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置換グラフ上における最小節点ランキング全域木問題を解く
アルゴリズム
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あらまし 最小節点ランキング全域木問題とは, 与えられたグラフ $G$ 上において, 節点ランキングが最小となる全域
木を求める問題てある. 本論文では, 置換グラフ上における最小節点ランキング全域木問題を解く $O(n^{3})$ 時間アルゴ

リズムを提案する.

An algorithm for solving the minimum vertex ranking spanning tree
problem on permutation graphs.
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Abstract The minimum vertex ranking spanning tree problem is to find aspanning tree of $G$ whose vertex ranking
is minimum. This paper proposes an $O(n^{3})$ time algorithm for solving the minimum vertex ranking spanning tree
problem on apermutation graph.

1. Introduction

Consider asimple connected undirected graph $G=(V, E)$ .
Avertex ranking of $G$ is labeling $r$ from the vertices of $G$

to the positive integers such that for each path between any
two vertices $u$ and $v$ , $u\neq v,$ with $r(\mathrm{u})=$ r(u), there exists at
least one vertex $w$ on the path with $\mathrm{r}(w)>r(u)=f$(v). The
value $r(v)$ of avertex $v$ is called the rank of vertex $v$ . Aver-
tex ranking $r$ of $G$ is minimum if the largest rank $k$ assigned
by $r$ is the smallest among all rankings of $G$ . Such rank $k$

is called the vertex ranking number of $G$, denoted by $\chi(G)$ .
The vertex ranking problem is to find aminimum ranking of
given graph $G$ . The vertex ranking problem has interesting
applications to e.g., communication network design, planning
efficient assembly of products in manufacturing systems [17],
and VLSI layout design [16].

As for the complexity, this problem is $\mathrm{N}\mathrm{P}$-complete even
when rest?夏河 ed to cobipartite graphs[11] and bipartite

graphs [2], and anumber of polynomial time algorithms for
this problem have been developed on several subclasses of
graphs. Much work has been done in finding the minimum
vertex ranking of atree; alinear time algorithm for trees is
proposed in [14]. The problem is trivial on split graphs and
is solvable in linear time on cographs [15]. Concerning to

interval $\mathrm{g}$ aphs, Deogun et al has given an $O(n^{3})$ time also
rithm recently [4], which outperforms the previously known
$O(n^{4})$ time algorithm [1] where $n$ is the number of vertices.
They also presented $O(n^{6})$ time algorithms on permutation

graphs and on trapezoid graphs, respectively, and showed
that apolynomial time algorithm on $d$-trapezoid graphs ex-
ists [4]. Moreover, apolynomial time algorithm on graphs

with treewidth at most $k$ $w$ as developed [3].

The problem described above is the ranking with respect

to vertices, while aranking with respect to edges is simi-
laxly defined as follows. An edge ranking of $G$ is labeling
$r_{e}$ bom the edges of $G$ to the positive integers such that for
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each path between any two edges $e_{u}$ and $e_{v}$ , $e_{u}\neq e_{v}$ , with
$r(e_{u})=r(e_{v})$ , there exists at least one edge $e_{w}$ on the path

with $f(e_{w})>r(e_{u})=$ $\mathrm{r}\{e\mathrm{v}$ ). The due $r(e_{v})$ of an edge $e_{v}$

is called the rank of edge $e_{v}$ . An edge ranking of $G$ is min-
imum if the largest rank $k$ assigned is the smallest mong
all rankings of $G$ . Such rank $k$ is called the edge ranking
number of $G$ , denoted by $\chi_{\mathrm{e}}(G)$ . The edge ranking problem

is to find a minimum edge ranking of given graph $G$ . Before

the proof of this problem to be $\mathrm{N}\mathrm{P}$-complete was given, an
$O(n^{3})$ time algorithm for trees was known [17]. By now, $\mathrm{a}$

linear time algorithm for trees is shown in [7]. Recently, it

hae finally been shown that this problem on general graphs
is $\mathrm{N}\mathrm{P}$-complete [6].

Makino et al. introduced a minimum edge ranking span-

ning tree problem which is related to the minimum edge
rankin$\mathrm{g}$ problem but i8 essentially different [9]. The mini-
mun edge ranking spanning tree problem is to find a span-

ning tree of $G$ whose edge ranking is minimum. They proved

that this problem i8 $\mathrm{N}\mathrm{P}$-complete and presented an approx-
imation algorithm for this problem. This problem has inter-
aeting applications, e.g., scheduling the parallel assembly of

a multipat product fiom its components and the relational
database [9].

In this paper, we consider the vertex version of this prob-
$\mathrm{l}\mathrm{e}\mathrm{m}$, i.e., the minimum vertex ranking spanning tree problm.

The minimum vertex ranking spanning tree problem is to
find a spanning tree of $G$ whose vertex ranking is $\mathrm{m}\ddot{\mathrm{m}}$ mum.
We recently proved that this problem is $\mathrm{N}\mathrm{P}$-complete [8] and

developed an $O(n^{3})$ time algorithm when an input gaph is

an interval graph [10]. We show that, in this paper, an $O(n^{S})$

time algorithm for the minimum vertex ranking spanning
tree exists when an input graph is a pemutation graph. It
is interesting that, for permutation graphs, the minimum ver-
tex ranking spanning tree problem is solved in $O(n^{3})$ time,

although the time complexity of known algorithm for the
$\min\cdot \mathrm{m}\mathrm{u}\mathrm{m}$ vertex ranking problem is $O(\mathrm{n}^{6})$ .

2. Permutation graph

Let $V=\{v_{1},v_{2}, \cdot-\cdot, v_{n}\}$ and $\pi$ $=[\pi[1],\pi[2],\cdots,\pi[n]]$ be
a nemutation on $V$ . We construct an undirected graph

$G(\pi)=(V, E)$ such that $\{v.\cdot, vj\}\in E$ iff $(|. -j)(\pi^{-1}[l]$ $-$

$\pi^{-1}\mathrm{b}1)$ $<0,$ where $\pi^{-1}[]$ denotes the position of vertex $v$ in
$\pi$ . An $\mathrm{u}\mathrm{n}\mathrm{d}\dot{\mathrm{u}}$ecled graph $G$ is a permutation graph if there

exists a $\pi$ such that $G$ is isomorphic to $G(\pi)[5]$ . Pnueli
et al. [12] describe an $O(n^{S})$ algorithm for testing if a given
undiraeted graph is a pemutation graph. This result was im-
proved to $O(n^{2})$ by Spinrad [13], whose algorithm produces

the corresponding permutation if the graph isapermutation

graph.
A permutation graph can also be visualized by its corre-

sponding permutation diagram. The permutation diagram
consists of two horizontal parallel channels, nmed the top

channel and the bottom channel, respectively. Put the index
1, 2, $\cdots$ , $n$ of vertices on the top channel, in the order ffom
left to right, and put the index of vertex in $\pi[1]$ , $\pi[2]$ , $\cdot$ .. , $\pi[n]$

on the bottom channel in the sme way. Finally, for each $i$ ,
draw a straight line joining the two $i’ \mathrm{s}$, one on the top channel
and the other on the bottom channel, respectively [5]. The
index number: of vertex $v.\cdot$ is sme as that of the correspond-
$\mathrm{i}\mathrm{n}\mathrm{g}$ line [:. Note that h.ne $l_{i}$ intersects line $l_{j}$ in the diaFm
iff $l.\cdot$ and $l_{\mathrm{j}}$ appear in the reversed order in $\pi$ . That is, lines
$l_{i}$ and $l_{j}$ intersect iff vert ex $v$: and $v\mathrm{j}$ of the corresponding
permutation graph are adjacent. The reader is encouraged
to draw the permutation diaFm for given $\pi$’s since they

are sometimes quite useful in visualizing the properties of

the original pemutation graphs.
Pemutation graph are a useful discrete mathemtical

structure for modeling practical problem [5]. Moreover, per-
nutation graphs construct an important class of peffect

graphs and many problem that are $\mathrm{N}\mathrm{P}$-conplete on arbi-
trary graphs are $8\mathrm{h}\mathrm{o}\mathrm{w}\mathrm{n}$ to admit polynomial time algorithms
on this class [5].

3. The basic idea of the algorithm

The basic idea of our algorithm is as follows: First find a
shortest path $P^{\cdot}$ of $G$ between a certain pair of vertices, then

construct a spanning tree with the minimum vertex ranking
by joining each vertex $v\in V-V(P^{\mathrm{r}})$ to a vertex of $P^{\cdot}$ using
an edge of $G$ , based on the fact, to be proven in this paper,
that, for pemutation graphs, $v\in V-V(P^{*})$ not included
in $P^{\cdot}$ is adjacent to some vertex on $P^{*}$ . For preparation, we
introduce a known result on the vertex ranking of paths.

[Lemma 1] (17) The ranking $\chi(P)$ of a path $P$ $=$

$X1$ , $X2$ , $\cdots$ , $x_{n}$ is $\lfloor.\log$ $n \int^{1)}+1.$ $.\square$

In the following, we $\mathrm{c}\mathrm{l}\mathrm{m}$ what kind of shortest path $P^{\cdot}$ is

selected and how each vertex in $V-V(P^{\mathrm{r}})$ should be joined
to some vertex on $P^{\cdot}$ in order to construct a minimum vertex
ranking spanning trae.

A shortest path to be selected in our algorithm is a shortest
path betwaen a vertex corresponding to the rightmost line on
the diagrm md a vertex corraeponding to the leftmost line
on the diagrm. Nmely, denoting the vertex corresponding

(1) : Throughout this paper, $\log$ denoted $\log$ .
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to aline whose position is 1 and $n$ on the top (resp. bottom)

channel by $v_{1}^{t}$ (resp. $v_{1}^{b}$ ) and $v_{n}^{t}$ (resp. $v_{n}^{b}$ ), respectively, we
select a path whose length is shortest mong four shortest
paths ffon $v_{1}^{t}$ to $v_{\iota\prime}^{e}$, ffion $v_{1}^{t}$ to $v_{\nu\iota\prime}^{b}$ from $v_{1}^{b}$ to $v_{n}^{t}$ and ffom
$v_{1}^{b}$ to $v_{n}^{\mathrm{b}}$ . If there are more than one shortest path of the

sme length, any shortest path can be selected. Note here

that the lengh of each edge is 1. Let $P^{\cdot}$ be the selected
shortest path. On a spanning tree $T$ of permutation graph
$G$ , as the length of a dimeter of $T$ is equal to or greater
than that of $P^{*}$ , for the minimum ranking $\chi(P^{\cdot})$ of $P^{*}$ on
$G$, $\chi(P^{*})\leqq\chi(T)$ .

Our algorithm first finds the shortest path $P^{\cdot}$ described
above and then constructs a spanning tree by joining each
vertex in $V-V(P^{\cdot})$ to a vertex on $P^{*}$ using an edge of $G$ .
Now, we show that, for permutation graph $G$ , mh vertex in
$V-V(P^{\cdot})$ is adjacent to some vertices on $P^{\cdot}$ .

[Lemma 2] Let a shortest path selected by the above pr0-

caes be $P^{*}=v_{1}$ , $v_{2}$ , $\ldots$ , $v\iota$ . For pemutation graphs $G=$

$(V, E)$ , each vertex in $V-V(P^{\cdot})$ is adjacent to some vertex
on $P$ in $G$ .
(Proof) We consider lines $l_{1}$ , $l_{2}$ , $\ldots$ , $l\iota$ corresponding to ver-
there $v_{1}$ , $V2$ , $\ldots$ , $v\iota$ , respectively. If a vertex $v$ is not adjacent
to my vertex on $t^{a-}$ , none or lmes $\iota_{1}$ , $\iota_{2}$ , $\ldots$ , $\iota\iota$ intersects rne
line $l_{v}$ corresponding to $v$ . Hence, $l_{v}$ is to the left of $l_{1}$ or is to
the right of $l\iota$ . However, by the definition of $P^{*}$ , ae $v_{1}$ (resp.
$\mathrm{v}_{\mathrm{i}})$ corresponds to the leftmost (resp. rightmost) line on the
diagrm, a line setting on the left (resp. right) position of
$\iota_{1}$ (resp. $l\iota$ ) but not mtersectmg $\iota_{1}$ (resp. $l\iota$ ) doae not exist.

Thus, $v\in V-V(P^{\cdot})$ is adjacent to a vertex on $P^{\mathrm{r}}$ . $\square$

We now consider how each vertex in $V-V(P^{\mathrm{r}})$ should be
joined to a vertex on $P^{u}$ in order to construct a minimum
vffiex ranking spanning tree. Let a vertex set $V-V(P^{\cdot})$ be
$V’$ . By lemma 2, each vertex $v^{l}\in V’$ $\mathrm{i}_{5}$ adjacent to a vertex
on $P^{\cdot}$ . Then, our algorithm finds a path $P^{\cdot}$ of $G$ and joins
each vertex in $V’$ to a vertex on $P^{\cdot}$ using an edge of $G$ .

By Lemma 2, the relation of connections between $v’\in V’$

and vertices on $P^{\cdot}$ are classified into the following three
casae.
(1) $v’\in V’$ is adjacent to only one vertex on $P^{*}$ .
(2) $v’\in V’$ is adjacent to two consecutive vertices $vj$ , $vj+1$

on $P^{\cdot}$ or three consecutive vertices $\mathrm{V}\mathrm{j}$ , $vj+1$ , $vj+2$ on $P^{\mathrm{r}}$ .
(3) $v^{l}\in V’$ is not adjacent to consecutive vertices on $P^{\cdot}$

but adjacent to two vertices $vj$ , $v\mathrm{j}+2$ having one skip on $P^{\mathrm{r}}$ .
Note: A8 $P^{*}$ is the shortest path, $v’\in V’$ is adjacent to nei-
ther more than three cons utive vertices on $P^{*}$ in the case
(2) nor two vertices which have more than one skip on $P^{*}$ in

the case (3).

Let $V_{1}’$ denote a subset of $V^{J}$ that contains vertices in $V^{r}$

each of which is adjacent to only one vertex on $P^{*}$ , let $V_{2}’$

denote a subset of $V’$ that contains vertices in $V’$ each of
which is adjacent to two or three consecutive vertices on $P^{\ell}$

and let $V_{3}’$ denote a subset of $V^{J}$ that contains vertices in $V^{r}$

each of which is adjacent to two verticaae $vj$ , $v\mathrm{j}+2$ having one
skip on $P^{*}$ .

We ffist consider $v\prime\prime\in V’$ adjacent to two or three con-
secutive vertices on $P^{\cdot}$ . As for $v\prime\prime\in V’$ adjacent to at least

two vertices on $P^{*}$ , we can select a vertex on $P^{*}$ to be joined

to $v^{J\prime}$ in order to construct a spanning tree. Then, let us
consider to whiA vertex of $P^{*}$ $v\prime\prime\in V’$ should be joined.

After ffiding the minimum vertex ranking of $P^{*}$ , for con-
secutive vertices $v.\cdot,v_{*+1}$. on $P^{\cdot}$ , either $r(v\dot{.})>r(v\dot{.}+1)$ or
$r(v\dot{.})<r(v.\cdot+1)$ holds by the dffinition of the vertex ranking.

As $v\prime\prime\in V_{2}’$ is adjacent to at least two consecutive vertices
on $P^{*}$ , $v’$ is adjacent to a vertex $v$ on $P^{\cdot}$ whose rank is at

least 2. Then, joining $v$

\prime\prime

to $v$ and assigning rank 1 to $v\prime\prime$ , we
can construct a spanning tree $T$ with $\chi(T)=\chi(P^{\sim})$ , without

changing the rank of vertices on $P^{*}$ .
Next, we consider $v’\in V’$ adjacent to only one vertex on

$P^{\cdot}$ and $v’\in V’$ which $\mathrm{i}_{\mathrm{B}}$ adjacent to two vertices having one
skip on $P^{\cdot}$ . $\ln$ this case, depending on the result of vffiex

ranking of $P^{*}$ , $v$

’
may be adjacent to a vertex $v$ on $P^{\cdot}$ with

rank 1. Then, when selecting the edge $(v,v)’$ in $\mathrm{o}\mathrm{r}\mathrm{d}\propto$ to

construct a spaming tree, we must $\mathrm{m}\mathrm{o}\Phi$

. the rank of $v$ for
SatiSmg the vertex ranking. Moreover, $G$ my not have $\mathrm{a}$

spanning tree $T$ such that $\chi(T)=\chi(P\mathrm{r})$ . Fortunately, for

pemutation graphs, the upper bound on $\chi(T)$ is determined
as shown in the following lemma.

[Lemma 3] For pemutation graph $G$ , the ranking $\chi(T)$ of

a spanning tree $T$ satisfies the following inequality: $\chi(T)\leq$

$\chi(P^{*})+1$ .
(Proof) By lemma 2, any vertex $v$ not included in $P^{*}$ is

adjacent to some vertex on $P^{*}$ . We assume that each vertex

on $P^{*}$ is given a rank su&that the ranh.ng of $P^{\cdot}$ is $\mathrm{n}\ddot{\mathrm{m}}-$

mum. For each vertex $v$ on $P^{\mathrm{e}}$ , the rank $r(v)+1$ is newly

assigned to $v$ , that is, $\mathrm{r}(v)$ \succ $r(v)+1.$ Ea&rank $r(v \prime)$ of
$v’\in V’$ is set to 1. Then, the ranking of a tree constructed
by $P^{*}$ and $v^{l}\in V^{l}$ satisfies the condition of vertex ranking.
Therefore, $\chi(T)\leqq\chi(P^{r})+1.$ $\square$

By lemm 3, the ranking of spanning tree $\chi(T)$ is either
$\chi(P^{\cdot})$ or $\chi(P^{*})+1$ . Therefore, our algorithm tries to con-
struct a spanning tree $T$ with rank $\chi(P^{\cdot})$ . As a result, if

we cm not construct a spanning tree $T$ with rank $\chi(P^{\cdot})$ , we
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construct a spanning tree $T$ with rank $\chi(P^{*})+1$ .

After assigning ranks to vertices on $P^{*}$ with a minimum
$\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}\mathrm{i}\cdot \mathrm{g}$, if the rank of a vertex $v\mathrm{j}$ on $P^{*}$ adjacent to $v^{l}\in V_{1}^{l}$

is 1, a spanning tree satisfying the ranking condition can
not be constmcted by joining $v$ to $vj$ by this assignment.
Similarly, if each rank of vertices Vj, $vj+2$ on $P^{\mathrm{r}}$ adjacent to
$v’\in$ $V$

’

is 1, a spanning tree satisfying the ranking condition
can not be constructed by joining $v$

’
to $v_{\acute{f}}$ or $vj+2\cdot\ln$ these

cases, we may get a spanning tree satisfying the ranking con-
dition either by changing the rank of $v\mathrm{j}$ (or $v\mathrm{j}+2$) to become

greater than 1 or by joining $v’$ to a vertex in $V^{r}$ . Then, our
algorithm classifies each vertex $v’\in V’$ $\cup V_{3}$ according to
the connection beev en $v$

’

a $\mathrm{d}$ vertices on $P^{*}$ and selects an
edge to join $v’$ .

For illustration, we now consider the minimum vertex
ranking of trees. A tree is divided into more $\mathrm{t}\mathrm{h}\mathrm{m}$ one common
ranks $T_{1}$ , $T_{2}$ , $\cdots,T_{\mathrm{t}}$ by rmoving a vertex $v$ other than a leaf.
A path ffom a vertex of $T,\cdot$ to a vertex of $T_{\mathrm{j}}$ $(: \neq \mathrm{j})$ obviously
go through $v$ . Then, by assigning the largest $\mathrm{r}\mathrm{m}\mathrm{k}$ $\max\{$

$\chi(T_{1})$ , $\chi(T_{2})$ , $\cdots$ , $\chi(T)\}+1$ to $v$ , the condition of vertex

ranking of the tree is satisfied. However, the resulting vertex
rmklng is not necessarily the minimum one. Based on this
observation, we develop an algorithm ae sketched below. We
assign the largest rank $\chi(P^{\cdot})$ ( $=$ [log $|P^{\cdot}|\rfloor+1$ ) to a vertex $v.\cdot$

on $P^{\cdot}(=v_{1}, \cdots,v\iota)$ . (Here $|P^{\cdot}$ $|$ denotes the number of vertex
on $P.$ ) Then, we pay attention to two subgraphs $G_{v_{j}}^{1}$ , $G_{v}^{2}$

: of
$G$ such that $G_{v}^{1}$

‘ is induced by path $v_{1},v_{2}$ , $\cdots,v_{\dot{|}-1}$ and ver-
ticae in $V’(=V-V(P^{*}))$ adjabout to $v_{1},v_{2}$ , $\cdots$ , $v_{\dot{|}-1}$ and $G_{v}^{2}$

:
is induced by path $v+1$ , $vj+2$ , $\cdots$ , $v\iota$

$\mathrm{m}\mathrm{d}$ vertices in $V’$ adja-
cent to $V.\cdot+1$ , $v\dot{.}+2$ , $\cdots$ , $v\iota$ , respectively. As will be described
in detail later, the case when $G_{v}^{1}$: and $G_{v_{\mathrm{i}}}^{2}$ share a common
vertex $v^{*}$ of $V^{r}$ needs to be treated sepmtely. Then, we find
a minimum vertex ranking spanning tree $T_{1}$ in $G_{v}^{1}.\cdot$ and $T_{2}$ in
$G_{v}^{2}.\cdot$ , respectively. If both of minimum vertex rankings of $T_{1}$

and $T_{2}$ are not greater than [$\log|P^{*}|\rfloor$ , a spanning tree with
ranking $\chi(P^{*})(=\lfloor\log|P^{\mathrm{r}}|\rfloor+1)$ can be constructed by join-
$\mathrm{i}\mathrm{n}\mathrm{g}T_{1}$ , $T_{2}$ via V.$\cdot$ . Even when a spanning tree with ranking

[$\log$ $|P^{\mathrm{t}}|\rfloor+1$ can not be constructed, by using some other
vertex on $P^{\cdot}$ instead of $v$ , a spanning tree with ranking

[$\log$ $|P^{\cdot}|\rfloor+1$ may be constructed. Hence, we che&whether
$\mathrm{e}\ovalbox{\tt\small REJECT}$ of $G_{v}^{1}.\cdot$ md $G_{v:}^{2}$ has a spanning tree with ranking at
most [$\log$ $|P^{4}|\rfloor$ for each $vj$ , $:=2,$ $\cdot$ .., $l$ $-1$ , with the largest
rank. For this purpose, we use the dynamic programming.
We check whether a subgraph induced by $k$ consecutive ver-
ticae $v\mathrm{j}$ , $\cdots$ , $vj+k$ on $P^{*}$ , $(j=1, \cdots,l, k=0, \cdots,l-j)$ , and

vertices in $V’$ adjacent to $v\mathrm{j}$ , $\cdots$ , $vj+k$ has a spanning tree
with ranking [$\log$ $|P_{v_{\mathrm{j}}v_{j\neq k}}^{\cdot}|\rfloor+1$ . (Note that $P_{v;}^{*},\dot{.}$ denotes

a subpath $vi$ , $\cdots$ , $vj$ on $P^{n}$ .) Therefore, we now consider a
spanning tree on a subgraph induced by consecutive verticae
$v\mathrm{j}$ , $\cdots$ , $vj+k$ on $P^{*}$ md vertices in $V’$ adjacent to $v_{J}$ , $\cdots$ ,
$v_{\mathrm{j}+k}$ .

Let define some terms needed to explain the algorithm in
the following. As for consecutive vertices vj $\cdots$ , $\mathrm{V}\mathrm{k}$ on $P^{*}$ , a
subgraph of $G$ induced by Vj, $\cdots$ , $vk$ and vertices in $V’$ adja-
cent to $v\mathrm{j}$ , $\cdots,v_{k}$ is called a subgraph regarding $vj$ , $\cdots$ , $v_{h}$

and denoted by $G[vj, vk]$ . For $G$ [vj, $vk$ ], if we can construct
a spanning tree such that each $\mathrm{r}\mathrm{m}\mathrm{k}$ of vertices in $G[vj,vk]$ is
at most $\lfloor \mathrm{l}\circ \mathrm{g}$ $|P_{v_{j^{y}k}}^{\cdot}$ $|\rfloor+1(=\chi(P_{v_{j^{v}k}}^{*}))$ , we say that $G[vj, vk]$

is minimum-rankable.
Note: For a subgraph $G[v_{\dot{1}}, v.\cdot]$ regarding one consecutive

sequence of vertices, as we cm always construct spanning
tree $T$ with ranking at most 2 by assigning rank 2 to $v.\cdot$

md rmk 1 to vertices adjabout to $v_{\dot{1}}$ . Then, we say that
each subgraph $G[v_{}, v.\cdot]$ regarding one consecutive vertices is

ninimum-ranhble.

Using these terms, what we are going to do in the dy-
namic programming is aae follows: Let subpaths of $P^{\cdot}$ ae-
lected in the first step be $P\mathrm{i}$ $=$ $v:$ , $\cdot$ .. , $vj-1$ and $P_{2}^{*}=$

$v_{\dot{f}}+1$ , $\cdots$ , $v_{k}$ , respectively. We check whether $G[v.\cdot,vj-1]$ ,
$G[vj+1, v_{k}]$ are minimum-rmhble or not. $1\mathrm{f}$ each of
$G[v.\cdot,vj-1]$ , $G1^{v}j+1,v_{k}]$ is minimum-rankable, the subgraph
$G[v.\cdot,v_{k}]$ regarding $v.\cdot$ , $\cdots$ , $v_{\mathrm{k}}$ is ninimum-ranhble by aaeign-
$\mathrm{i}\mathrm{n}\mathrm{g}[\log$ $|P_{v_{j}v_{k}}^{l}|\rfloor+1$ to $Vj$ . However, when $G$ [$v$ ,vj-i] md
$G[vj+1, v_{k}]$ share a common vertex, even if these are not
minimum-rankable, we need to check some conditions, to be
described later, because $G[v\dot{.},v_{h}]$ nay be minimum-rankable.
If either of $G$ [$v$ ,vj-i] or $G[v\mathrm{j}+1, v_{k}]$ is not minimum-ranhble
md do not share a common vertex, $G[v_{\mathrm{i}}, v_{k}]$ i6 not minimum
ranhble.

As mentioned above, for constructing a minimum vertex
ranking spaming tree, our algorithm ffit che&whether sub-
aeaphs $G[v.\cdot,v.\cdot+1]$ , for $|$

.
$=1,$ $\cdot$ .. , $l-1,$ regarding two consec-

utive vertices on $P^{*}$ is minimum-rankable, and then check
whether subgraphs $G[vj, v.\cdot\prec-2]$ , for $i=1,$ $\cdots$ , $l-2,$ regarding
three consecutive vertices on $P^{\cdot}$ is minimum-rankable. Con-
cerning subgraphs $G[v_{\dot{1}},v_{\dot{|}+k}]$ , $k\leqq 3$ , regarding more than
three consaeutive vertices on $P^{\cdot}$ , using known infomation
about subgraphs, we check whether $G[v.\cdot,v:+k]$ i8 $\mathrm{m}\ddot{\mathrm{m}}\mathrm{m}\mathrm{u}\mathrm{m}-$

ranbble by using the dynamic progrmning.

We then consider the way to check whether a subgraph re-
garding consecutive vertices is ninimum-ranhble. We clas
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$\mathrm{s}\mathrm{i}\Phi$ each vertex $v’\in V’$ $\cup V’$ according to the connection
between $v$

’

and vertices on $P^{*}$ and investigate whether each
case is minimum-rankable or not.

S. 1 Subgraph regarding two consecutive vertices
We consider whether a subgraph $G[vjvj+1]$ regarding two

consecutive vertices $v\mathrm{j}$ , $v\mathrm{j}+1$ on $P^{*}$ is minimum-rankable or
not. That 1\overline s, we exmine whether we can construct a span-
ning tree such that each rank of vertices in $G[v_{\acute{\mathrm{J}}},v\mathrm{j}+1]$ is at
most $\lfloor\log$ $|P_{v_{j}}^{\cdot}v\mathrm{j}+1$ IJ $+1$ $(=\chi(P_{v_{j}v_{\mathrm{j}+1}}^{*})=2)$ . We classify the

case by connection between $v’\in V_{1}^{J}\cup V^{r}$ and a vertex of $P^{\cdot}$ .
However, we do not consider, for brevity, the cases which cm
be treated by discussions similar to some other cases due to
symmetry. The proof of each case is omitted due to the space
limit.

Case 1: $v’\in V_{1}$ is adjacent to only one vertex on $P^{*}$

case 1-1: If each of $vj$ and $v\mathrm{j}+1$ is adjacent to a vertex in
$V_{1}’$ whose degree is 1, $G[v\mathrm{j},v\mathrm{j}+1]$ is not $\mathrm{m}\ddot{\mathrm{m}}\mathrm{m}\mathrm{u}\mathrm{m}$-ranhble.
However, if either of $v\mathrm{j}$ and $v\mathrm{j}+1$ is adjacent to a vertex in
$V_{1}’$ whose degree is 1, $G$ [vj, $v\mathrm{j}+1$ ] is minimum-ranhble.

case 1-1:. $vj$ is adjacent to $v’\mathrm{j}\in V’$ whose degree is at least
2, or $vj+1$ is adjacent to $v’\mathrm{j}+1\in V_{1}’$ whose degree is at least
2.

case 1-2-1: If $vj$ , $vj+1$ are adjacent to $v’j’ v’j+1\in V_{1}$ , re-
spectively, $\mathrm{m}\mathrm{d}$ $v’j$ and $v’\mathrm{j}+1$ are only adjacent to each other,
$G$[vj, $vj+1$ ] is not minimum-rankable.
case $\mathit{1}- B\cdot B.\cdot 1\mathrm{f}v\mathrm{j}$ , $v\mathrm{j}+1$ are adjacent to $v’\mathrm{j}$

’
$v’j+1\in V_{1}’$ , respec-

tively, and $v_{j}’$ and $v_{j+1}’$ are adjacent to a vertex $v’\in V’,$

$G$ [vj, $v\mathrm{j}+1$ ] is mininum-ranhble.
Case 1-B-S.$\cdot$

$1\mathrm{f}vj$ , $vj+1$ are adjacent to $v_{j}’,v_{j+1}’$ $\in V,$ respec-
tively, and $v_{j+1}’\mathrm{i}\epsilon$ adjacent to a vertex $v^{\mathrm{s}}\in V_{2}^{J}$ adjacent to
$v_{j+2}’$ , then $G[v\mathrm{j}, v\mathrm{j}+1]$ is minimum-rankable. (By symmetry,
the case where $v_{\mathrm{j}}’$ is adjacent to a vertex $v^{*}\in V_{2}$ adjacent
to $v_{\mathrm{j}-1}’$ , can be discussed in asimilar way.)

Case 2: $v\prime\prime\prime\in V^{\cdot}$ is adjacent to not consecutive vertices on
$P^{\cdot}$ but $\mathrm{t}\mathrm{m}$ vertices $vj$ , $v\mathrm{j}+2$ having one skip on $P^{*}$ .
case 2-1: $1\mathrm{f}v\prime\prime\prime\in V’$ is adjacent to only two vertices $vj$ and

$v\mathrm{j}+2$ , then $G[vj, vj+1]$ is minimum-rankable. (By symmetry,
the case where $v\prime\prime\prime\in V’$ is only adjacent to Vj-i and $v\mathrm{j}+1$ ,
cm be discussed in a similar way.)

Case $B- B1\mathrm{f}v\prime\prime\prime\in V’$ is adjacent to only two vertices $v\mathrm{j}+1$

md $v\mathrm{j}+3$ , then $G$[vj, $v\mathrm{j}+1$] i8 minimum-ranbble.
Case $S$: Both vertices in $V_{1}’$ and in $V_{S}$ exist in $G[v_{\dot{f}}, v\mathrm{j}+1]$ .
Cose 3-1: A vertex in $V_{1}’$ and a vertex in $V_{3}$ share a common
vertex on $P^{\cdot}$ .
Case 3- 1: $v\prime\prime\prime\in V^{l}$ is adjacent to $v\mathrm{j}$ and $vj+1$ on $P^{\cdot}$ and
either $vj$ or $vj+1$ is adjacent to verticae in $V_{1}’$ .

Case 3-1-2: If $v$

\prime\prime\prime

$\in V’$ is adjacent to $v\mathrm{j}+1$ and $vj+3$ on
$P^{\cdot}$ and $vj+1$ is adjacent to a vertex in $V_{1}^{J}$ , $G$ [vj, $v_{\mathrm{J}}+1$ ] is

minimum-ranhble.
Case 3-2: Vertices in $V_{1}’$ and these in $V_{3}^{l}$ do not share a com-
mon vertex: $v^{ll\prime}\in V’$ is adjacent to $v\mathrm{i}+1$ , $v\mathrm{j}+3$ on $P^{*}$ , the

degree of $v^{l\prime\prime}$ is 2 and a vertex in $V_{1}’$ with degree 1 is adjacent
to $v_{\mathrm{j}}$ .

When a vertex in $V_{1}’$ is adjacent to $vj$ , $v^{l\prime\prime}$ can not be joined
to $v\mathrm{j}+1$ for $G[v\mathrm{j},v\mathrm{j}+\iota]$ to be minimum-rankable. Then, in

this caee, whether $G[vj,vj+1]$ is mini.um-ranhble or not
depends on the rank of $vj+3$ in a subgraph $G[vj+s, *]$ regard-
ing $v\mathrm{j}+3$ , $vj+4$ , $\cdots\cdot 1\mathrm{f}$ the $\mathrm{r}\mathrm{m}\mathrm{k}$ of $v_{\dot{\mathit{3}}}+3$ is greater than 1,

we can join $v$ to $v_{\dot{f}}+s$ . Therefore, in this case, we decide
whether $G$ [vj, $vj+1$ ] is minimum-ranhble or not when con-
necting a spanning tree in $G[vj, v\mathrm{j}+1]$ and one in $G[vj+a, *]$

via $v_{j+2}$ .
$\ln$ the following, we call a vertex like $v^{JJ\prime}$ a suspension

vertex and if $G[v\mathrm{j},v\mathrm{j}+1]$ has a suspension vertex, we say
that $G[vj, vj+1]$ is not minimum-rankable by a suspension
vertex.

$. 2 Subgraph regarding three consecutive ver-
tices

We consider whether a subgraph $G[vj,$ $v\mathrm{j}+21$ regarding

three consecutive vertices $vj$ , $vj+1$ , $vj+2$ on $P^{*}$ is $\mathrm{m}\ddot{\mathrm{m}}\mathrm{m}$mum-
ranhble or not. We claaeiy the cases with respect to con-
nection between $v’\in V’$ $\cup V’$ and a vertex of $P^{*}$ . However,

we ellmlnate the cases $\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\dot{\mathrm{n}}$ can be treated in a manner $\sin-$

ilar to some other cases due to symmetry. The proof of each

case is omitted due to the space limit.

Case 4: $v^{l}\in V’$ is adjacent to only one vertex on $P^{*}$ .
Case 4-1: lf $v\mathrm{j}$ is $\mathrm{m}$ artiffiation (1-cut) vertex in $G\mathrm{m}\mathrm{d}$

$v_{\mathrm{j}}$

$\in$
$V^{l}$ adjacent to $v\mathrm{j}$ is not adjacent to a vertex adjacent

to Vj-i, then $G[vj,v\mathrm{j}+2]$ is not minimum-ranhble. Note
that $\mathrm{m}$ articulation vertex is a vertex of a connected graph

whose deletion $\mathrm{d}_{\dot{\mathfrak{B}}}$connects the graph. (By symmetry, the
case where $vj+2$ is $\mathrm{m}$ articulation vertex and $v’\mathrm{j}+2\in V_{1}^{r}$ ad-
jacent.to $vj+2$ is not adjacent to a vertex adjacent to Vj-i,
cm be discussed in a similar way.)

Case 4-2: If $v_{\dot{f}}’\in$
$V^{l}$ adjacent to $v\mathrm{j}$ i8 adjacent to $v_{j-1}’$ adja-

cent to $Vj-i$ , $G[vj,v_{\dot{f}}+2]$ i\S minimum-rankable. (By symne-
try, the case where $v_{\mathrm{j}+2}’\in V\mathrm{l}’$ adjacent to $vj+2$ i8 adjacent to
$v_{j+3}’$ adjacent to $vj+3$ , can be discussed in a $8\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{l}\mathrm{a}\mathrm{r}$ way.)

Case 4-3: $v\mathrm{j}$ and $vj+2$ are not articulation vertices: Whereas
$v_{j}\in$

$V_{1}^{r}$ is adjacent to $\mathrm{V}\mathrm{j}$ , if $vj\in V_{2}’\cup V’$ that is adjacent to

$vj-1$ and $vj+1$ exists, $G[v\mathrm{j},v\mathrm{j}+2]$ is mininum-ranhble. (As

for $v\mathrm{j}+2$ , we can discuss in a similar way.)
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Case 5: $v^{l\prime l}\in V_{3}^{l}$ is adjacent to not consecutive vertices on
$P^{\cdot}$ but adjacent to two vertices $vj$ , $vj+2$ having one skip on
$P^{*}$ .
Case 5-1: If $v\prime\prime$ $\in V_{3}’$ is adjacent to only two $v\mathrm{j}$ and $v\mathrm{j}+2$ on

$P^{\mathrm{r}}$ and $v\mathrm{j}$ and $v\mathrm{j}+2u\mathrm{e}$ articulation vertices, then $G[v\mathrm{j}, vj+2]$

is not ninimum-ranhble.
Case 5-1: If $v^{l}\in V/$ is adjacent to two vertices $vj$ , $v\mathrm{j}+2$ md
$v_{j+\S}’\in V$ is adjacent to $vj+3$ , then $G$[vj, $vj+2$ ] is minimum

ranhble.
Case 6-3: lf $v$

\prime\prime\prime

$\in V’$ is adjacent to both $v\mathrm{j}$ and $vj+2$ on
$P^{*}$ and $v^{*}\in V_{2}’\cup V_{3}’$ that is adjacent to both $vj+1$ and $vj+\theta$

exits, then $G[vj, v_{\dot{f}}+2]$ is ninimum-ranhble.
Case 5-4: If $v”’\in V^{l}$ is adjacent to two vertices $vj+1$ , $vj+3$

on $P^{\cdot}$ , then $G$ [vj, $v\mathrm{j}+2$] is minimum-rankable. (By syme-
$\mathrm{f}\mathrm{f}\mathrm{y}$, the caae where $v^{lll}\in V_{3}$ is adjacent to two vertices $Vj$ ,

$vj+1$ on $P^{*}$ , can be discussed in a sinilr way.)

Case 5-5: If $v^{l//}\in V_{3}$ i6 $\mathrm{g}_{\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}}$

. to only two verticaae $v\mathrm{j}+2$

md $vj+4$ on $P^{r}$ and $v\mathrm{j}+2\mathrm{m}\mathrm{d}$ $v_{\dot{f}}+4$ are articulation vertices,

then $G$ [vj, $vj+2$ ] is not minimum-rankable by a suspension

vertex. (By symmetry, the case where $v^{l\prime\prime}\in V^{l}$ is adjacent

to only two vertice8 $vj$ md $v_{\dot{g}-2}$ on $P^{\mathrm{s}}$ , and the fact that
$vj$ and v$\mathrm{j}$ -2 are articulation verticae can be discussed in $\mathrm{a}$

similar way.)

Case 5-6: If $v”\in V_{3}’$ is adjacent to $v\mathrm{j}+2$ , $v\mathrm{j}+4$ on $P^{\cdot}\mathrm{m}\mathrm{d}$ is
adjacent to $v_{\acute{j}+8}\in V^{l}$ adjacent to $v\mathrm{j}+3$ , then $G$[vj, $v\mathrm{j}+2$] is

ninimum-ranhble.
Case 5-7: If $v^{\prime\prime l}\in V_{8}’$ is adjacent to $vj+2$ , $vj+4$ on $P^{*}$ and
$v^{*}\in V_{2}’\cup V’$ that is adjacent to $v\mathrm{j}+1$ and $v_{\dot{f}}+\mathrm{a}$ exits, then
$G$ [vi, $v_{j+2}$ ] is minimum-ranhble.
Case $\theta$: Both vertices in $V_{1}^{l}$ and in $V_{3}’$ exists in $G$[vj, $vj+2$].

Case 6-1: If a vertex in $V_{\}$ is adjacent to two vertices $vj$ ,
$vj+2$ , $v_{\mathrm{j}}^{l}\in V’$ (resp. $v_{\acute{\mathrm{j}}+2}\in V_{1}^{l}$ ) is adjacent to $v\mathrm{j}$ (resp. $vj+2$ )
$\mathrm{m}\mathrm{d}$

$v_{\mathrm{j}}$ (resp. $v_{\mathrm{j}+2}$ ) is articulation vertices then $G[v_{\mathrm{j}}, v_{\mathrm{j}+2}]$

is not minimum-ranhble.
Case 6-2: A vertex $v”’\in V_{3}’$ is adjacent to two vertices $\mathrm{V}\mathrm{j}$ ,

$v\mathrm{j}+2$ , $v_{\acute{\dot{g}}\dagger 2}\in V_{1}’$ (resp. $v_{\mathrm{j}}^{l}\in V_{1}’$ ) is adjacent to $v\mathrm{j}+2$ (resp.
$v\mathrm{j})\mathrm{m}\mathrm{d}$ a vertex $v\acute{\mathrm{j}}+3\in V^{l}$ adjacent to $vj+\theta$ is adjacent to
$v’$ or $v_{\acute{j}+2}$ .
Case 6-2-1: $1\mathrm{f}v_{\acute{\mathrm{j}}+S}\in V’$ is adjacent to $v^{l\prime\prime}\in V’,$ then
$G$ [vj, $V\mathrm{j}+2$] is minimum-rankable,
Case $\mathit{6}-\ell- B:1\mathrm{f}v_{\mathrm{j}+S}’\in V^{l}\mathrm{i}\epsilon$ adjacent to $v\acute{j}+2\in V_{1}^{l}$ but not
adjacent to $v’$ , then $G[v\mathrm{j},vj+2]$ is not ninimum-ranhble.
Case $\mathit{5}- S$ A vertex $v”’\in V/$ is adjacent to two vertices $\mathrm{V}\mathrm{j}$ ,

$v_{\dot{f}}+2$ , $v\acute{\mathrm{j}}+2\in V’$ (resp. $v_{\acute{\mathrm{j}}}\in V_{1}$ ) is $\mathrm{a}\mathrm{d}\grave{\mathrm{J}}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}$ t\’O $vj+2$ (resp.
$vj)$ and a vertex $v$

. $\in V_{2}^{l}\cup V_{3}^{l}$ is adjacent to $vj+1$ and $V\mathrm{j}+3$ .
In this case, $G[vj,v\mathrm{j}+21$ is mininum-ranhble.
Case $\theta- \mathit{4}$:If a vertex $v^{ll\prime}\in V’$ is adjacent to two vertices

$v_{j+2}$ , $v_{\mathrm{j}+4}$ and $\mathrm{v}_{\mathrm{j}}+2\in$ Vi’ adjacent to $V\mathrm{j}+2$ is adjacent to $v$

\prime\prime\prime

then $G[vj, vj+2]$ is not minimum-ranhble.
Case 6-5: lf a vertex $v’\in V’$ is adjacent to two vertices
$vj+2$ , $vj+4$ , $v_{j+2}^{l}\in V_{1}^{l}$ adjacent to $vj+2$ is adjacent $v^{r\prime\prime}$ and
$v’$ is adjacent to $v_{j+S}^{l}\in V’$ adjacent to $v\mathrm{j}+3$ , then $G[vj, vj+2]$

is minimum-ranhble.
Case $\theta$-6: $1\mathrm{f}$ a vertex $v’\in V/$ is adjacent to two vertices

$v\mathrm{j}+2$ , $vj+4$ , $v_{\mathrm{j}}+2\in V^{l}$ adjacent to $vj+2$ is adjacent $v$

\prime\prime\prime

and

a vertex $v^{*}\in V_{2}^{l}\cup V’$ is adjacent to $vj+1$ and $vj+s$ . $\ln$ this

case, $G$ [vj, $vj+2$ ] is minimum-rankable.

4. An algorithm for solving the minimum
vertex ranking spanning tree problem

Following the above eplmations given in sections 3.1 and
3.2, we can check whether spanning trees with rank 2 cm be
constructed in subgaphs regarding two consecutive vertices
and subgraphs regarding three consecutive vertices, respec-
tively.

Using the dynamic pro ramming, we then check whether
spanning $\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{e}$ with rank $\chi$ ($P_{v_{j}}^{\mathrm{r}}$vj+s) $(=\lfloor\log$ $|P_{v_{j^{v}j+8}}^{*}|\rfloor+1=$

$3)$ can be constructed in subgraphs $\mathrm{r}\mathrm{e}\mathrm{g}\mathrm{a}\mathrm{r}\mathrm{d}\mathrm{i}\cdot \mathrm{g}$ four con8ecu-

five vertices $v\mathrm{j}$ , $\cdots$ , $Vj+S$ on $P^{\cdot}$ and spanning trees with rank
$\chi(P_{v_{j^{\mathrm{w}}j+4}}^{\cdot})$($=$ \lfloor log $|P_{v_{j^{v}j+4}}^{*}|\rfloor+1$ $=3$) cm be constructed
in subgraphs regarding flve consecutive vertices and $8\mathrm{O}$ on.
Nmely, for exmple, lf each of $G[v.\cdot, v.\cdot]$ , $G[v_{i+}2,v.\cdot+3]$ is
minimum-ranhble, the subgraph $G1^{v.,v\prime}..+\mathrm{s}$ ] regarding four
consecutive vertices $v_{\dot{1}}$ , $\cdots,v.\cdot+\mathrm{s}$ is minimum-rankable by as-
signing rank $\lfloor\log$ $|Pv..\cdot v:+3|\rfloor+1(=3)$ to $v.\cdot+1$ or if each of
$G[v_{*}.,v_{\dot{|}+1}]$ , $G[v+3,v.\cdot+\epsilon]$ is nininum-ranhble, the subgraph
$G\mathrm{I}^{v\dot{.},v}\cdot\cdot+s]$ is ninimum-ranhble by assigning rank 3 to $v.\cdot+2$ .
Thus, if a pair of $G$ [$v$ , vj-l] and $G[vj+1,v_{k}]$ which are
$\mathrm{m}\ddot{\mathrm{m}}\mathrm{m}\mathrm{u}\mathrm{m}$-ranhble exists, $G[v\dot{.},v_{k}]\mathrm{i}\epsilon$ ninimum-ranhble, as
otherwise, $G[v.\cdot,v_{k}]$ is not $\mathrm{m}\mathrm{i}$

. um-rankable.
Our algorithm is described as follows. $\mathrm{h}$ the algorithm,

we use an array $R[v.\cdot,v\mathrm{j}]$ , for $i$ , $j=1,\cdots,l$ . $1\mathrm{f}$ $G[vj,vj]$ is
ninimum-ranhble, $‘ \mathrm{O}\mathrm{K}$

’
$\mathrm{i}\epsilon$ assigned to $R[v:, v\mathrm{j}]$ .

Procedure
$b_{\mathfrak{B}^{\dot{1}}}n$

Step 1. Find a path $P^{\cdot}$ ($=v_{1}$ , va, $\ldots$ , $\mathrm{v}_{\mathrm{i}}$) whose length is
shortest mong four shortest paths $\mathrm{b}\mathrm{m}$ $v_{1}^{t}$ to $v_{\mathfrak{n}}^{t}$ ,

$\mathrm{f}$ or $v_{1}^{t}$ to $v_{\hslash}^{b}$ , $\mathrm{f}$ or $v_{1}^{b}$ to $v_{n}^{t}$ md ffon $v_{1}^{b}$ to $v_{n}^{b}$ .
Step 2. For $V-V(P^{\mathrm{r}})$ , find vertex sets $V_{1}^{r}$ , $V_{2}^{r}$ and $V_{\theta}$ .
Step 3. If every vertex in $V-V(P^{\cdot})$ $i\epsilon$ in $V_{2}’$ , a spanning

tree with $\chi(T)=$ \lfloor 10g $|P^{\mathrm{r}}|\rfloor+1$ can be constructed.
Stop
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Step 4. For $ij=1$ to $l$ , $R[v_{i}, vj]$ {- ‘null’
For $k=1$ to $l$ , $R[Vhiv_{k}]\vdash‘ \mathrm{O}\mathrm{K}’$ .

Step 5. For subgraph $G[v_{\mathrm{j},j+1}v]$ regarding two consecu-
tive vertices $Vj$ , $Vj+1$ , $j=1,$ $\cdots$ , $l-$ $1$ , on $P^{*},$

check whether $G\lfloor v\mathrm{j}$ , $v_{\dot{J}}+1\rfloor 1$\overline s $\mathrm{m}\overline{\mathrm{l}}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{u}\mathrm{n}$-ranhble.
$1\mathrm{f}G[v\mathrm{j}, v\mathrm{j}+1]$ is minimum-rankable, $G[vj, v\mathrm{j}+1]arrow$

$‘ \mathrm{O}\mathrm{K}’$ .
Step 6. For subgraph $G[v\mathrm{j}, vj+2]$ regarding three consecu-

tive vertices $Vj$ , $vj+1$ , $vj+2$ , $j=1$ , $\cdots$ , 13, on $P^{*}$ ,
check whether $G[v\mathrm{j}, v\mathrm{j}+2]$ is minimum-ranhble.
I $G[v\mathrm{j}, vj+2]$ is ninimum-rmhble, $G[vj, v\mathrm{j}+2]$ {-

$‘ \mathrm{O}\mathrm{K}’$ .
Step 7. For the pairs of vertices on $P^{\cdot}$ whose distance is

greater than 3, sort $R[v_{\mathrm{i}}, vk]$ ’s in increasing order
according to value of the distance between $v$: and
$v_{k}$ .

Step 8. Compute $R[v_{\dot{1}}, v_{k}]$ ’s in the order of step 7 ae fol-
lows :

for each $i$ such that: $<i$ $<k$ do

begin
lf $G[vi, v\mathrm{j}-1]$ is not minimum-ranhble by a sus-
pension vertex $v^{2\prime\prime}$ , we check whether the rmk of
$v\mathrm{j}+1$ adjacent to $v$

\prime\prime\prime

in $G$ [$vj+1$ , v&] is 1. lf the rank

of $V\mathrm{j}+1$ is not 1, as a suspension vertex $v$ \prime\prime\prime cm be
joined to $v\mathrm{j}+1$ in $G[vj , v_{k}]$ for $G[v\dot{.}, vj-1]$ to be
minimum-rankable, then $R[v.\cdot,v\mathrm{j}-1]$ $arrow$ ‘OK’.
lf $G[v\mathrm{j}+1, v_{k}]$ i6 not ninimum-ranhble by a 8US-

pension vertex $\mathrm{v}"$ , we che&whether the rank of
Vj-l adjacent to $v^{ll\prime}$ in $G[v_{*}.,v\mathrm{j}-1]$ is 1. If the rank
of $\mathrm{V}\mathrm{j}-1$ is not 1, ae a suspension vertex $v^{l\prime\prime}$ can be
joined to $\mathrm{V}\mathrm{j}-1$ in $G$ [$v.\cdot$ , Vj-l] for $G[vj+1, v_{k}]$ to be
mininun-ranhble, then $R[v\mathrm{j}+1, v\iota]arrow$ ‘OK’.
If the value of $R[v\dot{.},v\mathrm{j}-1]$ is $‘ \mathrm{O}\mathrm{K}’$ , that of
$R[\mathrm{V}\mathrm{j}+1, v_{k}]$ is ‘ $\mathrm{O}\mathrm{K}$ ’ and $\max\{\lfloor\log|P_{v_{i}v_{j-1}}^{\cdot}|\rfloor+$

12 $\lfloor\log$ $|P_{v_{\mathrm{j}+1^{v}h}}^{*}|\rfloor+$ $1$} $\leqq$ $\lfloor\log$ $|P_{v.v_{\mathrm{k}}}^{*}.|\rfloor$ then,
$R[v_{\mathrm{i}}, v_{k}]arrow‘ \mathrm{O}\mathrm{K}’$.
end

Step 9. If the value of $R[1, l]$ is $\mathrm{t}\mathrm{O}\mathrm{K}’$, a spanning
tree with $\chi(T)=$ \lfloor 10g $|P^{\cdot}|\rfloor+1$ can be con-
structed. $\mathrm{O}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\dot{\mathrm{w}}\mathrm{s}\mathrm{e}$ , a spanning tree with
$\chi(T)=$ \lfloor log $|P^{\mathrm{r}}|\rfloor+1+1(=\chi(P^{*})+1)$ can
be constructed.

end.

[Theorm 1] Procedure $\mathrm{F}\mathrm{i}\mathrm{n}\mathrm{d}_{-}\mathrm{M}\mathrm{i}\mathrm{n}\dot{\mathrm{m}}$umBankingSpmning
hae solves the minimum vertex ranking spanning tree prob-
lem in $O(n^{\theta})$ time.

The proof is lengthy and is omitted due to the space limit.

5. Conclusion

In this paper, we proposed an $O(n^{3})$ time algorithm for

solving the minimum vertex ranking spanning tree problem,

when an input graph is a pemutation graph. It is interesting
that, for permutation graphs, the minimum vertex ranking
spanning tree problem is solved in $O(n^{3})$ time, although the

time complexity of known algorithm for the minimum vertex
ranh.ng problem is $O(n^{6})$ .
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