Log-ring size and value size of generators of subrings of polynomials over a finite field

Hidenosuke Nishio

Abstract: In the paper we prove that

\[(*) \quad \log_q |(G)| = |V(G)|,\]

where \(G\) is any subset of a polynomial ring \(Q[X]\) over a finite field \(Q = GF(q)\) modulo \((X^q - X)\), \((G)\) is the subring of \(Q[X]\) generated by \(G\) and \(V(G)\) is the set of values of \(G\). \(|A|\) means the cardinality (size) of a set \(A\). This research has its origin and gives another result in our study on the information dynamics of cellular automata where the cell state is a polynomial over a finite field. At the same time, it should be noticed that the equation \((*)\) itself may serve as a powerful tool in the computer algebra—subring generation.

Keywords: polynomials over finite fields, subring, generator, cellular automaton

1 Preliminaries

This paper addresses an algebraic problem which arose in our study of the information dynamics of cellular automata, see the concluding remarks of [4]. However, its presentation here is self-contained and can be read without knowledge of the literature.

The problem is to investigate the structure of subrings of a polynomial ring \(Q[X]\) modulo \((X^q - X)\) over \(Q = GF(q)\), \(q = p^n\), where \(p\) is a prime number and \(n\) is a positive integer. Evidently \(|Q| = q\). \(Q[X]\) is considered to be the set of polynomial functions \(\{g : Q \to Q\}\), which are uniquely expressed by the following polynomial form.

\[
g(X) = a_0 + a_1X + \cdots + a_iX^i + \cdots + a_{q-1}X^{q-1}, \quad a_i \in Q, \quad 0 \leq i \leq q - 1. \quad (1)
\]

It is easily seen that \(|Q[X]| = q^q\). For any element \(\alpha \in Q[X]\), we note that \(\alpha^q - \alpha = 0\) and \(p\alpha = 0\). As for the literature of finite fields and polynomials over
them, we refer to the encyclopedia by Lidl and Niederreiter [3].

Notation: For a subset $G \subseteq \mathbb{Q}[X]$, by $\langle G \rangle$ we mean the subring of $\mathbb{Q}[X]$ which is generated by G. G is called a generator set of $\langle G \rangle$. Every element of G is called a generator of $\langle G \rangle$. For a ring, there may exist more than one generator sets. See Supplements below, where the general case of universal algebra is written, since the ring R with identity element 1 is an algebra $\langle R, +, -, 0, \cdot, 1 \rangle$.

It is an interesting topic to investigate the lattice structure (set inclusion) of subrings of $\mathbb{Q}[X]$. Since we consider nontrivial subrings, the smallest subring is \mathbb{Q}, while the largest one is $\mathbb{Q}[X]$. In this paper we focus on the cardinality of subrings. The cardinality $|B|$ of an arbitrary subring $B \subseteq \mathbb{Q}[X]$ is a power of q. For any $1 \leq i \leq q$, there exists a subring B such that $|B| = q^i$, see Theorem (4) below. There can be more than one subrings having the same cardinality, see Example 3 below.

Now we are going to enter the main topics. First, we need to define the following two notions.

2 Log-ring size of G

Taking into account the fact that the cardinality of any subring of $\mathbb{Q}[X]$ is a power of q, we define the log-ring size of G by the following equation.

Definition 1. For any subset $G \subseteq \mathbb{Q}[X]$, the log-ring size $\lambda(G)$ is defined by the following equation.

$$\lambda(G) = \log_q |\langle G \rangle|$$

(2)

Note that $1 \leq \lambda(G) \leq q$.

3 Value size of G

Definition 2. Suppose that a subset $G \subseteq \mathbb{Q}[X]$ consists of r polynomials: $G = \{g_1, g_2, \ldots, g_r : g_i \in \mathbb{Q}[X], 1 \leq i \leq r\}$. Then an r-tuple of values $(g_1(a), g_2(a), \ldots, g_r(a))$ for $a \in \mathbb{Q}$ is called the value vector of G for a and denoted by $G(a)$. Note that $G(a) \in \mathbb{Q}^r$. The value set $V(G)$ of G is defined by

$$V(G) = \{G(a) \mid a \in \mathbb{Q}\}.$$

(3)

Finally we define the value size of G by $|V(G)|$. Note that $1 \leq |V(G)| \leq q$.

When G consists of one polynomial, say $G = \{g\}$, we simply denote $\langle g \rangle$ and $V(g)$ in stead of $\langle \{g\} \rangle$ and $V(\{g\})$, respectively.
4 Theorems

We state and prove the main theorem and one of its derivatives. The main theorem appeared without proof in the concluding remarks of our paper [4], page 416. It also gives another (much simpler) proof of Theorem 5.3 of the same paper as the special case of \(|V(G)| = \lambda(G) = q\), which corresponds to the nondegeneracy and the completeness of a configuration.

Theorem 3. For any subset \(G \subseteq Q[X]\), the log-ring size is equal to the value size.

\[
\lambda(G) = \log_q |\langle G \rangle| = |V(G)|.
\] (4)

Proof. For given \(G\) we assume that \(m = q - |V(G)| > 0\). Then there are \(m\) elements \(c_1, c_2, \ldots, c_m \in Q\) and a value vector \(\gamma \in V(G)\) such that

\[
G(c_i) = \gamma, \quad 1 \leq i \leq m.
\] (5)

and

\[
\gamma \neq G(a) \neq G(a') \neq \gamma \text{ for any } a \neq c_i, a' \neq c_i, 1 \leq i \leq m.
\] (6)

Such a \(G\) is called \((c_1, c_2, \ldots, c_m)\)-degenerate. From the commutativity property of the substitution and the ring operations [4], it is seen that any polynomial function which is obtained from \((c_1, c_2, \ldots, c_m)\)-degenerate functions by ring operations is also \((c_1, c_2, \ldots, c_m)\)-degenerate. Therefore,

\[
\langle G \rangle = \{h \in Q[X] \mid h \text{ is } (c_1, c_2, \ldots, c_m) \text{-degenerate} \}.
\] (7)

On the other hand, from Equations (5) and (6), the number of all \((c_1, c_2, \ldots, c_m)\)-degenerate polynomials turns out to be \(q^{q-m} = q^{|V(g)|}\). Therefore we see,

\[
|\langle G \rangle| = q^{|V(G)|}.
\] (8)

Taking \(\log_q\) of both sides, we have the theorem. When \(m = 0\), every values of \(G\) are different, \(G\) generates \(Q[X]\) and therefore \(|\langle G \rangle| = q^q\). So, taking \(\log_q\) we have the theorem.

Using Theorem (3) we have the following result.

Theorem 4. For any \(1 \leq i \leq q\), there exits a subring \(B\) such that \(|B| = q^i|\).

Proof. Consider a function \(h\) such that \(|V(h)| = i\). For example, take a function \(h\) such that

\[
h(a_0) = a_0, h(a_1) = a_1, h(a_2) = a_2, \ldots, \\
h(a_{i-1}) = a_{i-1} = h(a_i) = h(a_{i+1}) = \cdots = h(a_{q-1}).
\] (9)

Then by the interpolation formula given in Supplement below, we obtain a polynomial \(g\) such that \(g(c) = h(c)\), for any \(c \in Q\). Therefore we see \(|V(g)| = |V(h)|\).

Then by Theorem (3) we have \(|\langle g \rangle| = |V(g)| = |V(h)| = q^i|\).

\(^1\) In the information dynamics, \(m\) is called the degree of degeneracy [4].
5 Polynomials in several indeterminates

Theorems (3) and (4) proved above can be generalized to the polynomial ring in several indeterminates $X_1, X_2, ..., X_n$.

Let $Q[X_1, X_2, ..., X_n]$ be the polynomial ring modulo $(X_1^q - X_1)(X_2^q - X_2) \cdots (X_n^q - X_n)$ over Q. The log-ring size and the value size of $G \subseteq Q[X_1, X_2, ..., X_n]$ are defined in the same manner as the one indeterminate case. Note, however, that $1 \leq \lambda(G) \leq q^n$ and $1 \leq |V(G)| \leq q^n$. Then we have the following theorems which can be proved in the same manner as the one variable case.

Theorem 5. For any subset $G \subseteq Q[X_1, X_2, ..., X_n]$,

$$\lambda(G) = \log_q |\langle G \rangle| = |\mathrm{A}(G)|.$$ \hspace{1cm} (10)

Theorem 6. For any $1 \leq i \leq q^n$, there exists a subring B such that $|B| = q^i$.

6 Examples

Example 1: $Q = GF(3) = \{0, 1, 2\}$

$G_1 = \{a + bX\}$, where $b \neq 0$. $\langle G_1 \rangle = Q[X]$.

Since $|Q[X]| = q^2$, $\lambda(G_1) = q$.

Generally, for an arbitrary Q, any polynomial of degree 1 generates $Q[X]$ and is called a permutation of Q. Note that $|V(a + bX)| = q$, since Q is a field and $a + bc = a + bc'$ implies $c = c'$.

$G_2 = \{X^2\}$. We see that

$$\langle G_2 \rangle = \{0, 1, 2, X^2, 2X^2, 1 + X^2, 2 + X^2, 1 + 2X^2, 2 + 2X^2\} \neq Q[X].$$

So, $|\langle G_2 \rangle| = 9 = 3^2$ and $\lambda(G_2) = 2$. It is the only nontrivial subring of polynomials over GF(3). On the other hand we see $|V(X^2)| = 2$.

Example 2: $Q = GF(4) = GF(2^2) = \{0, 1, \omega, 1 + \omega\}$. Note that $\omega^2 = 1 + \omega$, $(1 + \omega)^2 = \omega$ and $\omega(1 + \omega) = 1$. $2a = 0$ for any $a \in Q$.

X^2: $\langle X^2 \rangle = Q[X]$

$\lambda(X^2) = 4$. $|V(X^2)| = 4$.

X^3: $\langle X^3 \rangle = \{a + bX^3 : a, b \in Q\}$.

$|\langle X^3 \rangle| = 4^2$ ($\lambda(X^3) = 2$). $|V(X^3)| = 2$.

11
$X + X^3: (X + X^3) = \{a + bX + cX^3 : a, b, c \in Q\}.$
$|\langle X + X^3 \rangle| = 4^3 \ (\lambda(X + X^3) = 3). \ |V(X + X^3)| = 3.$

Example 3: $Q = \text{GF}(5) = \{0, 1, 2, 3, 4\}$

We consider the following singleton subsets; $G_3 = \{X^4\}, \ G_4 = \{X^2\}, \ G_5 = \{X + X^3 + X^4\}$ and $G_6 = \{X^3\}.$

Then we have the following results on value size and log-ring size.

$G_3 = X^4 : \langle X^4 \rangle = \{a + bX^4 : a, b \in Q\}.$
$|\langle X^4 \rangle| = 5^2 \ (\lambda(X^4) = 2). \ \text{On the other hand} \ |V(X^4)| = 2.$

$G_4 = X^2: \langle X^2 \rangle = \{a + bX^2 + cX^4 : a, b, c \in Q\}. \ (11)$
$|\langle X^2 \rangle| = 5^3 \ (\lambda(X^2) = 3). \ \text{On the other hand} \ |V(X^2)| = 3.$

Problem: Show $|\langle X + X^3 + X^4 \rangle| = 5^4.$

Also, show $|\langle 4X + 4X^2 + 2X^3 + X^4 \rangle| = 5^4.$

Are they the same subring of cardinality 5^4 ?

On the other hand $|V(X + X^3 + X^4)| = 4.$

$G_6 = X^3 : \langle X^3 \rangle = Q[X], \ \text{since} \ (X^3)^2 = X^2 \ \text{and} \ X^3 \cdot X^2 = X.$
$\lambda(X^3) = 5. \ \text{It is seen that} \ |V(X^3)| = 5.$

$G_7 = X + X^2: |V(X + X^2)| = 3. \ |\langle G_7 \rangle| = 3 ?$

$G_8 = G_4 \cup G_7 = \{X^2, X + X^2\}: V(G_8) = \{(0, 0), (1, 2), (4, 1), (4, 2), (1, 0)\}.$
So, $|V(G_8)| = 5. \ \text{On the other hand} \ \langle G_8 \rangle = Q[X]. \ \text{So,} \ \lambda(G_8) = 5.$

It is clear that the subrings of a polynomial ring constitutes a lattice (set inclusion) structure. In order to calculate the complete diagram, even for small q, we need a computer software. However, as far as we know, there does not exist such a program that generates every subring of a polynomial ring over a finite field modulo $X^q - X$.

Here are shown partial inclusion relations of the above Example 3, $q = 5$.

$Q \subset \langle X^4 \rangle \subset \langle X^2 \rangle \subset Q[X].$

$Q \subset \langle X + X^2 \rangle \subset Q[X].$

Note that $\langle X^2 \rangle \neq \langle X + X^2 \rangle$ *and* $\langle X^4 \rangle$ *is not included by* $\langle X + X^2 \rangle$.
In fact, from (11) we see that in any polynomial in $\langle X^2 \rangle$ the coefficient of the term X^3 is zero, while in $\langle X + X^2 \rangle$ we see for example $(X + X^2)^2 = X^2 + 2X^3 + X^4$.

7 Supplements

7.1 Interpolation formula

Given a function $h(x) : Q \rightarrow Q$, the following interpolation formula gives a unique polynomial function $f(x)$ over Q such that $f(c) = h(c), \forall c \in Q$. In Chapter 5, page 369 of the encyclopedia by Lidl and Niederreiter [3], Equation (7.20) gives the interpolation formula for several indeterminates. Here we cite its one indeterminate version.

$$f(x) = \sum_{c \in Q} h(c)(1 - (x - c)^{q-1})$$ (12)

By this formula we can compute the coefficients $a_i, 0 \leq i \leq q - 1$ in formula (1) from the value set of h, though inefficient.

7.2 Generators

A (universal) algebra 2 is a pair $A = (A, O)$, where A is a nonempty set called a universe and O is a set of operations f_1, f_2, \ldots on A. For a nonnegative integer n, an n-ary operation on A is a function $f : A^n \rightarrow A$. A subuniverse of an algebra A is a subset of A closed under all of the operations of A. The collection of subuniverses of A is denoted by $\text{Sub}(A)$. For any subset B of A, we define

$$\langle B \rangle^A = \bigcap \{S \in \text{Sub}(A) | B \subseteq S\}$$

called the subuniverse of A generated by B. If $\langle B \rangle^A = A$, then we say that B is a generating set for A.

Classification: According to Schmid [5], the elements of A is classified into three categories:

(1) irredcibles: elements that must be included in every generating set.
(2) nongenerators: elements that can be omitted from every generating set.
(3) relative generators: elements that play an essential role in at least one generating set.

This classification is closely related to the information contained by a polynomial in a configuration.

^2 For the universal algebra, the reader is referred to \[2\]
Decision problems: Bergman and Slutzki asked and answered the following questions [1]:

(2): What is the size of the smallest generating set of a given (finite) algebra? Answer: NP-complete.

These results give an answer to the computational complexity problem whether a configuration is complete or not.

8 Acknowledgements

The main body of this research was carried out during my stay at Faculty of Informatics, University of Karlsruhe, September-October, 2003. The simulation program of CA[X] made by T. Saito was helpful in calculating subrings of Q[X] given in Examples. Many thanks are due to them.

References