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Persistence of Termination for Overlay Term Rewriting Systems
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Abstract

Aproperty $P$ is called persistent if for any many-
sorted term rewriting system $\mathcal{R}$ , $\mathcal{R}$ has the prop
erty $P$ if and only if term rewriting system $\Theta(\mathcal{R})$ ,
which results from 72 by omitting its sort informa-
tion, has the property $P$ . In this paper, we show
that termination is persistent for locally confluent
overlay term rewriting systems and we give the ex-
ample as application of this result. Furthermore we
show that termination is persistent for right-linear
overlay term rewriting systems and we obtain that
termination is modular for right-linear overlay term
rewriting systems.

1Introduction

Term rewriting systems (TRSs) can offer both flex-
ible computing and effective reasoning with equa
tions. TRSs have been widely used as amodel of
functional and logic programming languages and
as abasis of theorem provers, symbolic computa-
tion, algebraic specification and software verifica-
tion [3, 4, 9, 12].

Arewrite system is called terminating (strongly
normalizing) if there exists no infinite reduction se-
quence. In theory and practice, one of the most
important properties of TRSs is the termination
property. It is well-known that termination is un-
decidable for TRSs in general $[3, 5]$ . Thus, several
semi-automated techniques for proving termination
of TRSs have been successfully developed [4, 5, 12].
In particular, simplification ordering, like recursive
path ordering [5], are widely used.

Zantema [ $1\eta$ introduced the notion of persistence
as follows: Aproperty $P$ is called persistent if for
any many-sorted TRS 72, 72 has the property $P$ if
and only if unsorted TRS $\ominus(\mathcal{R})$ , which results from
72 by omitting its sort information, has the property
$P$ . Zantema [17] showed that termination is per-
sistent for TRSs without collapsing or duplicating
rules. However termination is not persistent in gen-
eral [17]. The basic counterexample from Toyama
[15] leads to the following many-sorte$\mathrm{d}$ TRS $\mathcal{R}$ :

宗弘 (Munehiro Iwami)
eering, Shimane University
Japan, 690-8504
is.shimane-u.ac.jp

$\mathcal{R}=\{$

$f(0,1,x)arrow f$(x, $x,x$)
$g(y,z)$ $arrow y$

$g(y,z)$ $arrow z$

where the set of sorts $S=\{\alpha,\beta\}$ and the function
symbols and variables are defined as follows:

$f$ : a $\mathrm{x}$ a $\mathrm{x}\alphaarrow\alpha$, 0 : $\alpha$ , 1 : $\alpha$ , $g$ : $\beta$ $\mathrm{x}$ fl $arrow$ d,
$x$ : $\alpha$ , $y$ : $\mathrm{f}1$ , $z$ : $\mathrm{f}1$ .

The many-sort$\mathrm{e}\mathrm{d}$ TRS 72 is terminating. Let 0
be asort elimination function. Then unsorted TRS
$\ominus(\mathcal{R})$ , which results from 72 by omitting its sort
information, is not terminating.

$f(g(0,1),g(0,1),g(0,1))$
$arrow \mathrm{e}(\mathrm{x})$

$f(\overline{0,g(0,}1),g(0,1))$

$arrow_{\mathrm{e}(\mathcal{R})}\underline{f(0,\overline{1,g(0,}1))}$

$arrow \mathrm{e}(\mathrm{z})\cdots$

is an infinite reduction in $\Theta(\mathcal{R})$ . In each step the
contracted redex is underlined. Aoto and Toyama
showed the persistence of confluence [1]. Ohsaki
and Middeldorp [13] studied the persistence of ter-
mination, acyclicity and non-loopingness on equa-
tional many-sorted TRSs. Aoto proved that the
persistence of termination for TRSs in which all
variables are of the same sort [2]. Furthermore we
showed that the persistence of termination for non-
overlapping TRSs [8].

In this paper, we show the persistence of termi-
nation for locally confluent overlay TRSs and we
give the example as application of this result. Zan-
tema’s result can not be applied to our example.
Furthermore we show that termination is persistent
for right-linear overlay term rewriting systems and
we obtain that termination is modular for right-
linear overlay term rewriting systems.

In section 2, many-sorted TRS is formulated and
well-sortedness is characterized in section 3. First,
we show the persistence of local confluence and
strong innermost normalization. Next, we show the
persistence of termination for locally confluent over-
lay TRSs and we give the example as an application
of this result in section 4. We show the persistence
of termination for right-linear overlay TRSs in sec-
tion 5. Furthermore, we obtain the persistence of
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completeness for right-linear overlay TRSs. In sec-
tion 6, we show the modularity of termination for
right-linear overlay TRSs. Furthermore, we obtain
the modularity of completeness for right-linear over-
lay TRSs.

2 Preliminaries
We mainly follow basic definitions in the literature
$[1, 9]$ .

2.1 Sorted term rewriting systems

In this subsection, we introduce the basic notions of
sorted term rewriting systems. Usual term rewrit-
ing systems [3] are considered as special cases of
sorted term rewriting systems.

Let $S$ be a set of sorts and $\mathcal{V}$ be a set of countably
infinite sorted variables. We assume that there are
countably infinite variables of sort $\alpha$ for each sort
$\alpha\in S$ . Let $F$ be a set of sorted function symbols.
We assume that each sorted function symbol $f\in F$

is given with the sorts of its arguments and the sort
of its value, all of which are included in $S$ . We
write $f:\alpha_{1}\mathrm{x}\ldots$ $\mathrm{x}\alpha_{n}arrow\beta$ if and only if $f$ takes $n$

arguments of sorts $\alpha 1$ ,. . . , $\alpha_{n}$ respectively to a value
of sort $\beta$ . Ehnction symbol of with no arguments is
constant.

The set $\mathcal{T}(F, \mathcal{V})=\mathrm{u}_{\alpha\in \mathrm{S}}$ $\mathcal{T}(F, \mathcal{V})^{\alpha}$ of all Sorted
terms built from $F$ and $\mathcal{V}$ is defined as follows:
(1) $\mathcal{V}^{\alpha}\subseteq \mathcal{T}(F, \mathcal{V})^{\alpha}$ , (2) $f:\alpha_{1}\mathrm{x}$ . . . $\mathrm{x}\alpha_{n}arrow\alpha$ ,
$t_{i}\in$ $\mathcal{T}(F, \mathcal{V})\alpha_{j}(i=1,\ldots,n)$ then $f(t_{1},\ldots,t_{n})\in$

$\mathcal{T}(F,\mathcal{V})^{\alpha}$ . Here $\mathcal{T}(F, \mathcal{V})^{\alpha}$ denotes the set of all
sorted terms of sort $\alpha$ . A sorted tem $t$ is linear if $t$

does not contain multiple occurrences of the same
variable. We write $t$ : $\alpha$ if $t$ is of sort $\alpha$ . $\mathcal{V}(t)$ denotes
the set of all variables in $t$ . $\mathcal{T}(F, \mathcal{V})^{\alpha}$ and $\mathcal{T}$(F, $\mathcal{V}$ )
are abbreviated as $\mathcal{T}^{\alpha}$ and $\mathcal{T}$, respectively. Let $\square ^{\alpha}$

be a special constant (hole) of sort $\alpha$ . Elements of
$\mathcal{T}(F\cup \{\square ^{\alpha}|\alpha\in S\},\mathcal{V})$ axe called contexts over
$\mathcal{T}(F, \mathcal{V})$ . We write $C:\alpha_{1}\mathrm{x}\ldots$ $\mathrm{x}\alpha_{n}arrow\alpha$ if and
$\mathrm{o}\mathrm{n}1\mathrm{y}\square ^{\alpha_{1}}$

if the sort of context $C$ is $\alpha$ and it has $n$ holes
$,\ldots,\square ^{\alpha_{n}}$ . If $C:\alpha_{1}\mathrm{x}\ldots$ $\mathrm{x}\alpha_{n}arrow\alpha$ and $t_{i}:\alpha_{\iota}(i=$

$1,\ldots,n)$ then $C[t_{1},\ldots,t_{n}]$ denotes the term obtained
from $C$ by replacing holes with $t_{1},\ldots,t_{n}$ from left
to right. A context that contains precisely one hole
is denoted by $C[]$ . A term $t$ is said to be a subterm
of $s$ if and only if $s$ $=C[t]$ for some context $C$ . A
substitution $\theta$ is a mapping ffom $\mathcal{V}$ to $\mathcal{T}$ such that
$x\in \mathcal{V}^{\alpha}$ implies $\theta(x)\in \mathcal{T}^{\alpha}$ . A substitutions over
terms is defined as a homomorphic extension. $\theta(t)$

is usually written as $t\theta$ . A sorted rewrite $mle$ on $\mathcal{T}$

is a pair $larrow r$ such that $l\not\in \mathcal{V}$ , $\mathcal{V}(r)\subseteq \mathcal{V}(l)$ , sorted
terms $l$ and $r$ have the same sort. A sorted term
rewriting system (STRS, for short) is a pair $(F, \mathcal{R})$

where $F$ is a set of sorted function symbols and $\mathcal{R}$

is a set of sorted rewrite rules on $\mathcal{T}$. $(F, \mathcal{R})$ is often
abbreviated as $\mathcal{R}$ and in that case $F$ is defined to
be the set of function symbols that appear in $\mathcal{R}$ .

Given a STRS $\mathcal{R}$ , a sorted term $s$ is reduced to a
sorted term $t$ ( $s\prec_{\mathcal{R}}t$ , in symbol) when $s=C[l\theta]$

and $t=C[r\theta]$ for some rewrite rule $larrow r\in \mathcal{R}$ , con-
text $C$ and substitution $\theta$ . We call $s\prec_{\mathcal{R}}t$ a write
step or reduction from $s$ to $t$ of $\mathcal{R}$ . $l\theta$ is called re-
$dex$ of this rewrite step. One can easily check that
sorted terms $s$ and $t$ have the same sort whenever
$sarrow_{\mathcal{R}}t$ .

The transitive reflexive closure $\mathrm{o}\mathrm{f}arrow n$ is denoted
$\mathrm{b}_{J^{t}}^{\mathrm{v}}arrow^{*}\mathcal{R}$ . Terms $t_{1}$ and $t_{2}$ are joinable if there ex-
ists some term $t$

’ such that $t_{1}arrow_{\mathcal{R}}^{*}t’arrow_{\mathcal{R}}^{*}$ $t_{2}$ . A term
$t$ is confluent if for any tems $t_{1}$ and $t_{2}$ , $t_{1}$ and $t_{2}$

are joinable whenever $t_{1}arrow_{\mathcal{R}}^{*}tarrow_{\mathcal{R}}^{*}t_{2}$ . A STRS $\mathcal{R}$ is
confluent if every term is confluent $\mathrm{t}\mathrm{o}arrow \mathcal{R}$ . A term $t$

is locally confluent if for any terms $t_{1}$ and $t_{2}$ , $t_{1}$ and
$t_{2}$ are joinable whenever $t_{1}\succ_{\mathcal{R}}t\prec_{\mathcal{R}}t_{2}$ . A STRS $\mathcal{R}$

is locally confluent if every term is locally confluent
to $arrow \mathcal{R}$ . A term $t$ is a normal form if there is no
term $t’$ such that $tarrow_{\mathcal{R}}t’$ . A term $t$ is terminating
(strongly normalizing) (SN) if there is no infinite re-
duction sequence starting from term $t$ . A STRS $\mathcal{R}$

is terminating if every term is terminating $\mathrm{t}\mathrm{o}arrow R$ .
A reduction step $s$ $\prec_{\mathcal{R}}t$ is innermost, denoted by
$sarrow_{i_{\mathcal{R}}}t$, if no proper subterm of the contracted re-
dex is itself a redex. An innermost derivation con-
sists solely of innermost reduction steps. A STRS
$\mathcal{R}$ is strongly innemost normalizing (SIN) if there
is no infinite innermost derivation. A STRS $\mathcal{R}$ is
complete if $\mathcal{R}$ is confluent and terminating. Every
terminating STRS is strongly innermost normaliz-
ing. The set of all position of a term $s$ is denoted
by $O(s)$ . The root position of a term is denoted by
$\epsilon$ . A rewrite step of the form $sarrow^{\epsilon}t$ is said to be a
root reduction.

A rewrite rule $larrow r$ is a collapsing rule if $r$ is
a variable. A rewrite rule $larrow r$ is a duplicating
rule if some variable has more occurrences in $r$

than in $l$ . Let $l_{1}arrow r_{1}$ and $l_{2}arrow r_{2}$ be renamed
versions of rewrite rules in a STRS $\mathcal{R}$ such that
they have no variables in common. Suppose $l_{1}=$

$C[t]$ with $t$ \not\in $\mathcal{V}$ such that $t$ and $l_{2}$ are unifiable,
i.e. $t\theta=l_{2}\theta$ for a most general unifier $\theta$ . The
term $l_{1}\theta=C[l_{2}]\theta$ is subject to the rewrite steps
$l_{1}\thetaarrow_{R}r_{1}\theta$ and $l_{1}\theta\prec_{\mathcal{R}}C[r_{2}]\theta$ . Then the pair of
reducts ( $C[r_{2}]\theta$ , $r_{1}\theta\rangle$ is called a critical pair of $\mathcal{R}$ .
A STRS $\mathcal{R}$ is non-Overlapping if there is no critical
pair between rules of $\mathcal{R}$ . If every critical pair of a
STRS $\mathcal{R}$ is obtained by an overlay, i.e. by overlap-
ping left-hand sides of rules at root position, then
$\mathcal{R}$ is said to be an overlay system (OS). A STRS $\mathcal{R}$

is right-linear (RL) if $r$ is linear for any $larrow r\in \mathcal{R}$ .
For properties $P$ and $Q$ of STRSs we write $P\Lambda Q$

for denoting the conjunction of $P$ and $Q$ . By $P$(R)
we denote that the STRS $\mathcal{R}$ has the property $P$ .
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When $S=\{*\}$ , an STRS is called a term rewrit-
ing system (TRS, for short). Given an arbitrary
STRS $\mathcal{R}$ , by identifying each sort $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}*$ , we obvi-
ously obtain a TRS $\Theta(\mathcal{R})$ . called the underlying
TRS of $\mathcal{R}$ .

2.2 Sorting of term rewriting sys-
tems

Aoto and Toyama [1] defined the notion of sort at-
tachment and formulated the notion of persistence
using sort attachment. We mainly follow basic def-
initions in [1] in this subsection.

Let $F$ and $\mathcal{V}$ be sets of function symbols and
variables, respectively, on a trivial set $\{*\}$ of sorts.
Terms built from this language are called unsorted
terms. Let $S$ be another set of sorts. A $so\hslash$ at-
tachment $\tau$ on $S$ is a mapping from $F\cup \mathcal{V}$ to the
set $S^{*}$ of finite sequences of elements from $S$ such
that $\tau(x)$ $\in S$ for any $x\in \mathcal{V}$ and $\tau(f)$ $\in S^{n+1}$

for any $n$-ary function symbol $f\in F.$ We write
$\tau(f)=\alpha 1$ $\mathrm{x}\ldots$ $\mathrm{x}\alpha_{n}arrow\beta$ . Without loss of gen-
erality we assume that there are countably infinite
variables $x$ with $\tau(x)=\alpha$ for each $\alpha\in S$ . The set
of $\tau$-sorted function symbols from $F$ is denoted by
$F^{r}$ .

A term $t$ is said to be well-sorted under $\tau$ with
sort $\alpha$ if $t$ : $\alpha$ is derivable in the following rules: (1)
$\mathrm{r}(\mathrm{x})=\alpha$ implies $x:\alpha$ , (2) $\tau(f)=\alpha 1$ $\mathrm{x}\ldots \mathrm{x}\alpha_{n}arrow$

$\beta$ , $t_{1}:\alpha_{1}$ ,..., $t_{n}:\alpha_{n}$ imply $f(t_{1}, \ldots, t_{n}):\beta$ .
The set of well-sorted tems under $\tau$ is denoted

by $\Gamma$ , i.e. $\mathcal{T}^{\tau}=$ { $t\in \mathcal{T}|t$ : $\alpha$ for some $\alpha\in S$ } $.$

Clearly, $\mathcal{T}^{\tau}\subseteq \mathcal{T}$ . For a context $C$ , we write $C:\alpha_{1}\mathrm{x}$

. . . $\mathrm{x}\alpha_{n}arrow\beta$ if $C[\square ^{\alpha_{1}}, \ldots, \square ^{\alpha_{n}}]$ : $\beta$ is derivable by
rules (1), (2) with an additional rule: $(3)\alpha\in S$

implies $\square ^{\alpha}$ : $\alpha$ .
Let $\mathcal{R}$ be a TRS. A sort attachment $\tau$ is said to

be consistent with $\mathcal{R}$ if for any rewrite rule $larrow r\in$

$\mathcal{R}$ , $l$ and $r$ are well-sorted under $\tau$ with the same
sort. Note that $\mathcal{R}^{\tau}$ acts on $\Gamma$ , i.e. well-sorted
terms $s$ , $t\in \mathcal{T}^{\tau}$ whenever $s\prec_{\mathcal{R}^{\tau}}t$ ; and that for any
$s$ , $t\in \mathcal{T}^{\tau}$ , $s\prec_{\mathcal{R}}t$ if and only if $s\prec_{R^{\tau}}\prime t$ .

From a given TRS $\mathcal{R}$ and a sort attachment $\tau$

consistent with $\mathcal{R}$ , by regarding each function sym-
bol $f$ to be of sort $\tau(f)$ and each variable $x$ to be
of sort $\tau(x)$ , we get a STRS $\mathcal{R}^{\tau}$ . called a STRS
induced ffom $\mathcal{R}$ and $\tau$ .

Using the sort attachment, persistence can be al-
ternatively formulated as follows. It is clear that
definition of Zantema [$1\eta$ and the following defini-
tion are equivalent.

Definition 2.1 A property $P$ is called persistent if
for any TRS $\mathcal{R}$ and any sort attachment $\tau$ that is
consistent with $\mathcal{R}$ the following property holds:
$\mathcal{R}^{\tau}$ has the property $P\Leftrightarrow R$ has the property $P$ .

We consider the persistent property for TRSs us-
ing definition 2.1 in this paper instead of Zantema’s
definition. From now on, we assume that a set $S$ of
sorts, a TRS $\mathcal{R}$ are given. Then an attachment $\tau$

on $S$ that is consistent with $\mathcal{R}$ is fixed.

3 Character\’izations of well-
sortedness

In this section we give a characterization of well-
sortedness.

Definition 3.1 The top sort (under $\tau$ ) of an un-
sorted term $t$ is defined as follows:

. $\mathrm{t}$ $(\mathrm{x})=\tau(t)$ if $t\in \mathcal{V}$ .. top(t) $=\beta$ if $t=f(t_{1}, \ldots, t_{n})$ with $\tau(f)=$

$\alpha 1$ $\mathrm{x}\ldots$ $\mathrm{x}\alpha_{n}arrow\beta$ .

Definition 3.2 Let $t=C[t_{1}, \ldots, t_{n}](n\geq 0)$ be an
unsorted terms with $C[, \ldots,]\neq\square$ . We write $t=$

$C[t_{1}, \ldots, t_{n}]$ if and only if

(1) $C:\alpha_{1}\mathrm{x}\ldots$ $\mathrm{x}\alpha_{n}.arrow\beta$ is a context that is well-
sort under $\tau$ .

(2) $top(ti)\neq\alpha_{i}$ for $i=1$ , $\ldots,$
$n$ .

The $t_{1}$ ,... , $t_{n}$ are said to be the principal subterms
of $t$ .

We consider the example of top sort, principal
subterm of an unsorted term.

Example 3.3 Let $T$ $=\{f, g, h, A, B\}$ , $S=\{0,1\}$

and $\tau=\{f$ : 0 $\mathrm{x}\mathrm{O}arrow 1,$ $g:1arrow 0$ , $h$ :Ox 1 $\mathrm{x}$ $1-$ $1$ , $A$ :
0, $B$ : 0}.

We consider the unsorted term $f(g(A),$ $h$

$(x,B,B))$ .. top(f(g(A), $h(x,B,B))$ ) $=1$ because of $\tau(f)=$

$0\mathrm{x}0arrow 1$ .. $f(g(A),$ $\mathrm{h}(\mathrm{x},\mathrm{B},\mathrm{B})]=C$ [ $A,$ $h$ (x, $B,$ $B)$] where
$C[, \ldots,]=f(g(\square ),\square )$ . The principal subterms
of $f(g(A),h(x,B, B))$ are $A$ and $h(x, B, B)$ .

4 Persistence of termination
for locally confluent overlay
TRSs

In this section we show the persistence of temina-
tion for locally confluent overlay TRSs. It is main
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theorem in this paper. First, we show the persis-
tence of local confluence and strong innermost nor-
malization. Next, we show the persistence of ter-
mination for locally confluent overlay TRSs. Fur-
thermore we give the example as application of our
main result.

Let $s_{1},\ldots,s_{n}$ and $t_{1}$ , $\ldots$ , $t_{n}$ be terms. We write
$\langle s_{1}, \ldots, s_{n}\rangle\propto\langle t_{1}, \ldots, t_{n}\rangle$ if and only if for any
$1\leq i,j\leq n$ , $s_{i}=s_{j}$ implies $t_{i}=t_{j}$ . Moreover,
we write $\langle s_{1}, \ldots, s_{n}\rangle\infty$ $\langle t_{1}, \ldots, t_{n}\rangle$ if and only
if $\langle s_{1}, \ldots, s_{n}\rangle\propto\langle t_{1}, \ldots, t_{n}\rangle$ and $\langle t_{1}, \ldots , t_{n}\rangle\propto$

$\langle s_{1}, \ldots, s_{n}\rangle$ .
The following theorem was proved by Gramlich

in [6].

Theorem 4.1 ([6]) Let $\mathcal{R}$ be a locally confluent
overlay $TRS$. Then, $\mathcal{R}$ is strongly innemost nor-
malizing if and only if $\mathcal{R}$ is terminating.

Lemma 4.2 Let $\mathcal{R}^{\tau}$ be a locally confluent overlay
STRS. Then, $\mathcal{R}^{\tau}$ is strongly innemost normalizing
if and only if $\mathcal{R}^{\tau}$ is teminating.

Proof. For any well-sorted terms $s$ , $t\in \mathcal{T}^{\tau}$ , $s\prec_{\mathcal{R}^{\tau}}t$

if and only if $s\prec_{\mathcal{R}}t$ . By theorem 4.1, $\mathcal{R}^{\tau}$ is strongly
innermost normalizing if and only if $\mathcal{R}^{\tau}$ is terminat-
ing. $\square$

The following lemma was proved by Huet in [7].

Lemma 4.3 ([7]) A $TRS$ is locally confluent if
and only if all its critical pairs are joinable.

The persistence of local confluence was conjec-
tured by Zantema [17]. However Zantema did not
give the proof of it. So, we give the proof of persis-
tence of local confluence.

Lemma 4.4 Local confluence is a persistent prop-
$e\hslash y$ of TRSs.

Proof. Let $\mathcal{R}$ be a TRS. We show that $\mathcal{R}^{\tau}$ is locally
confluent if and only if $\mathcal{R}$ is locally confluent.. (if)-part: For well-sorted terms $s$ , $t\in \mathcal{T}^{\tau}$ ,

$sarrow_{\mathcal{R}^{\tau}}t$ if and only if $sarrow \mathcal{R}$ t. Hence, every
$\mathrm{w}\mathrm{e}\mathrm{U}$-sorted term is locally confluent.. (only if)-part: Suppose $\mathcal{R}^{\tau}$ is locally confluent.
Hence every well-sorted tem is locally conflu-
ent. The set of critical pairs of $\prime \mathcal{R}$ consists of
the critical pairs of $\mathcal{R}^{\tau}$ , since for any rewrite
rule $larrow r$ $\in \mathcal{R}$ , $l$ and $r$ are well-sorted under
$\tau$ with same sort. According to the lemma 4.3
these pairs are joinable. Another application
$\mathrm{o}\mathrm{f}.\mathrm{t}\mathrm{h}\mathrm{e}\mathcal{R}$

lemma 4.3 yields the local confluenc$\mathrm{e}$

$\mathrm{o}\mathrm{f}\square$

Next, We give the proof of persistence of strong
innermost normalization.

Lemma 4.5 Strong innermost nomalization is $a$

persistent property of TRSs.

Proof. Let $\mathcal{R}$ be a $TRS$ . We show that $\mathcal{R}^{\tau}$ is
strongly innermost normalizing if and only if $\mathcal{R}$ is
strongly innermost normalizing.. (if)-part: For well-sorted terms $s$ , $t$ $\in$ $\mathcal{T}^{\tau}$ .

$sarrow R^{\tau}t$ if and only if $sarrow \mathcal{R}t$ . Hence, every
well-sorted term is strongly innermost normal-
izing.. (only if)-part: We will show by structural in-
duction on $t$ that every unsorted term $t$ is
strongly innermost normalizing with respect to
$\mathcal{R}$ . If $t$ is a variable then $t$ is strongly inner-
most normalizing. If $t$ is a constant then $t$

is strongly innermost normalizing by assump-
tion. If $t=f(t_{1}, \ldots, t_{n})$ then we have $t_{i}$

is strongly innermost normalizing for all $i=$
$1$ , $\ldots$ , $n$ by induction hypothesis. Now, if $t$

is irreducible with respect to $\mathcal{R}$ we are done.
Otherwise, we know by induction hypothesis
that for every $i\in\{1, \ldots, n\}$ every innermost
derivation of $t_{i}$ is eventually terminating. This
means that every innermost derivation start-
ing with $t$ is either terminating or has the form
$t$ $=$ $f(t_{1}, \ldots,t_{n})arrow_{i_{\mathcal{R}}^{*}}f(t_{1}’, \ldots, t_{n}’)arrow i_{R}^{\epsilon}\cdots$

where $t_{1}’$ , $\ldots$ , $t_{n}’$ are all irreducible with re-
$\mathrm{s}\mathrm{e}\mathrm{t}$ to $\mathcal{R}$ . In the letter case we can de-
note $f(t_{1}’, \ldots, t_{n}’)=C[s_{1}, \ldots, s_{m}]$ for some
context $C[$ , . .. , $]:\alpha_{1}\mathrm{x}\ldots$ $\mathrm{x}\alpha_{m}arrow\alpha$ . Choose
fresh variables $x_{i}\in \mathcal{V}^{\alpha}$ ’ for $i=1$ , $\ldots$ , $m$ such
that $\langle s_{1}, \ldots, s_{m}\rangle\infty$ $\langle x_{1}, \ldots, x_{m}\rangle$ . If we re-
place every principal subterm $s_{1}$ , $\ldots$ , $s_{m}$ of $t$

by fresh variable $x_{i}$ for $i=1$ , $\ldots$ , $m$ , then
$C[x_{1}, \ldots, x_{m}]$ is not strongly innermost nor-
malizing. Hence, $\mathcal{R}^{\tau}$ is not strongly

$\mathrm{i}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{o}\mathrm{s}\mathrm{t}\square$

normalizing.

We obtain the main theorem in this paper bom
theorem 4.1, lemma 4.2 ,lemma 4.4 and lemma 4.5.

Theorem 4.6 Temination is a persistent property
of locally confluent overlay TRSs.

Proof. Let $\mathcal{R}$ be a local confluent overlay $TRS$ .
We have to show that $\mathcal{R}^{\tau}$ is teminating if and only
if $\mathcal{R}$ is terminating. By theorem 4.1, $\mathcal{R}$ is strongly
innemost $\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{l}\dot{\mathrm{n}}$ing if and only if $\mathcal{R}$ is temi-
nating. By theorem 4.5, $\mathcal{R}^{\tau}$ is strongly imemost
normalizing if and only if $\mathcal{R}$ is strongly innermost
normalizing. Hence, $\mathcal{R}^{\tau}$ is strongly innemost nor-
malizing if and only if $\mathcal{R}$ is teminating. Since TRS
$\mathcal{R}$ is locffiy confluent overlay and lemma 4.4, STRS
$\mathcal{R}^{\tau}$ is locally confluent overlay. By lemma 4.2, $\mathcal{R}^{\tau}$

is strongly innermost normalizing if and only if $\mathcal{R}^{\tau}$

is terminating. Therefore, $\mathcal{R}^{\tau}$ is terminating if
$\mathrm{a}\mathrm{n}\mathrm{d}\square$

only if $\mathcal{R}$ is teminating.
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Since non-0verlapping is obviously persistent, we
obtain the following corollary form above theorem.

Corollary 4.7 Termination is a persistent prop-
$e\hslash y$ of non-Overlapping TRSs.

Example 4.8 We show that the following locally
confluent overlay TRS $\mathcal{R}$ is terminating using the-
orem 4.6. To show the termination of the follow-
ing TRS directly seems difficult from known results
(E.g. recursive path ordering [5]). Also, we can not
use the modularity results for composable systems
$[11, 12]$ and hierarchical combination and hierarchi-
cal combination with common subsystem $[10, 12]$ .

$\mathcal{R}=\{$

$g(x,d(z, B))arrow g(x, d(z, A))$ (r1)
$g(x,d(z, A))arrow x$ (r2)
$g(x,d(z, B))arrow x$ (r3)
$I(A,g(x, d(y, C)))$

$arrow I(B,g(x, d(y, C)))$ (r4)
$d(z, D)arrow e(z, z)$ (r5)

Zantema’s result [17] that termination is per-
sistent for TRSs without collapsing or duplicating
rules can not be applied, because the above TRS
contains both collapsing rules (r2) and (r3) and
duplicating rule (r5). However, we can show the
temination of the above TRS using our results in
this paper.

Let $S=\{0,1,2\}$ . We give the following sort at-
tachment $\tau$ .

$\tau=\{$

$g:1\mathrm{x}0arrow 1$

$I$ : 0 $\mathrm{x}1arrow 2$

$d:0\mathrm{x}0arrow 0$

$e:0\mathrm{x}0arrow 0$

$A:0$ , $B:0$ , $C:0$ , $D$ : 0

Any well-sorted term in $\mathcal{P}$ , $\mathcal{T}^{1}$ and $\mathcal{T}^{2}$ is term
nating, i.e. any well-sorted term in $7^{\tau}$ is terminat-
ing. We consider the following cases:. $t\in \mathcal{T}^{0}$ . Then (r5) is the only applicable rule.

A TRS $\{(r5)\}$ is terminating using recursive
path ordering. Hence, $t$ is terminating.. $t\in \mathcal{T}^{1}$ . Then (r1), (r2), (r3) and (r5) are
the only applicable rules. A TRS $\{(r1)_{7}(r2)$ ,
(r3), (r5) $\}$ is terminating using recursive path
ordering. Hence, $t$ is terminating.. $t\in \mathcal{T}^{2}$ . Then (r1), (r2), (r3), (r4) and (r5) are
the applicable rules. For any proper subterm 8
of $t$ , $t\varphi(s)=0$ or $t\varphi(s)=1.$ Since the above
two cases, $s$ is terminating. Since $t\varphi(t)=2,$

(r4) is the only applicable rule to root position
of tem $t$ . Hence, $t$ is terminating.

Then, STRS $\mathcal{R}^{\tau}$ is terminating. Since $\mathcal{R}^{r}$ is 10-
cffiy confluent overlay TRS and theorem 4.6, TRS
$\mathcal{R}$ is terminating.

Furthermore we obtain the persistence of com-
pleteness for locally confluent overlay TRSs.

The following theorem was given by Aoto and
Toyama [1].

Theorem 4.9 ([1]) Confluence is a persistent
property of TRSs.

Since a complete TRS is confluent and terminat-
ing, we obtain the following corollary from theorem
4.6 and theorem 4.9.

Corollary 4.10 Completeness is a persistent prop-
$eNy$ of locally confluent overlay TRSs.

5 Persistence of termina-
tion for right-linear overlay
TRSs

In this section we show the persistence of termina-
tion for right-linear overlay TRSs. It is main theO-
rem in this paper.

The following theorem was proved by Sakai in
[14].

Theorem 5.1 ([14]) Let $\mathcal{R}$ be a right-linear ouer-
lay $TRS$. Then, $\mathcal{R}$ is strongly innermost nomaliz-
ing if and only if $\mathcal{R}$ is teminating.

Lemma 5.2 Let $\mathcal{R}^{\tau}$ be a right-linear overlay
STRS. Then, $\mathcal{R}^{\tau}$ is strongly innemost nomaliz-
ing if and only if $\mathcal{R}^{\tau}$ is teminating.

Proof. For any well-sorted terms $s$ , $t\in \mathcal{T}^{\tau}$ , $s\prec_{R^{r}}t$

if and only if $s\prec_{\mathcal{R}}t$ . By theorem 5.1, $\mathcal{R}^{\tau}$ is strongly
$\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{n}.\mathrm{e}$

rmost normalizing if a $\mathrm{d}$ only if $\mathcal{R}^{\tau}$ is
$\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}-\square$

We obtain the main theorem in this paper from
lemma 4.5, theorem 5.1 and lemma 5.2.

Theorem 5.3 Termination is a persistent property
of right-linear overlay TRSs.

Proof. Let $\mathcal{R}$ be a right-linear overlay $TRS$ . We
have to show that $\mathcal{R}^{\tau}$ is terminating if and only if
$\mathcal{R}$ is terminating. By theorem 5.1, $\mathcal{R}$ is strongly in-
nermost normalizing ifmd only if $\mathcal{R}$ is terminating.
By lemma 4.5, $\mathcal{R}^{\tau}$ is strongly innermost normaliz-
ing if and only if $\mathcal{R}$ is strongly innermost nomal-
izing. Hence, $\mathcal{R}^{\tau}$ is strongly innemost nomalizing
if and only if $\mathcal{R}$ is terminating. By lemma 5.2, $\mathcal{R}^{\tau}$

is strongly innemost normalizing if and only if $\mathcal{R}^{\tau}$

is terminating. Therefore, $\mathcal{R}^{\tau}$ is teminating if
$\mathrm{a}\mathrm{n}\mathrm{d}\square$

only if $\mathcal{R}$ is terminating.
Ehrthermore, we obtain the persistence of com-

pleteness for right-linear overlay TRSs.
Since a complete TRS is confluent and terminat-

ing, we obtain the following corollary ffom thex
rem 4.9 and theorem 5.3
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fJorollary 5.4 Completeness is a persistent prop-
erty of right-linear overlay TRSs.

6 Modularity

In this section, we show the modularity of termi-
nation for right-linear overlay TRSs. Persistence is
closely to the notion of modularity [12].

$(F_{1}, \mathcal{R}_{1})$ and $(F_{2}, \mathcal{R}_{2})$ are disjoint if they do not
share function symbols, that is, $F_{1}\cap F_{2}=\emptyset$ . A
property $P$ is modular for disjoint TRSs if, for any
disjoint TRSs $(F_{1}, \mathcal{R}_{1})$ and $(F_{2}, \mathcal{R}_{2})$ that have the
property $P$ , their union $(F_{1}\cup F_{2}, \mathcal{R}_{1}\cup \mathcal{R}_{2})$ also has
the property $P$ .

The following theorem was showed by Gramlich
[6].

Theorem 6.1 ([6]) Strongly innemost nomaliz-
ing $\dot{/}s$ a modular property of TRSs.

We obtain the modularity of termination for
right-linear overlay TRSs.

Theorem 6.2 Temination is a modular property
of right-linear overlay TRSs.

Proof. Let $\mathcal{R}1$ , $\mathcal{R}_{2}$ be disjoint, right-linear and over-
lay TRSs. Hence we have $(05 \Lambda RL\Lambda \mathrm{S}\mathrm{N})(\mathrm{U}\mathrm{i})$

and $(OS\Lambda RL\Lambda SN)(\mathcal{R}_{2})$ implying $(OS\wedge RL\Lambda$

$SIN)(\mathcal{R}_{1})$ and $(OS\Lambda RL\Lambda SIN)(\mathcal{R}_{2})$ by the0-
rem 5.1. Since both OS and RL are obviously mod-
ular, and SIN, too, by theorem 6.1 we conclude
$(OS\Lambda RL\Lambda SIN)(\mathcal{R}_{1}\cup \mathcal{R}_{2})$ . By applying the0-
rem 5.1 we finally obtain $(OS\Lambda RL\Lambda SN)(\mathcal{R}_{1}\cup \mathcal{R}_{2})$

$\mathrm{a}\mathrm{s}\square$

desired. The other direction is straightforward.

Furthemore we obtain the modularity of com-
pleteness for right-linear overlay TRSs.

The following theorem was given by Toyama [16].

Theorem 6.3 ([16]) Confluence is a modular
property of TRSs.

Since a complete TRS is confluent and terminat-
ing, we obtain the following corollary from theorem
6.2 and theorem 6.3.

Corolhry 6.4 Completeness is a modular pmp-
$e\hslash y$ of right-linear overlay TRSs.

7 Conclusion
In this paper, we have discussed the persistence of
temination for overlay TRSs. We have given our
main results in the following.

First, we have shown the persistence of local con-
fluence and strong innermost normalization. Next,

we have shown the persistence of termination for 10-
cally confluent overlay TRSs and we have given the
example as application of our main result. Further-
more we have shown the persistence of termination
for right-linear overlay TRSs. Finally, we have ob-
tained the modularity of termination for right-linear
overlay TRSs.
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