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The main conjectures of non-commutative
Iwasawa, theory

John Coates
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1 Introduction

The lecture reported on joint work with T. Fukaya, K. Kato, R. Sujatha,
and O. Venjakob [1] on the formulation of the main conjectures of non-
commutative Iwasawa theory. The general methods developed in [1] were
inspired by the Heidelberg Habilitation Thesis of Venjakob [2].

Let G be a compact p-adic Lie gorup. We assume throughout that G
has no element of order p, so that G has finite p-homological dimension. Let
A(G) denote the Iwasawa algebra of G. Let M be a finitely generated torsion
A(G)-module. How can we define a characteristic element for M, and relate
it to the Euler characteristic of M and its twists? In the classical case, when
G = Zg for some integer d > 1, such characteristic elements are defined via
the structure theory of such modules up to pseudo-isomorphism. In fact, an
analogue of the structure theorem is proven in [3] for all non-commutative
G which are p-valued. However, in the non-commutative theory this does
not seem to yield characteristic elements, both because reflexive ideals of
A(QG) are not, in general, principal, and because pseudo-null modules with
finite G-Euler characteristic do not, in general, have Euler characteristic
1[4]. The goal of [1] is to use localization techniques to find a way out of this
dilemma for an important class of p-adic Lie groups G and a class of finitely
generated torsion L(G)-modules which we optimistically hope includes all
modules which occur in arithmetic at ordinary primes.




2 Algebraic theory
From now on, we assume that G satisfies the following:

Hypothesis on G There is no element of order p in G, and G has a closed
normal subgroup H such that I’ = G/H is isomorphic to Z,.

For example, if G is the Galois group of a p-adic Lie extension of a number
field F' which contains the cyclotomic Z,-extension of F, then G satisfies the
second part of our hypotheses. We do not consider the category of all finitely
generated torsion A(G)-modules, but rather the full subcategory My (G)
consisting of all finitely generated A(G)-modules M such that M/M(p) is
finitely generated over A(H); here M(p) denotes the p-primary submodule
of M. In the special case when H = 1, MMy (G) is indeed the category of all
finitely generated torsion A(G)-modules. We define S to be the set of all f in
A(G) such that A(G)/A(G)f is a finitely generated A(H)-module, and put

S* = ngo p"S.
Theorem 2.1 The set S* is a multiplicatively closed left and right Ore set in
A(G), all of whose elements are non-zero divisors. A finitely generated A(G)-
module M is S*-torsion if and only if it belongs to the category My (G).

Thus S* is a canonical Ore set in A(G), and we write A(G)g+ for the
localization of A(G) at S*. If R is any ring with unit, we write K, R (m =
0,1) for the m-th K-group of R, and R* for the group of units of R.

Theorem 2.2 The natural map
AG)z. — K1 (A(G)s)
18 surjective.

Let Ko(9My(G)) denote the Grothendieck group of the category My (G).
We recall that A(G) has finite global dimension because G has no element of

order p.

Theorem 2.3 We have an ezact sequence of localization

K1 (A(G)) — Ki(A(G)s-) 25 Ko(Mu(G)) — 0.



If M € My (G), we write [M] for the class of M in Ko(Mg(G)). We then
define a characteristic element of M to be any element &) of Ki(A(G)s-)
such that

0c(ém) = [M].

It is shown in [1] that {ur has all the good properties we would expect
of characteristic elements. Most important amongst these for arithmetic
applications is its behaviour under twisting. Let

p:G— GL,(O)

be any continuous homomorphism, where O denotes the ring of integers of a
finite extension of Q,. Of course, p induces a ring homomorphism

p: MG) — Mn(0),

where M,,(O) denotes the ring of n X n matrices with entries in O. If f is any
element of A(G), we define f(p) to be the determinant of p(f). Although
it is far from obvious, it is shown in [1] that one can extend this notion to
define £,7(p) to be either co or a. If M is any module in 9tz (G), we can also
define
tw,(M) =M 28 o"

where G acts on the second factor via p, and on the whole tensor product via
the diagonal action. Again we have tw,(M) belongs to My (G). We define

X(G, tw,(M)) = [ ] #(H:(G, tw, (M),

120

saying that the Euler characteristic is finite if all the homology groups H;(G, tw,(M))
are finite. We write p for the contragredient representation of p, i.e. p(g) =
p(g~1)?, where the 't’ denotes the transpose matrix.

Theorem 2.4 Let M € My(G), and let £y denote a characteristic ele-
ment of M. For each continuous representation p : G — GLn(0) such that
x(G, twz(M)) is finite, we have {p(p) # 0,00 and

X(G, tws(M)) = [€m(G); ™

where m, denotes the degree over Q, of the quotient field of 0.




3 Connexion with L-values

We only briefly discuss the main conjecture when E is an elliptic curve defined
over Q, p > 5 is a prime of good ordinary reduction, F, = Q(Ep=), and G
is the Galois group of F,, over Q. Thus G has dimension 2 or 4 according as
F does or does not have complex multiplication. Let X (E/Fy) be the dual
of the Selmer group of E over Fy,. Taking H to be the subgroup of G which
fixes the cyclotomic Z,-extension of Q, the following conjecture (which can
be proven in some cases) is made in [1].

Conjecture 3.1 X(E/Fy) belongs to Mu(G).

Now let p be a variable Artin representation of G, i.e. a representation
which factors through a finite quotient of G. Let L(p, s) denote the complex
L-function of p, and L(E, p,s) the complex L-function of E twisted by p.
The L-functions L(E, p, s) appear to have many interesting properties, but
they appear to have been somewhat neglected by the experts on automor-
phic forms. The point s = 1 is critical for L(E, p, s), and we assume in what
follows the analytic continuation is known at s = 1. We fix a minimal Weier-
strass equation for E over Q, and let Q,(E) and Q_(F) denote generators of
the groups of real and purely imaginary periods of the Néron differential of
E. Let d*(p) (resp. d~(p)) denote the dimension of the subspace of the real-
ization of p which is fixed by complex multiplication (resp. on which complex
conjugation acts like -1). A special case of Deligne’s conjecture asserts that

L(E,p,1)
O (B) T O0_(B)F ®)

e Q.

Let p/» denote the p-part of the conductor of p. For each prime ¢, we
let P,(p, X) be the polynomial such that the Euler factor of L(p,s) at ¢ is
P,(p,q*)~1. Also, since F is ordinary at p, we have

1—a,X +pX?=(1-uX)(l - wX),

where u € Z and, as usual, p+ 1 — a, is the number of points over F, on the
reduction of E module p. Let R be the finite set consisting of p and all primes
g such that ord,(jg) < 0. We write Lg(E, p, s) for the complex L-function
obtained by suppressing in L(E, p, s) the Euler factors at the primes in R.
The following two conjectures are made in [1].



Conjecture 3.2 Assume thatp > 5 and E has good ordinary reduction at p.
Then there ezists Lg in K1(A(G)s+) such that, for all Artin representations
p of G, we have Lg(p) # oo, and

L(B,p,1) . BB

CE(p) = Q+(E)d+(P)Q_(E)d'(P) . Cp(p)u W’

where ey(p) denotes the local e-factor attached to p at p.

Conjecture 3.3 (The main conjecture) Assume that p > 5, E has good
ordinary reduction at p, and X (E/Fy,) belongs to My (G). Granted Conjec-
ture 2, the p-adic L-function Lg in K;(A(G)s+) is a characteristic element
of X(E/Fy)-

Of course, when E does not admit complex multiplication, very little
is known at present about Conjecture 3. However, when E = X;(11) and
p = 5, some remarkable numerical calculations of T. Fisher and T. and V.
Dokchitser provide fragmentary evidence in support of it.
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