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Abstract

The unification problem for term rewriting systems (TRSs) is the problem of deciding, for a TRS
R and two terms s and ¢, whether s and ¢ are unifiable modulo R. Mitsuhashi et al. have shown that
the problem is decidable for confluent simple TRSs. Here, a TRS is simple if the right-hand side of
every rewrite rule is a ground term or a variable. In this paper, we extend this result and show that
the unification problem for confluent semi-constructor TRSs is decidable. Here, a semi-constructor
TRS is such a TRS that every subterm of the right-hand side of each rewrite rule is ground if its root
is a defined symbol. We first show the decidability of joinability for confluent semi-constructor TRSs.
Then, using the decision algorithm for joinability, we obtain a unification algorithm for confluent
semi-constructor TRSs.

1 Introduction

The unification problem for term rewriting systems (TRSs) is the problem of deciding, for a TRS R and
two terms s and ¢, whether s and ¢ are unifiable modulo R. This problem is undecidable in general and
even if we restrict to either right-ground TRSs [9] or terminating, confluent, monadic, and linear TRSs {7].
Here, a TRS is monadic if the height of the right-hand side of every rewrite rule is at most one [12].
On the other hand, it is known that unification .s decidable for some subclasses of TRSs [2, 4, 5, 8, 11].
Recently, Mitsuhashi et al. have shown that the unification problem is decidable for confluent simple
TRSs [7]. Here, a TRS is simple if the right-hand side of every rewrite rule is a ground term or a variable.
In this paper, we extend the result of [7] and show that unification for confluent semi-constructor TRSs
is decidable. Here, a semi-constructor TRS is such a TRS that every subterm of the right-hand side of
each rewrite rule is ground if its root is a defined symbol.

In order to obtain this result, we first show the decidability of joinability for confluent semi-constructor
TRSs. Joinability of several subclasses of TRSs has been shown to be decidable so far [13]. Many of these
decidability results have been proved by reducing these problems to decidable ones for tree automata,
so that these decidable subclasses are restricted to those of right-linear TRSs. In this paper, we provide
a decidability result of joinability for possibly non-right-linear TRSs. To our knowledge, such attempts
were very few so far.

Moreover, in this paper we show that confluence is necessary to show the decidability of joinabil-
ity for semi-constructor TRSs, that is, joinability for (non-confluent) linear semi-constructor TRSs is
undecidable.

2 Preliminaries

We assume that the reader is familiar with standard definitions of rewrite systems (see [1, 14]) and we
just recall here the main notations used in this paper.

Let X be a set of variables, F a finite set of operation symbols graded by an arity function ar: F — N,
Fo,={f € F|ar(f) = n}, Leaf = X U Fp the set of leaf symbols, and T the set of terms constructed
from X and F. We use z,y, z as variables, b, c,d as constants, and r,s,t as terms. A term is ground
if it has no variable. Let G be the set of ground terms and let S = T \ (GU X). Let V(s) be the set
of variables occurring in 5. The height of s is defined as follows: h(a) = 0 if a is a leaf symbol and
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h(f(t1,...,tn)) = 1 + max{h(t1),...,h(tn)}. The root symbol is defined as root(a) = a if a is a leaf
symbol and root(f(t1,...,tn)} = f

A position in a term is expressed by a sequence of positive integers, which are partially ordered by the
prefix ordering <. To denote that positions u and v are disjoint, we use u|v. The subset of all minimal
positions (w.r.t. <) of W is denoted by Min(W). Let O(s) be the set of positions of s.

Let sj, be the subterm of s at position u. We use st], to denote the term obtained from s by
replacing the subterm s), by t. For a sequence (u1,---,un) of pairwise disjoint positions and terms
Ty yTn, We use §[r1,--+ ,Tn)(u,,...,u,) t0 denote the term obtained from s by replacing each subterm
S|y, by ri(1 <4 < n).

A rewrite rule is defined as a directed equation oo — A that satisfies @ ¢ X and V(a) 2 V(B). Let
« is the inverse of =, & = - U« and | = —* . «—*. Let y: s; & s5--- Y s, be a rewrite sequence.
This sequence is abbreviated to : s; ©* s, and R{%) = {uy,- - ,un-1} is the set of the redex positions
of . If the root position € is not a redex position of 4, then ~ is called e-invariant. For any sequence -y
and position set W, R(y) > W if for any v € R(y) there exists a u € W such that v > u. If R(y) > W,

>w

we write y: 81 ©* sp.

Let Oc¢(s) = {u € O(s) | s, € G}. For any set A C X UF, let Oa(s) = {u € O(s) | root(s;,) € A}.
Let Oy (s) = Oz} (s). The set D of defined symbols for a TRS R is defined as D = {root(c) | @ — § € R}.
A term s is semi-constructor if, for every subterm ¢ of s such that root(t) is a defined symbol, ¢ is ground.

Definition 1 A rule a — 8 is ground if o, € G, right-ground if 8 € G, semz-canstr'uctor if 8is
semij-constructor, and linear if |0, ()| <1 and |0,(8)| <1 for every z € X.

Example 2 Let R, = {nand(z,z) — not(z), nand(not(z),z)} — t, t — nand(f,f), f — nand(t,t)}.
R, is semi-constructor, non-terminating and confluent [3]. We will use this R, in ezamples given in
Section §.

Definition 3 [11] An equation is a pair of terms s and ¢ denoted by s ~ ¢t. An equation s ~ t is unifiable
modulo a TRS R (or simply R-unifiable) if there exists a substitution @ and a rewrite sequence v such
that v: s6 «* tf. Such § and v are called an R-unifier and a proof of s = t, respectively. This notion
is extended to sets of term pairs: for ' € T x T, 6 is an R-unifier of I if 4 is an R-unifier of every pair
in I'. In this case, I' is R-unifiable. As a special case of R-unifiability, s ~ ¢ is @-unifiable if there exists
a substitution 6 such that sf = tf, i.e., Q-unifiability coincides with the usual unifiability. If s | ¢t then
s &t is joinable. If s —* t then s ~ ¢ is reachable.

Definition 4 TRSs R and R’ are equivalent if o} = oF,.

3 Joinability

Flrst we show that the joinability and reachablhty problems for (non-confluent) semi-constructor TRSs
are undecidable.

Theorem 5 The joinability and reachability problems for linear semi-constructor term rewriting systems
are undecidable. Proof [sketch] The proof is by a reduction from the Post’s correspondence problem
(PCP). Let P = {{u;,v;) € £* x £* | 1 < ¢ < k} be an instance of the PCP, The corresponding TRS
Rp is constructed as follows: Let Fp = {c,d,$}, F; = S U {f,h}, F, = {g}; Rp = {c = h(c),c = d,d —
F(d)}U{d — gus(8), vi(9)), Fle(z, ) — B(ui(z), u(y)) | 1 <i < k}U{h(S(a(z) a(y)) — g(z,y) |a € £}
u(z) is an abbreviation for a;(az(: - -ak(z))) where u = ajas - - - ay with ay,--- ,ax € X. Rp is linear and
semi-constructor. For Rp, the following three propositions (1)—(3) are equivalent: (1) c | g(8,9%), (2
c —*g($,8), and (3) PCP P has a solution. 0

3.1 Standard Semi-Constructor TRSs

From now on, we consider only confluent semi-constructor TRSs, for wl'uch joinability is shown to be
decidable. In order to facilitate the decidability proof, we transform a TRS into a simpler equivalent one.

Definition 6 For TRS R, we use R,; and R,g to denote the sets of right-ground and non-right-ground
rewrite rules in R, respectively.
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If R is clear from the context, we write —g instead of — g, .

Definition 7 A TRS R is standard if the following condition holds: for every o — A3 € R either a € Fy
and h(f) < 1 or a ¢ Fy and for every u € O(f) if Bju € G then B, € Fp.

Let Rg be a confluent semi-constructor TRS. The corresponding standard TRS R® is constructed as
follows. First, we choose & — 3 € Ri(k > 0) that does not satisfy the standardness condition. If a € Fp
then let {uy,- -+ ,um} = Min(Og(B) \ Or, (8) \ {¢}), else let {u1,--- ,um} = Min(Og(8) \ Or,(8)). Let
Riy1 =R\ {a - BYuU{a — Bdi,--- y@m)(ug, e um) } U {di = B, | 1 <4 < m} where dy, -+ ,dp, are
new pairwise distinct constants which do not appear in Rx. This procedure is applied repeatedly until
the TRS satisfies the condition of standardness. The resulting TRS is denoted by R®). For example,
{fi(z) — g(z,g(a,b))),f2(x) — f2(g(c,d))} is transformed to {fi(z) — g(x,d1),d1 — g(a,b),f2(z) —
d2,d2 — f2(d3),ds — g(c,d)}. This transformation preserves confluence, joinability and unifiability.

Lemma 8
(1) R is confluent.
(2) For any terms s,t which do not contain new constants, s | g, t iff s | g .
(3) For any terms s,t which do not contain new constants, s = ¢ is Rg-unifiable iff s  t is R®-unifiable.

The proof is straightforward, since Rg is confluent. By this lemma, we can assume that a given confluent
semi-constructor TRS is standardized without loss of generality. By standardization, for any @ — 8 € Ry,
a € Fy or B € Fy holds and h(8) < 1. However, by the transformation algorithm given in Section 3.2,
the heights of the right-hand sides of ground rules (called R¢ type rules later) may increase. This is the
only exceptional case.

3.2 Adding Ground Rules

The joinability for right-ground TRSs is decidable [10]. In this paper, we show that the joinability for
confluent semi-constructor TRSs is decidable, by reducing to the joinability for right-ground TRSs.

Let R; be a confluent TRS and R; be such a TRS that — g, C|g,. Then, obviously RUR; is equivalent
to R; and confluent. Thus, even if we add pairs of joinable terms of R; to R; as new rewrite rules (called
shortcuts), confluence, joinability and unifiability properties are preserved. Note that reachability is not
necessarily preserved. Now, we show that the joinability of confluent semi-constructor TRSs reduces to
that of right-ground TRSs by adding new finite ground rules. For this purpose, we need some definitions.

Definition 9 Arule a — g has type C ifa € Fp, 8 ¢ Fp and Op\r,(B) = 8, and has type F; if a, 8 € Fy.
Let R, = {d —» B € R|a — (3 has type T}.

That is, R¢ is the subset of R,g satisfying that for every rule @ — 8 € Rg, a is a constant, and 3
is non-constant and contains no defined non-constant symbol. Henceforth we assume that R\ R¢ is
standard.

Definition 10

w+max{hp(s;) |1 <i<n} (ifs= f(s1,--,82),n>0,f € D)
hp(s) = ¢ 1+ max{hp(s;)|1<i<n} (iffs= f(s1,"-+,80),n>0,f¢ D)
0 (if s € Leaf)

where w = 1+ 2max{h(8) | @ — 8 € R}. Note that we give weight w to each defined non-constant
symbol and 1 to each other non-constant symbol and define new heights derived from these weights. We
define Hp(s) = {hp(s;,) | © € O(s)}m, which is a multiset of heights of all subterms of s. Here, we use
{-*}m to denote a multiset and U to denote multiset union. For TRS R, of Example 1, w = 3 and
Hp(nand(not(z),z)) = {0,0,1,4}m.

Let < be the multiset extension of the usual relation < on N and let < be <« U =. Let #(s) =
(Hp(s),g(s)). Here, function g(s) returns a natural number corresponding to s uniquely, and we assume
that the ordering derived by this function is closed under context, i.e., for any terms r,s,t and any
position u € O(r), if g(s) < g(t) then g(r(s]y) < g(r[t].). Such a function g is effectively computable.
In order to compare #(s) and #(t), we use lexicographic order <jx. Note that <jex is a total order. A
term 8o is minsmum in set A iff sp € A and #(so) = Min({#(s') | s’ € A}).
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Definition 11

(1) Function linearize(s) linearizes non-linear term s in the following manner. For each variable oc-
curring more than once in s, the first occurrence is not renamed, and the other ones are replaced
by new pairwise distinct variables. For example, linearize(nand(z,z)) = nand(z,z;). If function
linearize replaces x by 1, then we use z = z; to denote the replacement relation.

(2) Forset ACT, Psub(A) = {s;, | s € A,u € O(s) \ {€}}.

(3) For set A C T, Bud(A,Rc) = Fy UPsub(AU {8 | @ — 8 € Rc}). Note that if A C Fp then
Bud(A, Re) = Bud(0, Ro). '

(4) Substitution o is joinability preserving under relation = for TRS Ry if 20 |g,, z'0 whenever
x = z'. In this case, we write 0 €| (=, Rrg).

(5) For TRS R and term «, R(a) ={8|a — B € R}.
(

6) Let {s1,-+-,8m} = Rc(d) and {uy,- - ,un} = Min(Ui<icmOry(s:)). Let d; be the minimum
term in {s;,, € Fp | 1 < i < m}, 1 < j < n. Then we define Normalize(d, Rc) = {d —
s1(dy,- - n](ul, unpU{ds = s, |1 <4 <ml <5 < ndj # sipy,;}. For example,
Normallze(t, {t — not(not(t)),t — not(f)}) {t — not(f),f — not(t)}.

Lemma 12 Let R\ R¢ be standard. Let @ — 8 € Ryg,8: X — T and s —%,, 0f. Let o/ = linearize(a).

Then, there exists a substitution o : V(a') — Bud({s}, Rc) such that s =k, @0 —he 00 Bo =%, 66
and o €| (=, Ry).

By Lemima 12, for a rewrite sequence d —%  af — 6, there exists o’ such that d -} oo =%

af and fo —%, f. So, if we add a new ground rule d — fo to R, then we have d —}, 6 for
R’ = R;U{d — Bo}. Thus, by adding shortcut rules such as d — B, we can omit applications of @ — 8
which is a non-right-ground rule. Using this technique, the following algorithm takes as input a standard
semi-constructor TRS R and produces as output an equivalent semi-constructor TRS R() satisfying
that if d —}) 5 then d —7 o 5. We call R® a guasi-right-ground TRS, hereafter.

function MakeQuasiRightGround(R)
R := Determinize(R);
repeat
R :=R;
R := Determinize(AddShortcuts(R'))
until R = R’;
return R

function AddShortcuts(R)
R' := R;
for each @ — 8 € R;g do
o := linearize(a);
for each d € Fy,o : V(a') — Bud(@, Rc) such that ¢ €| (=, R;g) do
if d =%, oo then R':= R'U{d — fo}
return R’

function Determinize(R)
while there exists d such that [Rc(d)| > 1 do
R := RU Normalize(d, Rc)\ {d —» s{d — s € R¢}
return R

Example 13 For TRS R, of Ezample 1, MakeQuasiRightGround(R.) first computes Determinize(R,).
It returns the same R, as output. Next, AddShortcuts(R.) is called. Since t — nand(f,f), nand(z,z) —
not(x) € Re, a new shortcut rule t — not(f) is added to R.. Similarly, f — not(t) is added. Thus,
AddShortcuts(R,) = R’ where R’ = R, U {t — not(f),f — not(t)}. Nexzt, Determinize(R’) is called and
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returns the same R' as output. Then, AddShortcuts(R') is called. Note that Ry = {t — not(f),f —
not(t)}. AddShortcuts(R') returns the same R’ and also calls Determinize(R’). Then, the algorithm

halts. Let R be this result: RY = R,u {t = not(f),f — not(t)}, which will be used in later examples.

We apply this algorithm to standard TRS. But by an application of this algorithm, the heights of
some right-hand side terms of type C rules may become greater than 1. This algorithm satisfies the
following lemmata.

Lemma 14 MakeQuasiRightGround is terminating.
Lemma 15 Let R) = MakeQuasiRightGround(R®).
(1) Ifd —%) s then d _’;252 s.

(2) =ro C lgo-
Corollary 16 ‘
(1) R® is confluent (since RW is confluent).

(2) ¢lpny d iﬂ‘clR‘(';) d.

(3) s =t is RW-unifiable iff s ~ t is R®-unifiable.

3.3 Auxiliary Terms

We have shown that all rewrite sequences from every constant in R® (i.e., d —%a $) can be obtained
by using only right-ground rules (i.e., d _';z"’ 3). Now, we want to extend this result to that for rewrite
. T,
sequences from any term. For this purpose, :ve need the notion of auxiliary terms. For A C G
function Aux(A)
repeat
Al = A;
A := AddTerms(A’)
until A = A’;
return A

function AddTerms(A)
Al = A _
for each a — f € Rg) do
- o = linearize(a);
for each s € A,p € Op\ g, (s),
] g: V() — Bud({s|p},Rg)) such that o €] (E,RSQ) do
if 8)p -3 0/c then A" := AU {s[Bo],}
g
return A’

Example 17 In TRS R.(,f) of Example 2,
Aux({not(nand(t,t))}) = AddTerms({not(nand(t,t))}) = {not(nand(t, t)), not(not(t))}.

Lemma 18 For any ground term s,
(1) For any s’ € Aux({s}), Aux({s'}) € Aux({s}).
{(2) Aux({s}) is finite and computable.
(3) For any s’ € Aux({s}), &' lrin s.
(4) If s =%, t then there exists s’ € Aux({s}) such that s’ —»EQ t.
We call s’ in Lemma 18(4) an auziliary term of (s,t). This will be used to transform non-right-ground
rewrite sequence to right-ground rewrite sequence.

Example 19 For rewrite sequence not(nand(t,t)) —7, not(nahd(not(f),not(f))) — not(not(not(f)), we

can choose not(not(t)) € Aux({not(nand(t,t))}) and not(not(t)) —.¢ not(not(not(f))).
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3.4 Joinability for Confluent Semi-Constructor TRSs
Lemma 20 For any ground terms s and ¢, s |z t iff there exists s’ € Aux({s}),t" € Aux({t}) such
that s’ lR,(.Q t.

By Lemma 18(2) and decidablity of s’ | RY t' [10], s | pw t is decidable for ground terms s and t. If "

s or t is non-ground, s |z t is equivalent to so |z to where o : V(s) UV(t) — Fj is a bijection and
Fj§ is a set of new pairwise distinct constants which do not appear in R®. Thus, we have the following
theorem.

Theorem 21 The joinability for confluent semi-constructor term rewriting systems is decidable.
By confluence, we have the following corollary too.

Corollary 22 The word problem for confluent semi-constructor term rewriting systems is decidable.

4 R-Unification

By using Theorem 21, we have the following theorem.

Theorem 23 The unification problem for confluent semi-constructor term rewriting systeins is decidable.

5 Conclusion

In this paper, we have shown that the joinability and unification problems for confluent semi-constructor
TRSs are decidable. But, reachability remains open. Obviously, the class of semi-constructor TRSs is a
subclass of strongly weight-preserving TRSs, for which several sufficient conditions to ensure confluence
are given in [3].
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