\sim$, and $\overline{A}\in \mathrm{Y}_{i}$ } $\cup$ { $\overline{A}|\overline{A}\in X_{i-\#(A’)}\sim$ and $\overline{A}\in \mathrm{Y}_{i}$ },

$\Delta_{3}=X\simA^{J})+1^{\cdot}$ . . $X_{n}$ .

5 Further Discussions
We have presented an algorithm which efficiently learns RSGs ffom positive data and an algorithm which
decides the inclusion problem for RSGs. We see that the function shape of a grammar plays a important
role in these algorithms. Then, it is natural to ask whether similar issues on the learning efficiency and
inclusion problem is applicable to the subclass of simple grammars in which the shape is well defined,
i.e., $Aarrow a\alpha$ , $Barrow a\beta$ implies $|\alpha|=|1|$ . We can show an algorithm which solves the inclusion problem
for the subclass in polynomial in the thicknesses and description sizes in the compared grammars. But,
it is easy to see that the subclass is not learnable from positive data.
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Algorithm; Whether $L(G’)\subseteq L(G)$ ?

Input $G’=(N’, \Sigma,$P’,$S’)$ and G $=(N, \Sigma,$P, S);
- Stage 1. i. Compute $\neq_{G}(N’)-\sim$

let 7 $:=\neq G;$

let every rule in $G’$ be unchecked
while there remains a unchecked rule do

take some unchecked rule A’ $arrow G^{\mathrm{t}}$

$a\alpha’$ where $*(\alpha’)$ is already defined;
if $\#(A’)\underline{\mathrm{i}\mathrm{s}}-$ not defined yet then define $\#\mathrm{C}^{4’}$)

$\sim$

$:=\#(a\alpha’)\sim$ ;
elseif $*(A$’) ’ $\#(a\alpha’)\sim$ then output $” L(G’)$ $\not\subset$ $L(G)$” and halt;

fi
check the rule A’ $arrow G^{t}$

$a\alpha’$ ;
if $\#(S’)\sim$ $\neq-1$ then output $” L(G$’) $\not\subset$ $L(G)$ ” and halt; fl

od
- Stage 1.2. Compute \sim $c $(N’)-$
let $\simA’):=1$ for all A’ $\in N’$ ;
while there occurs some change in $ do

for each nonterminal A’ $\in N’$ do
let $\simA’):=\max${ $a\alpha’)|A’arrow G^{t}$ $a\alpha’\in P’$ for some a and $\alpha’$ };

od
if $(A’)\neq l then output $” L(G$’) X $L(G)$” and halt; fl

od
- Stage 2. Decide the Inclusion –

create the skeleton forest, where the root node of $T_{A^{l}}$ is labeled with $\langle\emptysetA’)\rangle$

and the node of address \langle A’$arrow a\alpha’\rangle$ is labeled with \langle s$(A $’)+4(\mathrm{c}\mathrm{o}’$ ) \rangle ;
let Start(5’) $:=\{\overline{S}\}$ (label the root node of Tgz with $\langle\{\overline{S}\}\rangle$ );
while the forest is modified do

for an edge \langleA’) whose parent node is (T)
do add Pre$(\mathrm{F},A’))\sim$ to Start(A’); od

for an edge \langle A\prime \rangle connecting a parent node (F) and its child (A)
do add Derive$(\Gamma,$ A’) to $\Delta$ ; od

for an edge \langle a\rangle connecting a root node (F) and its child $\langle\Delta\rangle$

do add Derive(\Gamma , a) to $\Delta$ ; od
if there are A $\in N$ , $A’\in N’$ and a $\in$ I such that

$\overline{A}\in$ Pre(Start(A’), 1), $A’arrow G^{z}$ $a\alpha’\in$ $P’$ for some $\alpha’$ but A $arrow Ga\alpha\not\in P$ for any $\alpha$

then output $” L(G$’) $\not\in$ $L(G)$” and halt;
fi

od
output $” L(G’)$ $\subseteq L(G)$

” and halt;
End Algorithm

Figure 2: An Algorithm for the Inclusion Problem for RSGs


