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starategy $h_{A}$ , and an initial vertex $v0\cdot \mathrm{A}$ strategy is
called a winning stmtegy if using it, $\mathrm{a}$ player can win
a game no matter what the opponent does. In thistegies of Update Networks paper, we mainly study a winning strategy for Sur-
vivor, called $\mathrm{a}$ routing strategy. Formally, $\mathrm{a}$ routingShinya Umeno
strategy is defined as follows.rtment of Information Science
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$,\mathrm{v}\mathrm{i}\mathrm{s}\mathrm{o}\mathrm{r}$: Prof. Osamu Watanabe $A$ Sumivor’sstrategy $h_{s}$ is $a$ routing strategy if the
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We call a update game with a routing strategy update
neteoork (Figure 1).

1 Update Networks

In the distriduted systems, it is often desiable to
$\mathrm{o}^{F_{\mathrm{O}}}\mathrm{o}_{[searrow]_{\sim\grave{\mathrm{O}}}j^{\underline{\nearrow}\mathrm{O}}}\downarrow 0_{!}\downarrow\sqrt\backslash \mathrm{o}_{\overline{\backslash }\triangle}^{\mathrm{O}}$

prove and maintain robustness of the network. In
particular, the important property to the network is
that the critical information of dynamic network is
distributed to all the nodes.

An update game was introduced in [1] as a sim- Figure 1: An example of an update network

ple mathematical model for analyzing this kind of
property in networks, by seeing the communication 2 Known Results
process in a given network as a two player infinite
duration game where one player, called Survivor, To consider an update game as a model of a network,
tries to ensure that the desirable property for the it is desirable to decide if a network has a routing
given network holds and the other player, called Ad- strategy or not in efficient time. In [1], Dinneen and
versary, tries to prevent it. More fomally, an up Khoussainov showed an algorithm to decide if a given
date game is the game on the bipartite finite di- update-game graph $G=(V,E)$ is an update network
graph $G=(S\cup A, E)$ . Survivor and Adversary in time $O(|V||E|)$ .
play a game according to their strategies. Given an Theorem 2.1 (Dinneen and Khoussainov[l])
initial vertex, each player controls a move on the There exists an algorithm to decide whether an
graph, alternatively by Survivor and Adversary. A update-game graph $G=(V,E)$ is an update network
sequence of moves makes an infinite sequence of ver- in time $O(|V||E|)$ .
tices $\langle$

$v_{1}$ , $v_{2},v_{3}$ , $\ldots$ ) of the underlying graph, called
a play. We call a finite prefix of a platy history. A In [2] they also introduced a simple routing strategy,

strategy is defined as a function from a history to a the cyd.ng neighbor strategy of linear space w.r.t. the
number of Survivor’s nodes.next vertex. Survivor wins the game if and only if the

vertices appearing on a play infinitely often, called Theorem 2.2 (Dinneen and Khoussainov[l]) The
persistent vertices, is equal to V. $’\rho(h_{S}, h_{A}, v_{0})$ indi- cyclic neighbor strategy is a winning strategy for any
cates the play by Survivor’s strategy $h_{S}$ , Adversary’s update network.
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Crasmaru, in [3], studied the computational com- which each player indicates the next vertex of the
plexity of a routing strategy, and showed a space play (represented as a binary sequence), and there is
lower bound of a routing strategy logarithmic with a channel between them to notify the opponent that
respect to the number of Survivor’s nodes. it has finished to write to the communication tape.

$Ms$ has an internal working tape, and furthermore it
Theorem 2.3 (Crusmaru) There is no strategy ei- has access to an external read-Only advice tape when
ther independent of the underlying graph or with ad- specified . Note that an advice tape is introduced to
vice using less than logarithmic space $w.r.t$ . the num- analyze the space complexity of the strategy, and its
$ber$ of branching Survivor vertices. content is given by some algorithm whose input is

In the same paper he also proved that a simple ran- the information of an underlying game graph. Thus,

domized strategy $h^{rand}$ for Survivor is a randomized this additional tape does not change the power of the

routing strategy. Survivor’s strategy in terms of the ability to win a
game. In the case of randomized strategy, $M_{S}$ has

Theorem 2.4 (Crusmaru) $h^{rand}$ is a randomized access to a random-bit string (Figure 2).
routing strategy for any update network.

3 Our Results

Even though the cycling neighbor strategy is simple
and has a interesting property, i.e., independence of
the network topology, it uses a linear space w.r.t. the
number of Survivor nodes. Whereas the construction
of the strategy independent of a relying graph with
smaller space is desirable, we set forth the interme-
diate king of strategies of which a strategy itself is
independent of the graph, but can use “advice de-
duced from the graph.

First we construct a computational-model frame-
work of an update game to analyze a strategy of up-
date games using a Turing machine. Then, we study
the space complexity of routing strategies, and ran-
domized strategies.

In a conputational model model, we assume that
any Survivor’s strategy is a recursive function. This
assumption allows us to see a strategy as a Turing
Machine $M_{S}$ . On the contrary Adversary’s strategy
is a black box $M_{A}$ ; thus, we do not constrain Adver-
sary except for the game rules.

Both machines have access to the read-Only in-
put tape where an encoding of the game graph
$G=$ $(S\cup 4\mathrm{J})$ and the initial vertex $v_{0}$ lie. Be
sides, $M_{S}$ and $M_{A}$ share the communication tape in

Figure 2: A Computational Model of Strategies

Given $M_{S}$ and $M_{A}$ , the play of a game goes as
follows.

1. The first player to choose a move is decided ac-
cording to the initial vertex of the game.

2. The player to choose a move computes a next
legal vertex $u-$ i.e., the vertex $u\mathrm{s}.\mathrm{t}$ . there is a
edge from the current vertex to $u-$ and writes
it on the communication tape.

3. To change turns, the player notifies the oppo
nent that it has finished writing by sending a
signal to a channel.

4. The play never stops.

In the case of deterministic strategies, we distin-
guish the following kinds of strategy depending on
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how $Ms$ uses its internal and external tape during We also analyze a randomized strategy introduced
the computation and the computational bounds im- in [3] more deeply. We consider three kinds of ran-
posed on $M_{S}$ . domized strategies; a randomized strategy with pri-

We say that $Ms$ is a $s$ -space routing strategy in- vate random bits; one with public random bits; and
dependent of a relying digraph, where $s$ is a proper one with pseudo random bits. The difference be
complexity function, if the following conditions hold. tween former two kinds of random bits is that while

Adversary cannot see private random bits, it can
1. $M_{S}$ does not use the advice tape in its compu- see public random bits, which intuitively means that

tation;
Adversary can precisely “predict” the random bits

2. for any input $(G=(S\cup A, E)$ , $v_{0})$ , $M_{S}$ uses at used by Survivor in the future. A Survivor’s strategy

most $s(|S_{chmioe}|)$ cells on the working tape during with pseudo random bits has access to the pseudo
its infinite computation; and random bits. This pseudo random bits are made

from some pseudo random generator whose input is
3. for any input $(G=(S\cup A, E)$ , $v_{0})$ and for any some finite random bits called a seed. We assume

adversary’s strategy $M_{A}$ , $M_{S}$ updates the nodes that Adversary knows how to make infinite length
$V$ infinitely often. pseudO-random bits from a seed and the length of the

seed, while it cannot see a seed itself. In randomized
We say that $M_{S}$ is a $s$ -space routing strategy with case, we assume $h_{S}$ has an additional argument for

advioe, where $s$ is a proper complexity function, if a randomized-bit string, $h_{\mathrm{S}}^{B}$ indicate a function such
the following conditions hold.

that for any history $\xi$ , $h_{\mathrm{S}}^{B}(\xi)=h_{S}(\xi, B)$ . $h_{A}^{B}$ is simi-
1. $M_{S}$ use the advice tape in its computation; larly ined. In a case of pseudo random bit, we use

$\sigma$ , instead of $B$ , to represent a seed. We formally de
2. the contents of the advice tape is constructed fine the notion of a winning strategy for randomized

by a recursive function, which we call the advice cases.
function, that takes a game graph as input, and
returns some strings that encodes the advice; Definition 3.1 Randomized Routing Strategy with

Private Random Bits3. for any input $(G=(S\cup A, E)$ , $v_{0})$ , $M_{S}$ uses at
A Survivor’s strategy $hs$ is a mndomized routingmost $s(|S_{\mathrm{c}hoioe}|)$ cells on the working tape during
strategy with private random bits if the following $\omega n-$

its infinite computation; and
dition holds.

4. for any input $(G=(S\cup A, E)$ , $v_{0})$ and for any
adversary’s strategy Ma, $M_{S}$ updates the nodes $\forall v_{0}$ : initial vetrex, $\forall h_{A}$ : Adversary’s strategy

$V$ infinitely often. $[P\mathrm{r}\{PB(h^{B}, hAvs’ 0)=V\}=1]$

We constructed a logarithmic space strategy with Definition 3.2 Randomized Routing Strategy with
advice, which is almost optimal in terms of a space Public Random Bits
lower bound of a routing strategy. The strategy has A Survivor’s $s$ trategy $h_{S}$ is a randomized routing
acsess to the table represented on the advice tape. strvetegy with public random bits if the following wn-
Reffering table to decide a next move in each turn, dition holds.
the strategy can update all nodes infinitely often.

$\forall v_{0}$ : initial vetrex, $\forall h_{A}^{B}$ : Adversary’s strategy
Theorem 3.1 There is a logarithmic-space routing

$[P\mathrm{r}\{PB(h_{S}^{B}, h_{A}^{B}, v_{0})=V\}=1]$

strategy with advice.
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Definition 3.3 Randomized Routing Strategy with [3] Crasmaru Marcel, On Routing in Update Net-
PseudO-Random Bits works, Research Reports on Mathematical and
A Survivor’s strategy $hs$ is a randomized routing Computing Sciences C-170, Dept. of Math, and
strategy with pseudO-random bits if the following con- Computing Sciences, Tokyo Institute of Technol-
dition holds. $\mathrm{o}\mathrm{g}\mathrm{y}$, 2003.

$\forall v_{0}$ : initial $vetrex,\forall h_{A}$ : Adversary’s strategy [4] Crasmaru Marcel and Shinya Umeno, The Com-

$[\mathrm{P}\mathrm{r}\{\mathrm{P}\sigma(h_{S}^{\sigma}, h_{A},v_{0})=V\}=1]$

plexity of Routing Strategies in Update Net-
works, Research Reports on Mathematical and

Next, we analyze the difference between three Computing Sciences C-170, Dept. of Math, and
kinds of randomized strategies, in terms of a property Computing Sciences, Tokyo Institute of $\mathbb{R}\mathrm{c}\mathrm{h}\mathrm{n}\mathrm{o}\mathrm{l}-$

“winning”, using a simple randomized strategy, an $\mathrm{o}\mathrm{g}\mathrm{y}$, 2003.
ignorant randomized strategy. An ignorant strategy
uses a random bits without any technique or trick;
Survivor’s next move is determined just by random
bits, like if the current random bit is 0, it moves to
right, otherwise moves to left. We prove that while a
ignorant random strategy with private random bits
is a randomized routing strategy, those with public
random bits and pseudo random bits are not win-
ning.

Theorem 3.2 An ignorant randomized strategy
$wi$ th private random bits is a randomized routing
strategy for any update networks.

Theorem 3.3 There is an update network such that
an ignorant randomized strategy with public random
bits is not a randomized winning $s$ rrategy.

Theorem 3.4 There is an update network such that
an ignorant randomized strategy with pseudo random
bits is not a randomized winning strategy.
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