
201

A $\mathrm{M}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{D}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}$ VLSI Algorithm for Modular Arithmetic

名古屋大学情報科学研究科
貝原マルセロ (Marcelo E. Kaihara) 高木直史 (Naofumi Takagi)

Department of Information Engineering,
Nagoya University

Abstract

A $multiplication/division$ VLSI algorithm for mod-
ular arithmetic is proposed. The algorithm pefforms
modular division, Montgomery ’s modular multiplica-
tion ated ordinary modular multiplication. Modular di-
vision is based on the extended Euclidean algorithm
(EEA). Montgomery’s modular multiplication is per-
fomed using a new method consisting ofprocessing
the multiplierfrom the most sign ificant digit first. Or-
dinary modular multiplication is pefformed using the
conventional doubling and adding procedures. The al-
gorithm enables the three operations to share almost
all hardware components reducing considerably $hardarrow$

ware requirements. It carries out these calculations
using simple operations such as shifts, additions and
subtractions. The radix-2 signed-digit representation
is used to avoid carry propagation in all additions and
subtractions. The algorithm $pe\phi oms$ an n -bit modu-
lar $multiplication/division$ in $O(n)$ clock cycles where
the length of the clock cycle is constant and indepen-
dent of n. A modular multiplierldivider based on the
algorithm has a linear array structure with a bit-slice
feature and is suitable for VLSI implementation.

1 Introduction

Modular multiplication and modular division are
basic operations in abstract algebra. They play im-
portant roles in processing many public-key crytop-
systems. For example, they are used in RSA[I] and
ElGamal [2] cryptosystems, in the Diffie-Hellman key
exchange protocol [3] and in the DSA digital sig-
nature scheme [4]. They can also be used to ac-
celerate the exponentiation operation using addition-
subtraction chains [5] and to compute point operations
in ECC with curves defined over $GF(p)[6]$. Consid-
ering also the demand in technology to shrink hard-
ware and to increase computation capacity at the same
time, it is important to develop an algorithm for calcu-
lating modular $\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}$that can be im-
plemented with reduced hardware requirements.

In this paper, we propose an algorithm for modular
$\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}$for a large modulus suitable for
VLSI implementation. Modular division is based on
the extended Euclidean algorithm. We have improved
the hardware algorithm proposed in [7] to reduce hard-
ware requirements. We further modified it so that it
can perform Montgomery’s modular multiplication as
well as ordinary modular multiplication without in-
creasing hardware requirements considerably. Mont-
gomery’s modular multiplication is performed using
a new method, which consists of processing the mul-
tiplier from the most significant digit first while the
multiplicand is halved each time using modular arith-
metic. Ordinary modular multiplication is performed
with a conventional multiplication algorithm, which is
based on doubling and adding procedures. The mul-
tiplier is scanned from the most significant position
first. The intermediate result is doubled and the mul-
tiplicand is added to the partial product every time the
scanned digit of the multiplier has the value of one.

A modular multiplierldivider based on the alg0-
rithm has a linear array structure with a bit-slice
feature and is suitable for VLSI implementation.
The amount of hardware of an n-bit modular multi-
plierldivider is proportional to n . It performs an n-bit
modular $\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}$in $O(n)$ clock cycles
where the length of clock cycle is constant indepen-
dent of n .

In the next section, we will explain the extended
Euclidean algorithm, the ordinary multiplication alg0-
rithm and Montgomery’s multiplication algorithm. In
Section 3, we will look at the redundant representation
number system and procedures for basic operations in
this number system. In Section 4, we propose a hard-
ware algorithm for modular multiplicationldivision. In
Section 5, we will explain the hardware implementa-
tion and design. In Section 6, we present concluding
remarks.

数理解析研究所講究録 1375巻 2004年 201-207

202

2 Preliminaries

2.1 Extended Euclidean Algorithm for Mod-
ular Division

Extended Euclidean Algorithm [7] is an efficient
way of calculating modular division. Consider the
residue class field of integers with an odd prime mod-
ulus M . Let X and $\mathrm{Y}(\neq 0)$ be elements of the
field. The algorithm calculates $Z(<M)$ such that
$Z\equiv X/Y$ (mod M) (the algorithm also works with
an odd not prime M and Y relatively prime to M).

It performs modular division by intertwining a pr0-
cedure for finding the modular quotient with that for
calculating $\mathrm{g}\mathrm{c}\mathrm{d}(\mathrm{Y}, M)$.

[Algorithm 1]
(Extended Euclidean Algorithm)
Function: Modular Division
Inputs: $M:2^{n-1}<_{\vee}’M<2^{n}$

X , $\mathrm{Y}:0\leq X<M,$ $0<\mathrm{Y}<M$

Output: Z $=X/Y$ mod M

Algorithm:
$A:=M;B:=\mathrm{Y};U:=0;V:=X;$

while $B\neq 1$ do
Choose Q so that $|A-B$. $Q|<|B|$;
$A’:=A-B\cdot Q$;
Calculate U ’ which satisfies

$U’\equiv U-V\cdot$ $Q(\mathrm{m}\mathrm{o}\mathrm{d} M)$ and $|U’|<M;$
$A:=B;B:=A’$;
$U:=V;V:=U’$;

endwhile
if $B=-1$ then $Z’:=-V$; else $Z’:=V;$ endif
if $Z’<0$ then $Z:=Z’+M$ else $Z:=Z’;$ endif
output Z as the result;

$A(A’)$ and B are involved in the calculation of
GCD and are allowed to be negative. $U(U’)$ and V

are used in the algorithm for calculating the quotient
and are also allowed to be negative. $V\mathrm{x}\mathrm{Y}\equiv B\mathrm{x}X$

(mod M) always holds. Since the final B satisfies
$|B|=1$, $Z’ \mathrm{x}\mathrm{Y}\equiv X$ (mod M). $\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}|V|<$ Af al-
ways holds, $-M<Z’<M.$ Therefore, $Z\mathrm{x}\mathrm{Y}\equiv X$

(mod A#) and $0<Z<M$ hold. Namely, Z is the
quotient of X/Y modulo M .

2.2 Modular Multiplication

2.2.1 Ordinary Modular Multiplication

Consider the residue class ring of integers with an
odd modulus M . Let X and Y be elements of the
ring. Modular multiplication is defined as Z such that
$0\leq Z<M$ and $Z\equiv X\mathrm{Y}$ (mod M). In ordinary
modular multiplication method, the digits of the mul-
tiplier are scanned from the most significant position.
For each digit that is processed, the partial product is

doubled. If the scanned digit has the value of one, the
multiplicand is then added to the partial product, oth-
erwise, none is done. The multiplier is then shifted one
position to the left to allow the next digit to be scanned.
The multiplication algorithm is described below. Note
that A is n-digits long and the most significant one is
represented as a_{n-1} .
[Algorithm 21
(Modular Multiplication Algorithm)
Function: Modular Multiplication
Inputs: M : $2^{n-1}<M$ $<2^{n}$

X , $\mathrm{Y}:0\leq X$, $\mathrm{Y}<M$

Output: $Z=X\mathrm{Y}$ mod M

Algorithm:
$A:=\mathrm{Y};U:=0;V:=Xj$

for $i:=1$ to n do
$U:=2\cdot$ U mod M ;
$q:=a_{n-1}$;
$A:=A<<1;U:=(U+qV)$ mod M ;

end for
$Z:=U;$
output Z as the result;

2.2.2 Montgomery’s Modular Multiplication

Montgomery introduced an efficient algorithm for cal-
culating modular multiplication [8]. Consider the
residue class ring of integers with an odd modulus M .
Let X and Y be elements of the ring. $\mathrm{M}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{g}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{y}’\mathrm{s}$

modular multiplication algorithm calculates $Z(<M)$
such that $Z\equiv X\mathrm{Y}W^{-1}$ (mod Af) where V is an ar-
bitrary constant relatively prime to M . The value of
W is usually set to 2^{n} when the calculations are per-
formed in radix-2 with an n-bit modulus M .

The radix-2 Montgomery’s multiplication alg0-
rithm is described below.

[Algorithm 31
(Montgomery’s Multiplication Algorithm)
Function: Montgomery’s Modular Multiplication
Inputs: M : $2^{n-1}<M<2^{n}$

X , $\mathrm{Y}:0\leq X$, $\mathrm{Y}<M$

Output: $Z=X\mathrm{Y}2^{-n}$ mod M

Algorithm:
$A:=\mathrm{Y};U:=0;V:=Xj$

for $i:=1$ to n do
lf A mod $2=0$ then $q:=0;$
else $q:=1;$ end if
$A:=\langle A-q$) /2; $U:=(U+qV)/2\mathrm{m}\mathrm{o}\mathrm{d} M$;

end for
$lU\geq M$ then $Z:=U-Mj$
else $Z:=U;$ end if
output Z as the result;

Note that U is always bounded by $2M$ throughout
all iterations. Therefore, the last correction step as-
sures that the output is correctly expressed in modulo

203

M .

3 Use of a Redundant Representation

The radix-2 signed-digit representation (SD2) has a
fixed radix 2 and a digit set $\{\overline{1}, 0,1\}$, where $\overline{1}$ denotes
-1. An n-digit SD2 integer $A=[a_{n-1}a_{n-2}\ldots a_{0}]$

$(a_{i}\in\{1,0,1\})$ has the value $\sum_{i=0}^{n-1}a_{i}\cdot$ 2^{i} . We can
perform addition of two SD2 numbers without carry
propagation. For the details of carry-propagation-free
addition, see, e.g., [10]. We can get a negation of an
SD2 number by changing the signs of all nonzero dig-
its in it.

In the algorithm to be proposed, input operands X

and Y as well as the output result Z are assumed to
be n-digit radix-2 signed-digit (SD2) integers in the
range $[-M+1, M-1]$. Intermediate results are also
represented in the SD2 representation.

The algorithm requires a doubling procedure for a
SD2 integer without overflow. Let A and B be n-
digit SD2 integers. Assume A satisfies $a_{n-1}=0$

or $a_{n-2}=-a_{n-1}$. A doubling $B:=DBL(A)$,
i.e., the calculation of B such that $B=2$ A is
performed as follows. When a_{n-1} $=0$, $B=$
$[a_{n-2}a_{n-3}a_{n-4}\cdots a_{1}a_{0}0]$ and otherwise $(a_{n-2}$ $=$

$-a_{n-1})$, $B=[a_{n-1}a_{n-3}a_{n-4}. . .a_{1}a_{0}0]$.
Procedures for addition, doubling and halving mod-

ulo M in the SD2 system are also required and are de-
scribed next.

Let the modulus M $(=[1m_{n-2}\cdots m_{1}1])$ be an n-
bit binary odd integer satisfying $2^{n-1}<M<2^{n}$.
Let U, V and T be $(n+1)$ -digit SD2 integers satisfy-
ing $-M<U$, $V,T<M.$ A modular addition $T:=$

MADD (U, V, Af), i.e., the calculation of T such that
$T\equiv U+V$ (mod M), is performed through two
steps. In the first step, we calculate $S:=U+V$ in the
SD2 system. S is an $(n+2)$-digit SD2 number. In the
second step, we add M or 0 or $M’$ to S , accordingly
as the value of the number formed by the three most
significant digits of S , i.e. the value of $[s_{n+1}s_{n}s_{n-1}]$,
is negative or zero or positive. $M’=[\overline{1}0m_{n-2}’\ldots m_{1}’ 1]$

is the $(n+1)$-digit SD2 number where $m_{i}’$ is 1 or 0 ac-
cordingly as m_{i} is 0 or 1, and has the value $-M$. This
addition is also performed in the SD2 system. Since
all the digits of the addend are non-negative except the
most significant one, the addition in this step is sim-
pler. For the details of the modular addition procedure,
see [10].

Modular doubling $T:=MDBL$ (U, M) , i.e., the
calculation of T such that $T\equiv 2\cdot U$ (mod M), can
be performed by applying the second step of the mod-
ular addition to 2 . U, which is obtained by shifting U

by one position to the left.
Modular halving $T:=MHLV(V, M)$, $\mathrm{i}.\mathrm{e}.$, the

calculation of T such that $T\equiv V[2$ (mod M), is

performed through two steps. In the first step, we add
M to V when V is odd, i.e. when $v_{0}\neq 0.$ Nothing
is performed when V is even. In the second step, we
shift the result of the first step by one position to the
right throwing away the least significant digit, which
is 0. (Recall that M is odd.)

Procedures MADD, MDBL and MHLV can be
performed in a constant time independent of n by
means of combinational circuits.

4 A Hardware Algorithm for Modular
$\mathrm{M}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{D}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}$

We propose a hardware algorithm that performs
modular division, Montgomery’s modular multiplica-
tion and ordinary modular multiplication which is ef-
ficient in hardware requirements.

4.1 Division Mode

A hardware algorithm based on the extended Eu-
clidean algorithm presented in the previous section
was proposed in [7]. We modified it to reduce hard-
ware requirements and to make it easy to merge with
the multiplication algorithms. This modification also
simplify the initial normalization procedure.

In Step 1 of the proposing algorithm, initialization
of variables takes place. In division mode, A, B , U

and V are initialized to the values of Y , M , X and 0
respectively. P and D are two n-bit binary numbers
of the form 2’. They are initialized to the value of 1.
At the beginning of each iteration of Step 2, $D=1$
and $b_{n-1}\neq 0.$ If we denote with A, B , ! and \mathcal{V} the
represented values in binary of the numbers stored in
variables A, B , U and V respectively, $A=A\cdot$ 2^{n-k} ,

$B=B$ $\cdot 2^{n-k}$ and $P=2^{n-k}$. $U=\mathcal{U}$ and $V=\mathcal{V}$

when B is effectively k-bit long.
At each iteration of Step 2, we first strongly nor-

malize A which stores the divisor during Step 2-1. A

is strongly normalized if $a_{n-1}\neq 0$ and $a_{n-2}=0,$ i.e.,
$[a_{n-1}a_{n-2}]=[10]$ or [10]. During the normalization,
A is doubled several times by means of DBL shown
in Section 3. At the same time that A is doubled, D

and P are also doubled, and U is doubled modulo M

by means of MDBL shown in Section 3. In Step 2-2,
A and B , and U and V are swapped respectively. At
this time, $A=A\cdot(P/D)$, $B=B\cdot$ P and $V\equiv \mathcal{V}\cdot$ D

(mod M).
Then, we perform an integer division. We pr0-

duce Q as a sequence of q ’s where $q\in\{1, 1\}$ and
$Q= \sum$ q \cdot D. Note that D is updated during the integer
division. As the production of q , we calculate $A-q\cdot B$

in the SD2 system without carry propagation $(A-q\cdot B$

corresponds to $A-(q\cdot D)$.8). Concurrently, we calcu-
late $U-q\cdot V$ modulo M in the SD2 system by means

204

of MADD shown in Section 3. During the integer di-
vision, we double A several times by means of DBL.
When we double A, we halve D , and halve V modulo
M by means of MHLV shown in Section 3. After
the integer division, $D=1$, $A=A’\cdot$ P , $B=B\cdot$ P

$(b_{n-1}70)$, $U=\$ ’ and $V=\mathcal{V}$.
Note that in the algorithm proposed in [7], the val-

ues of A and B , and U and V are initialized respec-
tively interchanged. In the algorithm proposed in [7],
B is normalized. During the procedure, B is doubled
and V is doubled modulo M . After the integer divi-
sion, variables A and B , and variables U and V are
swapped respectively. In the proposing algorithm, A

is normalized. During the procedure, A is doubled and
U is doubled modulo M . In this way, first, we elim-
inate the hardware component for doubling B . Sec-
ond, we enable to reuse the hardware component for
modular reduction needed for MDBL(U, M) in the
calculation of MADD$(U, -q\cdot V, M)$ eliminating the
need of extra hardware. And finally, we eliminate the
swap operation performed in [7] for the special case
that B cannot be normalized. Hence, the proposing al-
gorithm is much more efficient in terms of hardware
requirements than that of [7].

a0 at the most significant digit of A . The ‘for’ loop
is implemented using variable D which is initialized
with 2^{n} and it is shifted to the right at each iteration
step until it is equal to 1.

We also implement the ordinary modular multipli-
cation described in Section 2.2.1. We also perform the
operations in SD2 representation. Since variable U ,
which stores the partial product, is initialized with 0,
instead of doubling U and then adding the multipli-
cand, we proceed in the reverse order. For the case that
$a_{n-1}=0$ or $[a_{n-1}a_{n-2}]=1\overline{1}$ or 11, we just double
A by means of $DBL(A)$ and U by MDBL(U, M).
For the cases that $[a_{n-1}a_{n-2}]=11$ or 10 or 11 or
10, in order to share hardware components without
increasing the calculation delay, we split the calcula-
than of MDBL(U, M) and MADD$(U, -q\cdot V, M)$

into two different iteration steps. We first perform
$U:=MADD(U, -q\cdot V, M)$ depending on the value
ofan-i and we leave the most significant position of A

in 0. By doing so, A is shifted to the left by $DBL(A)$

and U is doubled modulo M by MDBL(U, M) in
the next iteration. Since we reverse the order of dou-
bling the partial product and adding the multiplicand,
MDBL(U, M) is not performed in the last iteration.

4.2 Multiplication Mode 4.3 The Hardware Algorithm

The proposing algorithm performs both Mont-
gomery’s modular multiplication and ordinary modu-
lar multiplication. In the proposing algorithm, A and
V are initialized to the values of the multiplier Y and
the multiplicand X respectively. U is used to store the
partial product of the multiplication.

In Section 2.2.2, we described Algorithm 3 which
performs Montgomery’s modular multiplication. It
examines the least significant bit of A to determine
whether to add or not V to U . The result is then di-
vided by 2 using modular arithmetic and A is shifted
one position to the left.

In order to implement Montgomery’s multiplica-
tion operation using the same hardware components
required by the division mode, we introduce SD2 rep-
resentation in operands, internal calculation and the
output result and we examine the multiplier ffom the
most significant position first, i.e. a_{n-1} . For a nonzero
value of the digit, we add or subtract the multiplicand
X stored in V to U depending on the sign of it. If
it is positive, we add. Otherwise we subtract. Then,
instead of dividing the partial product U by 2 mod-
ulo M, we divide the multiplicand V by 2 modulo M .
For this operation we use MHLV(V, M) described in
Section 3. If the value of the digit a_{n-1} is 0, we per-
form a $DBL(A)$ to shift to the left the multiplier and
MHLV(V, Af) to divide the multiplicand by 2 mod-
ulo M . The same operations are performed for the
cases that $[a_{n-1}a_{n-2}]=1\overline{1}$ or $\overline{1}1$ since they represent

The hardware algorithm is presented here. It is di-
vided in 4 steps. Initialization of variables takes place
in Step 1. The core of the algorithm is described in
Step 2. A correction is performed in Step 3, and in
Step 4 the output result is selected.

[Algorithm 4]
(A VLSI Algorithm for modular multiplication
and modular division)
Function: Modular Multiplication and

Modular Division
Inputs: M : $2^{n-1}<M<2^{n}$

X , $\mathrm{Y}:-M$ $<X$, $\mathrm{Y}<M$

output:mode $=0:Z\equiv X/\mathrm{Y}$ mod M

$mode=1$: $Z\equiv X\mathrm{Y}2^{-n}$ mod M

$mode=2:Z\equiv X\mathrm{Y}$ mod M

Algorithm:
Step 1:

$A:=\mathrm{Y};B:=M;P:=1;M:=M;$

if $mode=0$ then
$D:=1;U:=\mathrm{s}$; $V:=0;$

else
$D:=2^{n};U:=0;V:=X;$
goto Step 2-4;

endif
Step 2:

Step $2\cdot 0$:
if $[a_{n-1}a_{n-2}]=[11]$ or [11] then

$q:=a_{n-1}$. $b_{n-1;}$

205

$A:=A-q\cdot B$; $/*$ Termination Stage $(DIV)*/$
$U:=$ MADD(U, $-q$. V, M); $r:=sgn([a_{n-1}a_{n-2}])$;

endif while $sgn([a_{n-1}a_{n-2}]=r$ and
Step 2-1: ($abs([a_{n-1}a_{n-2}a_{n-3}])\geq 3$ or

while pn-i $=0$ and ($b_{n-3}=-b_{n-1}$ and
$[a_{n-1}a_{n-2}]\neq[10]$ and $[a_{n-1}a_{n-2}]\neq[\overline{1}0]$; $abs([a_{n-1}a_{n-2}a_{n-3}]=2))$

if $[a_{n-1}a_{n-2}a_{n-3}]=[1\overline{1}1]$ or do
$[a_{n-1}a_{n-2}a_{n-3}]=[011]$ then $q:=r$. bn-i ;
$[a_{n-1}a_{n-2}a_{n-3}]:=[10\overline{1}]$; $A:=A-q\cdot$ B ;

elseif $[a_{n-1}a_{n-2}a_{n-3}]=[\overline{1}1\overline{1}]$ or $U:=MADD$($U,$ $-q$. V, At);
$[a_{n-1}a_{n-2}a_{n-3}]=[0\overline{1}\overline{1}]$ then endwhle
$[a_{n-1}a_{n-2}a_{n-3}]:=[\overline{1}01]$; goto Step 2-1;

else Step 3:
$A=DBL(A);P:=2\cdot P;D:=2\cdot D$; if $b_{n-1}=\overline{1}$ then $V:=-V$;
$U=MDBL(U, M)$; Step 4:

endif if $mode=0$ then $Z:=V;$
endwhile else $Z:=U;$

Step 2-2: output Z as the result;
$T:=A;A:=B;B:=7$;

$sgn([a_{n-1}a_{n-2}])$ is -1 or 0 or 1, accordingly as
$T:=U;U:=V;V:=T;$ the value of $[a_{n-1}a_{n-2}]$ is negative or zero or positive.

Step 2-3:
$abs([a_{n-1}a_{n-2}a_{n-3}])\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{s}|4a_{n-1}+2a_{n-2}+a_{n-3}|$.

if $p_{n-1}=1$ then Step 2-0 is executed only when the most significant
whUe $d_{0}=0$ do two bits of A, i.e., the divisor Y, have both the value

$D:=D/2;$ $V:=$ MHL V, $M)$; of 1. Note that when its most significant two bits have
endwhile both value of 1, A cannot be strongly normalized. We
goto Step 3; perform the subtraction of $A-B$ in the SD2 system

endif using an ordinary SD2 addition rule, e.g., [10]. Since
Step $2A$: the most significant two bits of B , i.e., the modulus

$/*Main$ Stage (MUL/DIV) $*/$
M , have also the value of 1 in this case, the most sig-

while $d_{0}=0$ do nificant digit of the updated A has as result the value
if $a_{n-1}=0$ or $a_{n-2}=-a_{n-1}$ then of 0.

$S:=4$; In Step 2-1, we strongly normalize A . At the begin-
else ning of this stage, $[a_{n-1}a_{n-2}]$ $\neq[11]$ nor [11], from

if $mode=0$ then Step 2-0 and the SD2 addition rule in the termination
$q:=a_{n-1}\cdot b_{n-1;}$

stage shown below. It never become [11] nor [11] dur-
$S:=A-q\cdot B$; ing this stage, because we rewrite $[1\overline{1}1]$ and [011] to

else [101] and [111] and $[0\overline{1}\overline{1}]$ to $[\overline{1}01]$. In Step 2-2, we
$q:=-a_{n-1}$; swap A and B and also U and V . In Step 2-3, when
$S:=A;$

p_{n-1} becomes 1, i.e., P becomes 2^{n-1} , it means that
if $m\mathrm{O}\ =1$ then $s_{n-1}:=0;$

$|$ fl $|$ has become 1. Then, we divide V by D modulo M

endif by means of MHLV, because V has been multiplied
$U:=$ MADD(U, $-q$. V, M); by D modulo M . Then we terminate Step 2.

endif In Step 2-2, we perform an integer division, a Mont-
if ($s_{n-1}=0$ or $s_{n-2}=-s_{n-1}$) then

$\mathrm{g}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{y}’\mathrm{s}$ modular multiplication or an ordinary mod-
$A:=DBL(S);D:=D/2;$ ular multiplication. During the integer division, we
if $mode=2$ and $4=0$ then perform the subtraction of $A-q\cdot$ B in the SD2 sys-

$U:=$ MDBL(U, At);
$\mathrm{t}\mathrm{e}\mathrm{m}$. In this subtraction, we use the special addition

else rule shown in Table 1 at the most significant two p0-
$V:=$ MHL V, $M)$; sitions. Note that when an addition is performed,

endif [a$n-1an-2$] is not [00]. Furthermore; in the main
else stage, when an addition is performed, $[a_{n-1}a_{n-2}]$ is

if $mode=2$ then $s_{n-1}:=0;$ not $[\overline{1}1]$ nor $[0\overline{1}]$ nor [01] nor $[1\overline{1}]$. (The rule for these
$A:=S;$ cases in the table is for the addition in the termination

endif stage.) Note also that $[b_{n-1}b_{n-2}]$ is [10] or $[\overline{1}0]$ and
endwhile that q $=sgn([a_{n-1}a_{n-2}])\cdot$ $b_{n-1}(=an$ -1 . b_{n-1} in
if $mode\neq 0$ then goto Step 4; the main stage). In the table, $\mathrm{c}\mathrm{n}_{-}3$ iS the intermediate

208

Table 1. A special SD2 addition rule

$\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}_{n}$

carry ffom the third significant position. We use an or-
dinary SD2 addition rule, e.g., that in [10], at the other
positions. Note that $[s_{n-1}s_{n-2}]$ never become [11] nor

$[\overline{1}\overline{1}]$.
Because of the strongly normalization of A , the

computation in this step is simple. We can show that
in the main stage, no two successive SD2 additions are
performed without doubling A $(DBL(S))$.

In the termination stage, we use a bit complicated
condition for termination, in order to avoid the situa-
tion that the final $|A|(|A’|)$ is very near to $|B|(|B|)$.
Note that this situation makes the convergence of the
whole computation very slow. By the use of the com-
plicated condition, we can make the final $|A|$ signifi-
cantly smaller than $|B|$. Hence, we can guarantee that
when A is not doubled in an execution of Step 2-1, the
updated A must be doubled in the next execution of
Step 2-1. We can show that no more than three SD2
additions are performed in the termination stage. Note
that the final $[a_{n-1}a_{n-2}]$ is not [11] nor [11], from the
SD2 addition rule.

In Step 3, when $b_{n-1}=\overline{1}$, we negate V in the SD2
system.

In Step 4, we select the output depending on the
mode of operation.

5 Hardware Implementation

An n-bit modular $\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{r}/\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{r}$based on Algo
rithm 4 consists of seven registers for storing A, B , P ,
D , U , V and M, and a combinational circuit part. P

and D can be implemented with 1-hot counters. Fur-
ther improvements in circuit area can be accomplished
by using tw0-level 1-hot counters or by using binary
counters. For details, see [11].

We assume that we perform each of Step 2-0, or
one iteration of Step 2-1,0r one iteration of Step 2-2,
or one iteration of Step 2-3, or one iteration of main
or termination stage of Step 2-4, or Step 3 in one
clock cycle. Then, in one clock cycle, the modular
divider mainly performs a SD2 addition of $A-B$ and
MADD(U, $-V$, M) in Step 2-0, or $DBL(A)$, one
bit-shifts of P and D and MDBL(U, M), or swaps of
A and B , and U and V , in Step 2-2, or a one-bit-shift
of D and MHLV(V, M) in Step 2-3, or a $DBL(A)$

and MDBL(U) or MHLV(V) and a one-bit-shift of
D or a SD2 addition of $A-q\cdot$ B or a reset of the
most significant digit of A and MADD(U, -q-V, M),
and a possible $DBL(S)$, a one-bit-shift of D and
MHLV(V, M) , in Step 2-4, or a negation of V in the
SD2 system, in Step 3.

The combinational circuit part of the divider (for
Steps 2 and 3) mainly consists of an SD2 adder (with
an operand negator), a modular adder (with an operand
negator), a modular doubling, a modular halving cir-
cuit, an SD2 negator and selectors. The modular adder
consists of two SD2 adders one of which is simpler.
The modular doubling and the modular halving circuit
consist of simpler SD2 adders. These circuits have bit-
slice structure.

The depth of the combinational circuit part is a con-
stant independent of n , and therefore, the length of the
clock cycle is constant independent of n .

The modular divider has a bit-slice structure and
is suitable for VLSI implementation. The amount of
hardware of the modular $\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{r}/\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{r}$is propor-
fi nal to n .

In division mode, from the discussion in the previ-
ous section, we can show that in Step 2-4, no two suc-
cessive clock cycles are executed without doubling A

$(DBL(S))$ in the main stage, and no more than three
cycles are executed in the termination stage. We can
also show that if $DBL(A)$ is not performed in an ex-
ecution of Step 2-1 (normalization of A), $DBL(A)$

must be performed in the next execution of Step 2-1.
Hence, we can show that the number of clock cycles
executed in Step 2 is at least $2n$ and at most about $3n$.
It varies with the operands.

Montgomery’s multiplication is performed in
Step 2-4 in exactly n clock cycles. Ordinary modular
multiplication is performed in at least n and at most
$2n$ clock cycles. It varies with the multiplier.

6 Concluding Remarks

We have proposed a hardware algorithm for mod-
ular $\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}$. The algorithm performs
modular division, Montgomery’s modular multiplica-
tion and ordinary modular multiplication. Modular di-
vision is based on the extended Euclidean algorithm.
Montgomery’s modular multiplication is based on a
new method consisting of processing the multiplier
ffom the most significant digit first. Ordinary mod-
ular multiplication is performed using the conven-
tional multiplication algorithm which is based on dou-
bling and adding procedures. The algorithm has al-
most all hardware components shared for these three
operations reducing considerably hardware require-
ments. It carries out these calculations using simple
operations such as shifts, additions and subtractions.
The algorithm performs an n-bit modular multiplica-

$\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}$ in $O(n)$ clock cycles where the length of
the clock cycle is constant and independent of n . A
modular $\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{r}/\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{r}$based on the algorithm has
a linear array structure with a bit-slice feature and is
suitable for VLSI implementation.

References

[1] R. L. Rivest, A. Shamir, and L. Adleman, ‘A
method for obtaining digital signatures and public-
key $\mathrm{c}\mathrm{r}\mathrm{y}\mathrm{p}\mathrm{t}\mathrm{o}\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{s}/$ Commun. ACM, vol. 21, no. 2,
pp. 120-126, Feb. 1978.

[2] T. ElGamal, A public key cryptosystem and a
signature scheme based on discrete logarithms,’
IEEE Trans. Information Theory, vol. IT-31, no. 4,
pp. 469-472, July 1985.

[31 W. Diffie and M.E. Hellman, ‘New Directions in
Cryptography,’ IEEE Trans. Infomation Theory,
vol. 22, no. 11, pp. 644-654, Nov. 1976.

[4] ANSI X9.30. Public Key Cryptography for the
Financial Services Industry: Part 1: The Dig-
ital Signature Algorithm (DSA). American Na-
tional Standard Institute. American Bankers AssO-
ciation. 1997.

[5] $\mathrm{D}.\mathrm{E}$. Knuth, The Art of Computing Programming,
Volume 2, Seminumerical Algorithms, Third Edi-
tion. Reading Mass. : Addison-Wesley, 1998.

[6] N. Koblitz, ‘Elliptic Curve Cryptosystems,’ Math,

of Computation, vol. 48, no. 177, pp. 203-209,
Jan. 1987.

[7] N. Takagi, ‘A hardware algorithm for modular
division based on the extended Euclidean alg0-
rithm,’ IEICE Trans. Information and Systems,
vol. E79-D, no. 11, pp. 1518-1522, Nov. 1996.

[8] P. L. Montgomery, ‘Modular Multiplication with-
out Trial Division’ Mathematics of Computation,
vol. 44, no. 170, pp. 519-521, Apr. 1985.

[9] N. Takagi, H. Yasuura and S. Yajima, ‘High-
speed VLSI multiplication algorithm with a redun-
dant binary addition tree,’ IEEE Trans. Comput-
ers, vol. C-34, no. 9, pp. 789-796, Sep. 1985.

[10] N. Takagi and S. Yajima, ‘Modular multiplica-
tion hardware algorithms with a redundant rep-
resentation and their application to RSA cryp-
tosystem,’ IEEE Trans. Computers, vol. 41, no. 7,
pp. 887-891, July 1992.

[11] Y. Watanabe and N. Takagi, ‘A VLSI Algorithm
for Division in $\mathrm{G}\mathrm{F}(2\mathrm{m})$ Based on Extended Bi-
nary GCD Algorithm,’ IEICE Trans. Fundamen-
tals, vol. E85-A, no. 5, pp. 994-999, May 2002.

