ooooooDoon 13750 2004 0 274-281

274

A Dynamic Reconfiguration Tolerant
Self-stabilizing Token Circulation Algorithm
in Ad-Hoc Networks

ILEBRE  AIIBR
Hirotsugu Kakugawa

Hiroshima University, Japan

h kakugawa@computer.org

Abstract

In this paper, we propose a self-stabilizing token cir-
culation algorithm in ad-hoc networks. We propose
a concept of dynamic reconfiguration tolerant self-
stabilization as an extension of self-stabilization for
discussing correctness of distributed algorithms that
allows dynamic change of network topology. Intu-
itively, starting from any initial configuration, a dy-
namic reconfiguration tolerant self-stabilizing algo-
rithm guarantees a property P, as long as the net-
work topology dynamically changes within a constant
C. (The definition is the same as the one of self-
stabilization, if we define C as “the network is sta-
ble”.)

The token visits processes in depth-first search
manner along a spanning tree. If a network config-
uration is stable, our algorithm obtains a minimum
spanning tree in at most 2n(n — 1) steps, and the token
visits processes along the minimum spanning tree.

The proposed algorithm guarantees that the token
visits each node at least once within every 6(n— 1)
steps, if the interval of edge disconnections is at least
6(n— 1) steps.

1 Introduction

Ad-hoc networks consist of mobile terminals with
wireless communication devices. There is no pre-
existing infrastructure for communication, and a ter-
minal is connectable to an ad-hoc network without
configuring it. This is a fascinating feature for end-
users, but is a seed of the following technical difficul-
ties, when to implement applications in ad-hoc net-
works: (1) since there are no access points that route
messages among mobile terminals, the mobile termi-
nals must route messages by themselves; (2) since
the network topology rapidly changes as “mobile”
terminals migrate, communication protocols must be
adaptive to dynamic changes of topology; (3) since a
terminal may join or even leave the ad-hoc network
while participating in an application job, communica-
tion protocols must be robust against communication
faults such as a network partition.

A self-stabilizing system is a non-masking fault
tolerant distributed system such that it tolerates any
finite number of transient faults [2, 6, 3]. There have
been proposed many self-stabilizing algorithms, but

JuMRE  INTHRE
Masafumi Yamashita
Kyushu University, Japan
mak@csce.kyushu-u.ac.jp

most of them assume that the network topology be
static. In fact, it is easy to observe that some con-
straint is necessary to introduce on the possible behav-
ior of a network for an algorithm to achieve a mean-
ingful task.

1.1 Our contribution

Whether or not a self-stabilizing algorithm for an ad-
hoc network is correct depends on how the network
dynamically changes. For a given constraint C on
dynamic change of the network, we hence say that a
system is dynamic reconfiguration tolerant (DRT for
short) self-stabilizing (under C), if the system works
as a correct self-stabilizing system as long as the net-
work change does not violate C.

Under some moderate network reconfiguration
constraint C, we propose a stateless DRT self-
stabilizing token circulation algorithm for ad-hoc net-
works. Unlike the algorithm by Chen and Welch [1],
our network change constraint C allows network to
change while the system is converging. Unlike algo-
rithms based on random walks, our algorithm deter-
ministically circulates a token along a spanning tree,
and hence the worst case waiting time for the token
is deterministically bounded by O(n). You may wish
to assign to each edge a transmission cost. If the net-
work remains static, the token is eventually circulated
along a minimum spanning tree. The circulation cost
is thus at most twice as much as the optimal cost (i.e.,
the solution to the traveling salesman problem) when
the cost satisfies the triangle inequality.

Another advantage of our algorithm is a short con-
vergence time. Unlike the random walk approach,
we do not make use of a collision-and-elimination
scheme to remove redundant tokens. Instead, an ini-
tiator issues a priority to a token, and the elimina-
tion is done by an initiator based on the priority. The
convergence time to eliminate unnecessary tokens is
deterministically bounded by O(n), and the spanning
tree along which the token is circulated converges to a
minimum spanning tree in O(n?)-time, if the network
remains static. There have been proposed some al-
gorithms for constructing the minimum spanning tree
[4, 5], but they are not applicable for our purpose of
designing a stateless protocol. :

Token circulation algorithms based on rando:
walk are in general space efficient. Our algorithm



uses O(nlogn) bits for a token, and a variable of con-
stant size at each initiator, but no memory is necessary
for a non-initiator, which is more space efficient than
the algorithm by Chen and Welch [1].

This paper is organized as follows: Section 2
presents a computation model of distributed system.
In Section 3, we propose a stateless self-stabilizing
token circulation algorithm in ad-hoc networks, and
then prove its correctness in Section 4. In Section 5,
we give concluding remarks.

2 The Model

2.1 Network Model

We consider a system consisting of n mobile ter-
minals with wireless communication devices. We
model such a system by a set of processes V =
{p1,p2, ..., pn} With unique identifiers. For each pro-
cess p;, let N; be the set of neighbor processes that p;
can directly communicate with. We assume that ev-
ery communication channel is bidirectional; p; € N;
if and only if p; € Nj. N;’s for all p; € V define a
network G = (V,E), where (p;, p;) € E if and only if
PjEN;.

To each edge (p;,p;) € E, we assign a positive
weight (or cost) denoted by w; j(=w;;). The weight
w;,; may also dynamically change. We can how-
ever assume that the weights w; ; are unique with-
out loss of generality, since otherwise, we can use
triples (w; j,p,q) as unique weights instead, where
p=min{p;,p;} and g = max{p;, p,}. The minimum
spanning tree 1s thus uniquely determined.

Since terminals may change their locations, Nj;
may dynamically change and so may G accordingly.
We however assume that the values of N; and w; ; for
all p; € N; are correctly maintained. A cruciaf as-
sumption is that they never change while a token is
visiting p;.

Our network is synchronous in the sense that 1) all
local clocks show the same time, and 2) there is an
upper bound & on the communication delay between
two neighboring processes, where 3 is available for
the processes. Without loss of generality, we assume
that 8 = 1 (unit time) in the rest of this paper.

Changes of network topology may occur in our
model. Suppose that the system is partitioned into
several sub-networks and this situation continues for-
ever. Then all what a process in a sub-network can
hope is to circulate a token among the processes in
the sub-network. A change of the network topology
may be viewed from the process as a join or a leave
of another process to or from the (sub-)network. We
thus consider V as the set of all processes that have
chances to participate in the system, and assume that
the size |V| = n is also available for the processes.

We discuss stateless algorithms in the sense that
non-initiators do not need to maintain local variables.
However that non-initiators need to temporarily use
local variables to process a token. We assume that
processes allocate memory to the local variables when
il token arrives, and release them when the token
eaves. :

275

2.2 Dynamic reconfiguration tolerant
self-stabilization

We now define dynamic reconfiguration tolerant self-
stabilizing systems.

Definition 1 A system is a dynamic reconfiguration
tolerant (DRT for short) self-stabilizing system with
respect to a specification P under a dynamic network
reconfiguration constraint C if the following condi-
tions are satisfied.

1. Convergence: For any initial configuration and
for any computation starting from it, the system
eventually satisfies P, if network configuration

. changes follow C.

2. Safety: For any initial configuration that satisfies
P and for any computation starting from it, the
system remains to satisfy P, as long as network
configuration changes follow C.

If we adopt a constraint “no transient error and’

network reconfiguration occur” for C, a DRT self-
stabilizing system with respect to P under C is ob-
viously a conventional self-stabilizing system with
respect to P. Let I,C,S and L be an initial condi-
tion, a dynamic network reconfiguration constraint,
a (safety) property and a (liveness) property, respec-
tively.

Definition 2 A system is said to be (I,C, S)-safe if S is
always true for any computation starting with an ini-
tial configuration that satisfies I, as long as network
configuration changes follow C.

Definition 3 A system is said to be (I,C,L)-live if L
becomes true eventually for any computation starting
with an initial configuration that satisfies I, provided
that network configuration changes follow C.

These two concepts will play central roles in the
correctness proofs of our algorithms. Some primitive
properties of (I,C, P)-safety and (I, C, P)-liveness are
summarized below.

e Ifaprotocol A is (I1,C, S)-safe and (I2,C, S)-safe,
then A is (I; VI,,C, §)-safe.

e Ifaprotocol A is (I,C, Sy )-safe and (I,C, $,)-safe,
then A is (1,C,S1 A Sz )-safe.

e If a protocol A is (I,C,S)-safe, then A is (/A
I',C,S)-safe for any I', and (I,CAC',S)-safe for
any C'

e If a protocol A is (I1,C, S))-safe and (S1,C,S2)-
safe, then A is (1, C, S2)-safe. '

e If a protocol A is (I1,C,L)-live and (I2,C,L)-live,
then A is (/1 VI,C,L)-live.

e Ifa protocol A is (I,C,L; )-live and (I,C,Ly)-live,
then A is (I,C,Ly ALy)-live.

e If a protocol A is (I,C,L)-live, then A is (I A
I',C,L)-live for any I, and (I,C AC’,L)-live for
any C'. .

e If a protocol A is (I;,C,Ly)-live and (L1,C,L3)-
live, then A is (I1,C, L3 )-live. -«



276

3 The Algorithm

This section presents a stateless and DRT self-
stabilizing token circulation algorithm that circulates
a token along the minimum spanning tree edges in an
ad-hoc network.

3.1 Overview

A process who is interested in token circulation be-
comes an initiator. Hence more than one process may
become an initiator. The algorithm consists of two
threads, one for an initiator and the other for all pro-
cesses, including initiators, who receive a token. Def-
inition of the token is shown in Figure 1.

These two threads are hence executed as two
threads in a single process of the initiator.

1. Initiator thread: This thread, whose code is given
in Figure 2, is executed by an initiator p;. Process
pi continues executing this thread as long as it is
interested in the token circulation.

2. Token thread: This thread is executed by any pro-
cess p; who receives a token. The code is shown
in Figure 4, with a macro defined in Figure 3. This
thread immediately terminates when the token is
sent to a neighbor process or is discarded.

In the descriptions of code, we use Java-like zry-
catch constructs to describe an exception for time-
out error and signal handling. Because only initiators
maintain local states, we can consider the pair of the
token and the code for token thread as an agent that
travels processes in a network. By p.m, we denote the
local variable m at an initiator process p.

‘We would like to give readers a rough idea to main-
tain the minimum spanning tree using a stateless algo-
rithm. Other features will be discussed later.

An initiator process generates a token and forward
it to its neighbor. As part of its information, the to-
ken carries a tree that spans the processes it has vis-
ited in terms of the set of tree edges. When the to-
ken is initialized by an initiator, the token carries an
empty edge set, i.e., empty tree. The token is sent
by a process p; in a depth-first graph search manner
to its neighbor p;. When p; receives the token for
the first time, it updates the tree edge set in the token
by adding an edge (p;,p;). Note that p; is selected
so that this addition does not create a cycle. After a
while, the token will carry a spanning tree edge set
T, which however may not be the minimum spanning
tree.

After a spanning tree is constructed, whenever the
token returns to its initiator, the initiator process im-
proves the weight of the spanning tree by replacing
an edge in the tree with a non-tree edge which im-
proves the weight of the tree. Such a non-tree edge
1s searched during the last traversal of the tree. We
improve the cost of a spanning tree by replacing one
edge per circulation, and the spanning tree eventually
becomes minimum.

One may think that more edges should be replaced
in a circulation. Unfortunately, such a scheme does
not guarantee that the token come back to the initiator
within a reasonable interval. That is why updating a
spanning tree during a circulation changes the route
the token visits. As a result, the initiator must choose
larger timeout value for regenerating a token to cope

with token loss. This makes recovery from token loss
slow. Although such a worst case is unlikely to hap-
pen in practice, we give theoretical guarantee in this

paper.

3.2 Token structure

Since our algorithm is stateless, a token carries all
data necessary for circulation, including the current
spanning tree. The data structure of a token is given
in Figure 1. Let ¢ be a token.

o t.tree: The set of ordered edges that represents a
rooted (ordered) tree, along which ¢ is circulated.

o t.nype € {probe,echo}: The direction of traver-
sal. Token ¢ is being sent toward a leaf when
t.type = probe, and is being echoed back to the
root when ¢.type = echo.

s t.wgt. The weights of edges in ¢.tree.

e t.age: The age of ¢, whose value is initially 0 and
is incremented by one, whenever ¢ is sent from
a process to another. The age is reset to 0 when
the token returns to its initiator. Thus a token
whose age goes beyond some threshold value can
be eliminated, since its initiator would have al-
ready left the network.

e t.ini: The identifier of initiator.

e t.id: The identifier of ¢ assigned by the initia-
tor selected from an integer set {0,1,...,M — 1},
where we assume that M is large enough so that
more than M tokens never exist in the network at

“atime.!

e t.alte: The edge e is a candidate edge to improve
the weight of t.tree such that 1) e has found in this
traversal, 2) e & t.tree, and 3) the unique cycle in
t.tree\J {e} contains an edge with a weight larger
than e’s. The value is reset to L. when the initiator
starts a new round of circulation.

e t.altw: The weight of t.alte.

3.3 Network parameters and functions

The codes for p; use the following network param-
eters and functions, Network parameters are as fol-
lows:

o N;: Set of current neighbors of p;.
e w; j : Current weight of edge (p;, pj).

Note that N; and w; j may autonomously change
their values during the execution. Let pj, px € N; be
two neighbors of p;. Then we say that p; is smaller
than py if w;, j < Wi in the following.

The functions are as follows:

o Procs(t): The process set of t.tree, i.e., the set of
processes that ¢ has visited. '
® Root(t): The root of t.tree.

e Parent(t,p;) : The parent of p; in t.tree. If p; is
the root then Parent(t, p;) = L.

'As will be clear from the algorithm given in section 3, this
assumption is removable and M can be set any value > 2, at the
expense of the convergence time; the algorithm guarantees that the
number of tokens is reduced to at least 1/Mth in every 7 ticks, once
the network becomes stable.



Message format of token : (type, rree, wgt,age, id, ini,alte, altw)

2171

— Directed edges of a spanning tree.
— Weights of the directed edges.

— Candidate for the minimum spanning tree edges.

type:  { probe, echo }

tree : set of pairs (process identifier, process identifier)

wgt set of triples (edge weight, process identifier, process identifier)
age: integer — Number of traversed edges in the current circulation.

id integer — Token identifier.

ini: process identifier — Identifier of the initiator.

alte: (process identifier, process identifier) or |

altw:  edge weight — Weighs of alte.

Figure 1: The data structure of a token.

o Children(t, p;): The set of children of p; in t.tree.

e FirstChild(t,p;): The smallest child of p; in
t.tree. If p; has no children in r.tree, then
FirstChild(t,p;) = L.

o NextChild(t,pi,p;): The smallest child among
those of p; in ¢.tree larger than p;.

o TreeNeighbors(t, p;): A set of neigh-
bor processes of p; in t.tree. By def-
inition, we have TreeNeighbors(t,p;) =
Parent(t, p;) U Children(t, p;).

o Alive(t): The predicate that returns true if and
only if z.age < a.. The age is the number of edges
that ¢ has traversed after visiting the initiator for
the last time.

The value of « is discussed later, depending on
the degree of dynamic change of network topol-

ogy.

3.4 Token behavior

We explain the behavior of the token as if the token
is a mobile agent that travels nodes in the network.
(Below, we use the term “node” and “process” inter-
changeably.) The code for the token is shown in Fig-
ure 4.

A token moves in nodes in a depth-first fashion.
It never gives up traveling nodes even if the network
topology dynamically changes. In such a case, a to-
ken looks for a new route based on the local view of
the topology. Exceptional events that a token gives
up traveling (i.e., token is discarded) are (1) the ex-
istence of an initiator process with higher priority, or
(2) expiration of lifetime of a token.

Initially a tree in the token is empty, and it grows
as it visits a new process. The token is typed probe
(resp. echo) if the token is forwarded from a parent
to a child (resp. from a child to a parent).

As described above, suppose that an initiator p*
creates a new token ¢ with z.fype = probe, and the
token is sent to the smaliest neighbor (line 8-11 of
Figure 2).

4 Correctness and Performance

First, we discuss general properties of the proposed
algorithm.

Theorem 1 The length of a token is O(nlogn) bits,
where n is the number of processes. O

Lemma 1 For any initial configuration in which no
token exist in the network, eventually at least one to-
ken is generated. a

Regardless any dynamic change of network con-
figuration, a token ¢ is discarded only when (1) it ar-
rives at an initiator process whose priority is higher
than that of ¢, or (2) its age reaches its lifetime. This
is true even if edge weights and network topology
dynamically changes. We formally state this fact in
terms of (I,C,S)-safety and (I,C,L)-liveness as fol-
lows.

e IJ : There is only one token ¢ in the network,
p*.m = t.id, and ¢ is generated by an initiator p*
whose priority is the highest among all initiators.

e CJ:

— A set of neighbor processes N; never change
when ¢ is visiting at p; for each p;

o S5 : Token ¢ remains to exist if its age is less than

the lifetime and timeout time of p* expires.

Note: The constraint C§ implies that N; never be-

comes empty since it includes p; which is the previ-
ous process ¢ visited.

Lemma 2 The proposed protocol is (I5,C3, S5)-safe.
O

4.1 Dynamic network without edge dis-
connections

First, we consider a case that there is only one initiator
in the network. Later, we discuss the case that there
are more than one initiator in the network.

We define IP,CP and L? as follows.

. I{) :
— There is an initiator p* in the network, whose
priority is the highest among all initiators,
— There is only one token ¢ in the network gen-
erated by p* such that p*.m =t.id,
- t.age+4(n— 1) < a holds, where n is the
number of processes.
o CP:
— A set of neighbor processes N; never change
when ¢ is visiting at p; for each p;.

— No new initiator process whose priority is
higher than that of p* appear,




278

e ey ey
Moy

PN AN

Variables of an initiator p; :
m: integer initially 0; — Token identifier.

Code for an initiator p; :
while {
try {
wait;
} catch (Signal) {
;  — Do nothing. Wait for next arrival of a token.
} catch (TimeoutException) {
m:= (m+1) mod M;
t := (probe,0,0,0,m, p;, L,o0)

send t to py;

— Assign new token identifier.

Let py be a process in Nj such that w; ; is the smallest;

— initiate new circulation by generating a new token.

— Wait for any token to arrive (with timeout). Token is handled by the token thread.
— A token visits this process. This event is nortified by the token thread.

Figure 2: Initiator thread: code for an initiator.

- Edge disconnections never happen,

— There is always a connected path in the net-
work from a process t locates to p*,

~ There may be any number of dynamic edge
additions and weight changes, and

— The number of connected processes in the net-
work never increases.

e LD : Token t eventually returns to p*.

Note: IP represents an initial configuration just af-
ter network topology is changed, such as edge dis-
connections. Thus, the initial value of ¢.free may not
be a correct tree. Intuitively, the (I?,CP,LP)-liveness
states that the token visits p* within 4(n — 1) edge
traversals, even if edge weights and edge additions
dynamically occur.

Lemma 3 The proposed algorithm is (I?,CP,LP)-
live, and The token returns to p* within 4(n— 1) edge
traversals. 0

Consider when ¢ arrives the initiator p*, as dis-
cussed in the previous lemma. In case the root of
t.tree is not p*, which implies that p* was deleted
from t.tree, p* resets t and starts the next round.

In case the root of t.tree is p*, the tree held in t.tree
may still contain processes and edges that do not exist.
This is why ¢ may have not visited all the processes
before it arrives at p*. '

Therefore, one more round is required so that ¢
can visit all the processes to hold a spanning tree in
t.tree. Below, we consider the behavior of the algo-
rithm when ¢ visits p*.

o 1D:
— There is an initiator p* in the network, whose
priority is the highest among all initiators,

~ There is only one token ¢ in the network gen-
erated by p* such that p*.m =t.id,

— Token ¢ locates at p*, and
- t.age=0.

) _le’ : The token ¢ returns to p* with a spanning tree
In t.tree, and each process is visited at least once.

Lemma 4 Assume that o >2(n—1) and © > 2(n—
1). Then, the proposed algorithm is (I ,CD ,LD)-live.
The token returns to p* within two rounés, each of
which requires at most 2(n — 1) edge traversals. O

Above lemma makes clear the reason why we do
not improve a spanning tree during a round. If we re-
place tree edges during a round, there is no guarantee
to return the initiator within 2(n — 1).

Even if the network topology is stable, edge
weights are likely to change. Next, we show a prop-
erty of the proposed algorithm under such change of
network configuration.

] I3D :
— There is an initiator p* in the network, whose
priority is the highest among all initiators,
~ There is only one token ¢ in the network gen-
erated by p* such that p*.m = t.id,

- Token t locates at p*,

- t.age=0. and

— t.tree contains a spanning tree,
¢ F=C(=C7)

e L% : The token ! returns to p* with a spanning tree
in t.tree and each process is visited at least once.

Lemma 5 Assume that o. > 2(n—1) and © > 2(n—
1). Then, the proposed algorithm is (I2,C2,L2)-live.
The token returns to p* within 2(n — 1). edge traver-
sals. g

Lemma 6 Assume thata.>2(n—1)and t>2(n—
1). Then the proposed algorithm is (I2 ,C2 12 ALY)-
live and (I3 ,C3, 12 ALY)-live. mi

We define a safety property S5 as follows.

e S2 : There exist only one token ¢ in the network
w3hich contains a spanning tree in ¢.zree.

We have the following theorem.



macro UpdateToken =

// IMPROVE A SPANNING TREE.
if (r.alte £ 1) {
t.tree :=t.tree U {t.alte};
Find an edge e in z.tree such that

t.tree :=t.tree — {e};
Delete from ¢.wgt the weight of edge ¢;
Add into t.wgr edge t.alte with weight t.altw;

if (Pi = t.in,i) {
m:=(m+1) mod M;
tid:=m, — Assign new token identifier.
t.age:=0; — Reset token age.

t := (probe,t.tree,t.wgt, t.age,t.id, t.ini, L =),

}
macro FindCandidate =

if (r.alte = 1)
Let T be t.tree;
else

if (weight of 7 < weight of T){
Let p; be a process that yields T”;
return py;

return L;

279

— There is an edge to improve the spanning tree.
— Temporarily t.tree has a cycle.

t.tree — {e} is a spanning tree and its weight is the smallest;

/ REFRESH THE TOKEN FOR THE NEXT ROUND OF TOKEN CIRCULATION.

} —Ifp; (= the root of t.tree) is not the initiator of t, t.age and t.id are unchanged.
— Assign new token identifier and reset the token age.

Let T be a spanning tree with the smallest weight among subgraphs of ¢.tree Ut.alte;
Let T’ be a spanning tree with the smallest weight among subgraphs of T U {(pi, p¢) : p¢ € N; — TreeNeighbors(t)};

Figure 3: Macro definition for token thread.

Theorem 2 Assume thata. >2(n—1)and v > 2(n—
1). Then, the proposed algorithm is dynamic reconfig-
uration tolerant self-stabilizing with respect to a spec-

ification S5 under a dynamic network reconfiguration
constraint CP. 0

Corollary 1 Assume thato. >2(n—1)andt>2(n—
1). Suppose that an initial configuration satisfies I%’
and network dynamically changes with a constraint
C2. Then, for each process p;, the interval that a to-
ken visits p; is at most 4én — 1?, if the timeout value ©
at initiators is at least 4(n — 1 )

Note that z.free may not become a minimum span-
ning tree if edge weights change dynamically.

4.2 Dynamic network with edge discon-
nections

In the previous subsection, we considered a case just
after edge disconnection happen and no more edge
disconnection happen thereafter. Now we consider a
case that edge disconnection dynamically occur.

We define C? and S% as follows. Note that C?
differs from CP (= CD = C?) only in the condition of
edge disconnections.

o C2:

— A set of neighbor processes N; never change
when 7 is visiting at p; for each p;.

-~ No new initiator process whose priority is
higher than that of p* appear,

~ Any number of edge disconnections may hap-
pen simultaneously, provided that the time in-
terval between such events is at least 6(n—1),

— There is always a connected path in the net-
work from a process ¢ locates to p*,

— There may be any number of dynamic edge
additions and weight changes, and

— The number of connected processes in the net-
work never increases.

o 52
~ Only one token ¢ exists (and it remains to ex-
ist).

Theorem 3 Assume that o. > 6(n—1) and t > 6(n—
1). Then, the proposed algorithm is dynamic reconfig-
uration tolerant self-stabilizing with respect to a spec-
ification S under a dynamic network reconfiguration
constraint C. The token visits each process with in-
terval at most 6(n—1). o

Next, we consider a case that edge disconnections
happen more frequently. We define CSD and Sf as fol-
lows.



280

When a token 1 arrives at p; from p; :

1: t:=receive;
2: t.age:=t.age+1; — Increment the age by one.
3 if (p; is an initiator) A ((r.ini > p;) V ((2.ini = p;) A (t.id #£ m))) { — Discard the token based on priority.
4 Discard ¢;
5: }elseif (—Alive(t)) — The token is too old to alive.
6: Discard ¢.
7: } else {
8 if (p; is an initiator)
9: signal; — Restart time-out timer of the initiator thread.
10: // EXTEND THE SPANING TREE IF pi IS NOT INCLUDED YET.
11: if (r.type = probe) A ((p;, pi) & t.tree){ - This is the first visit to p;.
12: t.tree .= t.treeU{(p;,pi)}; t.wgt:=twgtU{(pj,pi,wi(pj))}; — Extend the spanning tree.
13: t.alte = L; t.altw=oc0; — Reset the candidate for improving the spanning tree.
14: if (t.ini=p;) — The token visits an initiator p; which was disconnected from t.tree.
15: t:= (probe,0,0,m,p;, L, L, 1 ,00) — Resett and start new round.
16:
17: // CHECK IF NETWORK TOPOLOGY AND EDGE WEIGHTS ARE CHANGED.
18: for each p; € (Children(t,p;) —N;) — A child p; is disconnected from p;.
19: Delete a subtree rooted by py from t.tree, and update t.wgt accordingly;
20: if (Parent(t, p;) ¢ N;) — Parent process is disconnected from p;.
21: t.tree ;= a subtree of ¢.tree rooted by py, and update t.wgt accordingly;
22: for each p; € TreeNeighbors(t, pi) {
23: if (the weight of (pg, pi) in t.wgt is different from w;(py))
24: ) Update the weight of (pz, p;) in t.wgt to be w;(py);
25:
26: /I FIND A CANDIDATE EDGE TO IMPROVE THE SPANNING TREE.
27: if (N; — Procs(t) = 0) {
28: pe := FindCandidate, — py is in Ny — TreeNeighbors(t) or equals 1. (See Figure3.)
20: if (pg # L) { — Better candidate is found.
30: t.alte = (pi, pe); t.altw=wi(py);
31:
32:
33: // FIND A DESTINATION OF THE TOKEN.
34: if (N; — Procs(t) #0) { — There is a neighbor process not in the spanning tree.
35: t.type := probe; p; := a process such that w;(py) is the smallest among p; € N; — Procs(t);
36: } else if (p; is a leaf process of t.tree){
37: t.type := echo; py:= Parent(t,p;); — Sendt back to the parent (py = pj).
38: } else {
39: if (2.type = probe) { — The token is sent from the parent.
40: pi .= FirstChild(z, p;); — Forward the token to the first child.
41: }else { —The token is sent back from a child (t.type = echo).
42: Pi :=NextChild(t, p;,p;); — Forward the token to the next child.
43:
4: if (pr #£ L) { — There is next child to forward.
45: t.type :=probe; — Forward the token of probe type 1o the child.
46: } else { — No more next child to forward (p = L).
47: if (p; = Root(t)) {
48: UpdateToken, — The end of a round. Improve the spanning tree, and prepare for the next round. (See Figure3.)
49: pr = FirstChild(t,p;); — Forward token t to the first child.
50: } else
51: Px = Parent(t, p;); — Non-root sends the token back to its parent.
52:
53: }
54:
55: // FORWARD THE TOKEN,
56: send ¢ to pg;
57:

Figure 4: Token thread: code for a process whb receives a token.



° C? : the same as C%, except the time inter-
val between edge disconnection events is at least
4(n—1),and

o P =52

Theorem 4 Assume that 0.> 6(n—1)and t> 6(n—
1). Then, the proposed algorithm is dynamic reconfig-
uration tolerant self-stabilizing with respect to a spec-
ification S? under a dynamic network reconfiguration

constraint C2. o

Note that the value 6(n — 1) is the minimum inter-
val of edge disconnections so that the token visits each
process. There are many patterns for edge disconnec-
tions with interval less than 6(n — 1) that guarantees

the safety property S%.

Observation 1 Theorem 3 holds even if any number
of edge disconnections happen at any time provided
that each disconnected edge is not a tree edge.

4.3 Stable network

Next, we consider that the network is stable. In this
case, the token eventually computes a minimum span-
ning tree, and it travels processes along a minimum
spanning tree.

We define Iis' ,C‘f and Lf as follows. Because stable
network is a special case of dynamic network, we as-
sume that the liveness property L? holds in the initial
configuration.

o I:
— There is an initiator p* in the network, whose
priority is the highest among all initiators,

— There is only one token ¢ in the network gen-
erated by p* such that p*.m =t.id,

— Token ¢ locates at p*,
t.age =0, and
t.tree contains a spanning tree.

* CS .
1 .
— A set of neighbor processes N; never change at

each process and edge weights never change
(i.e., network is stable), and

— No new initiator process appear.

e L : Token? everitually obtains a minimum span-
ning tree in t.tree.

Theorem 5 The proposed algorithm is (I ,C3,L%)-
live, and L5 becomes true within 2(n— 1)? edge
traversals. O

Once a spanning tree is computed, the token travels
the same route in each round, as long as the network
is stable. Thus, we have the following corollary.

Corollary 2 Suppose that the network is stable and
a token holds a minimum spanning tree is computed.
Then the interval that a token visits a process is 2(n—

]

1).

281

4.4 Process join

Consider when a new process p; joins to the network.
The token ¢ visits one of neighbor process, say p;, of
Di, it moves to pj because p; is not in .free. Thus, new
process is eventually included in a spanning tree by
simply adding an edge (p;,p;). Because the number
of processes 1n a network increases by one, the token
requires addition two edge traversals to travel along a
spanning tree.

In case some processes may join to the network,
the value of o (lifetime of a token) and 7 (timeout
value) must be changed such that n is the upper bound
on the number of processes in the network.

5 Conclusion

In this paper, we proposed a concept of dynamic re-
configuration tolerant (DRT) self-stabilization as a
theoretical framework of distributed algorithm for dy-
namic ad-hoc networks. Then, we proposed a deter-
ministic and stateless DRT self-stabilizing token cir-
culation algorithm for dynamic ad-hoc networks. Our
algorithm computes a minimum spanning tree for less
communication complexity. By our algorithm, the
interval of the token visit for each process is O(n),
which is deterministically bounded. In addition, the
timeout value of initiator is also O(n) which implies
that the recovery from token loss is fast. In contrast,
token circulation by random walks, the interval of the
token visit is not deterministically bounded, and re-
covery from token loss is slow, O(r®).

We believe that our framework can be used for
distributed algorithms for dynamic ad-hoc networks.
Design and verification of algorithms under the
framework is left for future works.

References

(1] Yu Chen and Jennifer L. Welch. Self-stabilizing
mutual exclusion using tokens in mobile ad hoc
networks. In Proceedings of DIALM, 2002.

[2] E. W. Dijkstra. Self-stabilizing systems in spite of
distributed control. Communications of the ACM,
17(11):643-644, November 1974.

[31 S.Dolev. Self-stabilization. The MIT Press, 2000.

[4] R. G. Gallager, P. A. Humblet, and P. M. Spira. A
distributed algorithm for minimum-weight span-
ning trees. ACM Transactions on Program-
ming Languages and Systems, 5(1):66-77, Jan-
uary 1983.

[5] J. A. Garay, S. Kutten, and D. Peleg. A sub-
linear time distributed algorithm for minimum-
weight spanning trees. SIAM Journal on Com-
puting, 27(1):302-316, February 1998.

[6] F. C. Gaftner. Fundamentals of fault-tolerant
distributed computing in asynchronous environ-
ments. ACM Computing Surveys, 35:43-48,
1996.




