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$G$-FUNCTIONS, $G$-OPERATORS, AND
DIOPHANTINE APPROXIMATIONS
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ABSTRACT. The aim of this artcle is to introduce an outline of topics on $G$-functions. For details, please refer
to the REFERENCES
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\S 0 THE DEFINITION OF $G$-FUNCTIONS, EXAMPLES

A $G$-function is a power series solution, with a certain arithmetical condition, of a linear differential
equation over a rational function field.

Let $K$ be a number field as the base field. (i.e., the degree of $K$ over $\mathbb{Q}$ is finite. $[K$ : $\mathbb{Q}]<\infty$ .)
But for simplicity, we always assume that $K$ is the rational number field $\mathbb{Q}:K=$ Q.

Definition. (G-functions)
We call $y=y(x)$ a $G$-function if
(0) $y$ satisfies a linear differential equation $/K(x)$

(eq) $y^{(n)}+a_{1}y^{(n-1)}+\cdots+$ an-ly’ $+a_{n}y=0,$ $a_{1}$ , $\ldots$ , $a_{n}\in K(x)$
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and $y$ is represented by a power series over $K$ ;

$y= \sum_{i=0}^{\infty}\alpha_{i}x^{i}$ $\in K[[x]]$ .

$($ 1 $)^{1}$ there exists a positive constant, $C$ (which is independent of $i=1,2$ , $\ldots$ ) such that
(G-1) $|\alpha_{\mathrm{i}}|\leq C’$ for $i=1,2$ , $\ldots$

For $i=0,1,2$ , . . . ’ let $d_{i}\in \mathrm{N}$ be the minimum common denominator of $\alpha_{0}$ , $\alpha_{1}$ , . . . , $\alpha_{i}$ .
(i.e., $d_{i}$ is the minimum positive integer such that $d_{i}\alpha_{0}$ , $d_{i}\alpha_{1}$ , . .. ’

$d_{i}\alpha_{i}\in \mathbb{Z}$)
Then

(G-2) $|d\mathrm{j}$ $\leq C^{i}$ for $i=1,$ 2, $\ldots$
$\square$

This is the definition of G-functions.
By this definition, namely by this condition (G-2), in general, it is not so easy to determine whether a

given function is a $G$-function or not.

Now, we show some examples of G-functions.
Examples of G-functions.

(1) The logarithmic function, polylogarithms: $\log(1-x)=-\sum_{i=1}^{\infty}\underline{x}i$ , $Lk\{\%$) $:= \sum_{i=1}^{\infty x_{\mathrm{F}}}l\neg.\cdot$ ; $k\in$ N.
These are G-functions.
To verify the condition (G-2) in the definition, we use “the prime number theorem.”

(2) Algebraic functions $\in K[[x]]$ defined over $\mathbb{Q}$ (are also G-functions).
The second example (2) comes from s0-called Eisenstein’s theorem related to the radii of convergence.
For further information, see [BC].

(3) Gauss’s hypergeometirc series with rational parameters (are also $G$ function ,

$2F1( \alpha, \beta, \gamma;x):=\sum_{=j0}^{\infty}\frac{(\alpha)_{i}(\beta)_{\dot{1}}}{(\gamma)_{i}i!}x^{i}$ where $\alpha,\mathrm{d}$ , $\gamma\in \mathbb{Q}$ .

Here $(\alpha)_{0}=1$ , $(\alpha)_{i}=\alpha(\alpha+1)\cdots$ $(\alpha+i-1)$ for $i\in$ N. We note that the parameters $\alpha,\beta,\gamma$ are in $\mathbb{Q}$ , not
$K$ . Of course, $\mathrm{y}$ is assumed to not be a negative integer nor zero.

The reason of the third example (3) is similar to the first example (1).
We note that, in general, it is known that the rationality of the parameters $\alpha$ , $\beta$ , $\gamma$ is not unnecessary.

For further infomation, see [A], and for the rationality of the parameters, see [Ba], [H].

Remark.
The exponential function $e^{x}= \sum_{i=0}^{\infty}\frac{x}{i!}\dot{.}$ is not a G-function.

Proof of $” log(l -x)$ satisfies (G-2) ”.
Let $d_{n}$ be the lowest common multiple of 1, 2, 3, . . . , $n$ . Then

$d_{n}:=p$
$p \leq n\prod_{\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}},p^{e_{\mathrm{p}}}$

( $e_{p}:=$ max{e $|$
$\mathrm{B}$ $m\in\{1$ , $\ldots$ , $n\}\mathrm{s}.\mathrm{t}$ . $p^{e_{p}}|m$} $\}$

$\mathrm{S}.\prod_{p\leq n}p^{\log_{\mathrm{p}}n}=\prod_{p\leq n}n\sim n^{n/\log n}p.\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}p\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}$

The last relation comes from “the prime number theorem.”
Then

$\log d_{n}\sim\frac{n}{1\mathrm{o}\mathrm{g}n}\log n=n$
$\Rightarrow$ $d_{n}\sim e^{n}$ .

Therefore the condition (G-2) holds for $\log(1-x)$ . $\square$

$\mathrm{x}\mathrm{W}\mathrm{e}$ assume that $K=$ Q.
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\S 1 $G$-FUNCTIONS AND DIOPHANTINE APPROXIMATIONS ( $\mathrm{Q}$ $1$ AND $\mathrm{Q}2$ )

In this section, this word, Diophantine approxi mations, means Diophantine approximations about some
values of $G$-functions at some points.

We will introduce a result, the original is as Galochkin’s result. This is similar to a result of E-functions,
which are an object for the transcendental number theory.

After introducing both results, we propose two questions. Ql and Q2. The aim of this section is to set
down Ql and Q2. In the other sections, we will consider these two questions.

1-0 G-FUNCTIONS

There is another class of solutions of linear differential equations, $E$-functions. The definition is similar to
that of $G$-functions. An $E$-funciton is also a power series solution of (eq), with another certain aritmetical
condition.

In short, the class of $E$-functions, in fact, looks like a generalization of the exponential function $e^{x}$ .
This article is, of course, for $G$-functions, not for $E$-functions. So we will skip the definition of E-

$\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}.2$ We will only introduce a property of E-functions.
But anyway, the exponential function $e^{x}$ is a typical example of E-functions.3 For details, see [Sh].

Before showing a property of $E$-functions, we introduce a linear differential equation of a matrix type.

We consider the linear differential equation of a matrix type (instead of (eq))

(EQ) $\frac{d}{dx}m=Am$ , $A\in M_{n}(K(x))$ , $m$ : a vector solution

If every component of $m$ satisfies the conditions (G-1) and (G-2) in the definition of $G$-functions, we also
call it a $G$-function(, or $m$ is a $G$-function vector).

As well as $E$-functions, if every component of $m$ satisfies the arithmetical condition of the definition of
$E$-funcitons, we also call it an E-function.

Now the next theorem is a property of E-functions.

Theorem E. (Cf. [Sh])
Assume that every components of $m=\mathrm{t}(f_{1}$ , . . . , $f_{n})$ in (EQ) $(n\geq 2)$ is an $E$-function. And assume that

$f_{1}$ , $\ldots$ , $f_{n}$ are linearly independent over $\mathbb{C}(x)$ . Then for any positive real $i$ $\epsilon>0,$ and for $\forall\xi\in \mathbb{Q}$ but finite
exceptions, there eists a constant $\exists c_{1}$ such that

$|H\mathrm{v}_{1}$ $( \xi)+\cdots+H_{n}f_{n}(\xi)|>\frac{H}{H^{n+\epsilon}}$ holds

for $\forall H_{1}$ , $\ldots$ , $H_{n}\in \mathbb{Z}$ with $H:= \max_{i}|H$; $|\geq c_{1}$ . (Here $c_{1}$ depends on $A,$ $m$ , $\epsilon$ , $\xi$ .) $\square$

One may come up with that this is an analogous to Lindemann’s theorem in the transcendental number
theory.

(Lindemann’s theorem) Let $\alpha_{1}$ , . . . , $\alpha_{n}\in K$ be distinct, then for $\forall H_{1}$ , $\ldots$ , $H_{n}\in K:$ not all zero, we
have

$H_{1}e^{\alpha_{1}}1-$ . $..+H_{n}e",$ $\neq 0.$ $\square$

(That is to say, the numbers $e^{\alpha_{1}}$ , . .. ’
$e^{\alpha_{n}}$ are linearly independent over $K.$ )

We know that Lindemann’s theorem allows the case $K=$ Q.

$2\mathrm{A}\mathrm{n}E$-function is a power series solution of (eq) , $y$ $= \sum_{\dot{\mathrm{a}}=0}\infty-+\alpha_{l}$. $x^{\dot{|}}\in K[[x]]$ with (1) for any $\epsilon>0$ , $|0$. $|=O(:\epsilon|.)$ for $iarrow\infty$ .
(2) let $d_{\dot{l}}$ be the common denominator of $\alpha 0$ , $\ldots$ , $\alpha$., then $|\mathrm{d}_{\mathrm{i}}|=O(i^{\epsilon:})$ for $iarrow\infty$ . Here $f(i)=$ O(g(i)) for $iarrow$ oo means 3 $G$

$\mathrm{s}.\mathrm{t}$ . $\mathrm{f}(\mathrm{i})\leq Cg(i)$ for $i=0,1,2$, $\ldots$ .
$3\mathrm{O}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}$ examples of $E,\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\epsilon$: $(1) \sum_{\dot{l}=0}^{\infty}\frac{x}{(\lambda+1)\cdots(\lambda+\dot{\iota})}.\cdot$ for $\lambda\in \mathbb{Q}$ $\mathrm{S}$ $\mathrm{Z}_{<0}$ . $(2) \sum_{\dot{|}=0}^{\infty}.\cdot\frac{(-1)^{i}}{(\lambda+1)}\dot{.}(\frac{x}{2})^{2:}$ for $\lambda\in \mathbb{Q}$ $\backslash \mathrm{Z}_{<0}$ . See [Sh].
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1-1 G-FUNCTIONS

It seems that the original of the following Theorem is as a result of Galochkin.
In order to clarify our problems, we modify it slightly. But the essential is not modified. For details, see

[G] and also [C].

Theorem 1. ([G]. See also [C])
Let $m=\mathrm{t}$ (Q1) $\ldots$ , $f_{n}$ ) be a vector solution in (EQ) $(n\geq 2)$ .
Assume that $f_{1}$ , $\ldots$ , $f_{n}$ are $G$ -functions, and assume that $fi$ , $\ldots$ , $f_{n}$ are linearly independent over $\mathbb{C}(x)$ .

If (EQ) is a G-Operator,

(We will give the definition of $G$ -operators in the next section.)
for any positive real $\forall\epsilon>0,$ there exists constant $\exists c_{1}$ such that the following holds:

for any $q\in \mathbb{Z}$ with $|q|\geq c_{1}$ ,

there exists constant $\exists c_{2}$ such that

$|H_{1}f1(1fq)+\cdot$ $..+H_{n}f_{n}(1/q)|> \frac{H}{H^{n+\epsilon}}$ $h\mathit{0}lds$

for $\forall H_{1}$ , $\ldots$ , $H_{n}\in \mathbb{Z}$ with $H:= \max_{i}|H_{i}|$ $\geq c_{2}$ . (Here $c_{1}$ depends on $m$ , $A$ , $\epsilon$ , and $c_{2}$ depends on $m$ , $A$ ,
$\epsilon$ , $q.)$ $\square$

One might see that this Theorem 1 is similar to Theorem E.
But we have two questions.

1-2 TWO PROBLEMS

Problems.
(Q1) What is a $G- operator^{Q}$

Of course, we will introduce the definition of $G$ -operators soon, in the next section.
But

What exactly does a $G$ -operator mean $Q$

(Q2) In Theorem 1, the value $1/\mathrm{q}$ in $f1(1/q)$ , $\ldots$ : $f_{n}(1fq)$ looks artificial.
Indeed, the radius of convergence of an $E$ -function is infinite. On the other hand, the radius of convergence

of a $G$-function is finite. There is a difference, of course.
But Theorem 1 is not for any points in the radius of convergence, but only for $1/\mathrm{q}$ . It is the only case

that the denorninator $q$ is (very) much larger than the numerator 1. We are afraid that it is unavailable for
technical reasons.

Here, we think “is it good that $G$ -functions are regarded as an analogue to $E$ -functions 9”

So, the second question is
Find a better analogue.

From now on, we will consider the first question in the next section, Section 2, and we will attack the
second question in Section 3.



85

\S 2 $G$-OPERATORS(AN ANSWER OF $\mathrm{Q}$ $1$ )

In this section, we give the definition of $G$-operators. And we introduce two results: Chudnovsky’s result
and Andre’s result. We are sure that these two results are one of the solutions of the first question in
the previous section. In addition, we recall the definition of $G$-operators; it is an iteration. We will also
introduce a slight generalization of $G$-operators. Then we will show some properties of them, and show an
application. We think that it is a further consideration of the first question.

2-1 NOTATIONS AND DEFINITIONS

Let $v$ be a normalized valuation of $K$ , the base number field, with the product formula, and such that
the absolute Height does not depend on the choice of the field $K$ .

That is, if $K=\mathbb{Q}$ ,

$\{$

$|p|_{p}:=$ 1/p, padic valuation, ( $\mathrm{p}$ : prime)
$|\xi|_{\infty}:=|\xi|$ for $\xi\in \mathbb{Q}$ , $|\cdot|$ is the usual Archimedean valuation

The -adic valuation is this; for $m,n\in \mathbb{Z}$ , $p^{e}||m$ ($p^{e}$ is the maximum -factor of $m$),(i.e., $p^{e}|m$ and
$p^{e+1}\{m$ ), $p^{f}||n$ , put $|rn/n|_{p}:=p^{f-e}$ .

The usual Archimedean valuation means that for $m/n$ $\in \mathbb{Q}$ with $m/n$ $\geq 0$ , $|m/n|_{\infty}=m/n,$ otherwise,
$|m/n|_{\infty}=-m\prime n$ .

If we write $v\{\infty$ , we mean that $v$ is non-Archimedean.
The product formula means $\prod_{v}|4|_{v}=1$ for $\xi\in K$ \ $\{0\},$ where $v$ in $\prod_{v}$ runs every normalized valuation

of $K$ .

For $M=$ (raij) $\in M_{n,n’}(K):n\cross n’$ -matrix, every component is in $K$ , we put $|M|_{v}:= \max_{i,\mathrm{j}}|m_{i,j}$ $|v$ .
For any real number $a\in \mathbb{R}$ , we put $\log^{+}a:=\log\max(1, a)$ .

Definition, (sizes and global radii of power series)
For $\mathrm{Y}=$ $\mathrm{i}$ $i=0\infty \mathrm{Y}_{i}xi\in M_{n,n’}(K[[x]])$ , we put ’the size of $\mathrm{Y}’\sigma(\mathrm{Y})$ as

$\sigma(\mathrm{Y}):=\mu\overline{arrow}\mathrm{t}^{\mathrm{i}\mathrm{m}\sum_{v}}\infty$
; $\max_{i\leq\mu}\log^{+}|\mathrm{Y}_{i}|_{v}$

$\in \mathbb{R}_{\geq 0}\cup\{\infty\}$ .

We put ’the global radii’ $\rho(\mathrm{Y})$ as

$\rho(\mathrm{Y}):=\sum_{v}\varlimsup_{\muarrow\infty}\frac{1}{\mu}\mathrm{m}_{i\mathrm{a}_{\mu}^{\mathrm{X}\log^{+}|\}_{i}|_{v}}}$
$\in \mathbb{R}\geq 0\cup$J $\{\infty\}$ ,

where $v$ in $\sum_{v}$ runs over every normalized valuation $v$ in K. 0

A paraphrase of the definition of G-functions.
Every component of $\mathrm{Y}=\sum_{i=0}^{\infty}\mathrm{Y}_{j}x^{t}\in M_{n,n’}(K[[x]])$ satisfies the conditions (G-1) and (G-2) in the

definition of $G$ -functions, is equivalent to, $\sigma(\mathrm{Y})<\infty$ . $\square$

That is to say, a $G$-function is a solution of a linear differential equation such that its size is finite.

We do not want to talk here about the radius of convergence, but we are sure that the radius of convergence
is a usual notion, but the size is not so usual. So we remark ;

A relation between $\rho(\mathrm{Y})$ and the radius of convergence of Y. (Cf. [A])
Put $Rv\{Y$ ) $:=\varliminf_{iarrow\infty}|\mathrm{Y}_{t}|_{v}^{-1/i}$ (the radius of convergence at v), then

$\rho(\mathrm{Y})=\sum_{v}\log^{+}\frac{1}{R_{v}(\mathrm{Y})}$ . $\square$

This is the reason why we introduce the definition of the global radii.
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It is obvious by the definitions, the difference between the size and the global radii is only the interchange
of the limitation $\varlimsup_{\mu\prec\infty}$ and the summation $\sum_{v}$ .

Now, we have finished defining the size and the global radii for power series.
Next, we define the size and the global radii for the linear differential equation (EQ).

Prom now on, we consider only non-Archimedean cases $v\{\infty$ .
For a rational function $f\in K(x)$ , we write the s0-called Gauss’s norm of $f$ at $v$ as $|f|_{v}$ . (That is, for

$f= \sum_{i=0}^{N}f_{i}x^{i}\in K[x]$ , put $|f|_{v}:= \max_{i}|f_{i}|_{v}$ , for $f,g\in K[x]$ , $g\neq 0,$ put $|f/C$ $|_{v}:=|f|_{v}/|g|_{v}$ : well-defined.)

For $M=(m_{i,j})\in M_{n}(K(x))$ : $\mathrm{n}\mathrm{x}\mathrm{n}$-matrix over the rational function field $K(x)$ , put $|Ml|_{v}:= \max_{i,j}|m_{i,j}$ $|v$ .

Let I be the identity matrix.
For the matrix $A$ in (EQ), we consider the sequence $\{A_{i}\}_{i=0,1},\ldots$

4 $:= \frac{1}{i!}\mathrm{t}((\frac{d}{dx}+{}^{\mathrm{t}}A)^{\dot{*}}I)$ $\in M_{n}(K(x))$ ,

that is, if we put the map as

$\varphi_{A}$ : $M_{n}(K(x))arrow M_{n}(K(x))$ , $B_{r}*$ $(d/dx1 \mathrm{t}A|)$B,

then
${}^{\mathrm{t}}A_{1}$. $= \frac{1}{i!}\varphi_{A}\circ\cdot$ . . $\circ\varphi_{4}(I)$ .

We note that this $A_{i}$ satisfies

$;$ $( \frac{d}{dx})^{i}m=A_{i}m$

for $m$ in (EQ).

Definition. (sizes and global radii of linear differential equations)
We denote ’the size of (EQ) $\sigma(A)$ ’ as

$\sigma(A):=\mathrm{n}_{v}\mu\sum_{1\infty}\frac{1}{\mu}\max\log^{+}|A_{i}|_{v}i\leq\mu$
$\in \mathbb{R}_{\geq 0}\cup\{\infty\}$ .

We denote ’the global radii of (EQ) $\rho(A)$
’ as

$\rho(A):=\sum_{v\{\infty}\varlimsup_{\muarrow\infty}\frac{1}{\mu}\max\log^{+}|i\leq\mu A_{i}|_{v}$
$\in \mathbb{R}\geq 0\mathrm{J}$ $\{\infty\}$ ,

where $v$ in $\sum_{v\{\infty}$ runs over every normalized non-Archimedean valuation $v\{\infty$ of K. Cl

Now we define G-0perators.

Definition. (G-0perators)
We call (EQ) a $G$-operator if $\mathrm{a}\{\mathrm{A}$ ) $<\infty$ . Cl

(There is no way to call $\mathrm{p}\{\mathrm{A}$) as finite.)

The definitions of $G$ function and $G$-operators are similar, but the difference is that $G$-operators use the
Gauss’ norms.
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2-2 CHUDNOVSKY’S RESULT

We think the following two theorems, Chudnovsky’s and Andre’s results, show the meaning of G-0perators.
Theorem 2. ([C])

Under the assumptions of Theorem 1, that is, for $m={}^{\mathrm{t}}(f_{1}, \ldots, f_{n})$ in (EQ), $(n\geq 2)$, assume that
$f_{1}$ , $\ldots$ , $f_{n}$ are $G$ -functions and assume that $f_{1}$ , $\ldots$ , $f_{n}$ are linearly independent over $\mathbb{C}(x)$ .

Then $\sigma(A)<\infty$ . that is, (EQ) is a $G$-operator. $\square$

It follows that the assumption, $”(\mathrm{E}\mathrm{Q})$ is a $G$-operator” in Theorem 1, is unnecessary.

2-3 ANDR\’E ’
$\mathrm{S}$ RESULT

Theorem 2 (Chudnovsky’s result) says that “if components of $m={}^{\mathrm{t}}(f_{1}, \ldots, f_{n})$ are linearly independent
over $\mathbb{C}(x)$ , then $\mathrm{a}(\mathrm{m})<$ oo implies $\mathrm{c}\mathrm{r}(\mathrm{A})<\infty$ .”

The next theorem, a result of Andre, says the opposite of this Theorem 2 in some sense.

We now consider the “matrix solution” of (EQ).

$\frac{d}{dx}X=AX,$ $A\in M_{n}(K(x))$

Here we assume that:
there exists 3 $C\in M_{n}(K)$ , there exists $\exists 1$ $\mathrm{Y}=$ $\mathrm{E}7\infty=0\mathrm{Y}_{i}x^{i}\in$ Mn $\{\mathrm{K}[[\mathrm{x}\}])$ with $\mathrm{Y}_{0}=I$ (the initial condition)

such that
$X=i’ x^{C}$ $(= \mathrm{Y}\sum_{i=0}^{\infty}\frac{1}{i!}(C\log x)^{i})$

’plus’ some suitable conditions.
Then

Theorem 3. ([A])
Under some conditions, $\sigma(A)<\infty$ implies $\mathrm{a}(\mathrm{m})<\infty$ . $\square$

Finally, under “some conditions,” $G$-functions and $G$-operators are equivalent (in the meaning).
This is exactly what a $G$-operator means. But we go on to a further consideration.

2-4 A GENERALIZATION OF $G$-OPERATORS

Let’s recall the definition of $G$-operators. It comes from the iteration of the map:
$\varphi A$ : Mn $(\mathrm{K}(\mathrm{x}))arrow \mathrm{M}\mathrm{n}(\mathrm{K}(\mathrm{x}))$.

This map defines a G-0perator

So now we consider the following sequence:
Let $T$, $A$ , $B\in$ Mn $(\mathrm{K}(\mathrm{x}))$ .
We define the sequence $\{(T, A, B)^{\langle i\rangle}\}:=0,1,\ldots\subset M_{n}(K(x))$ as

$(T, A, B)^{(0\rangle}:=T,$

$(T, A, B)^{(i+1\rangle}:= \frac{1}{i+1}(\frac{d}{dx}(T, A, B)^{\langle i\rangle}-\{(\mathrm{T}, A, B)^{\langle:\rangle}+(T, A, B)^{\langle i\rangle}B)$

We put

$\sigma(T, A, B):=\varlimsup_{\muarrow\infty}\sum_{v\{\infty}\frac{1}{\mu}\max_{i\leq\mu}\log^{+}|(T, A, B)^{\langle i+1\rangle}|_{v}$ , $\in \mathbb{R}\geq\circ\cup\{\infty\}$ ,

$\{(\mathrm{T}, A, B):=$ $1$ $\varlimsup_{\muarrow\infty}\frac{1}{\mu}\max_{\dot{l}\leq\mu}\log^{+}|(T, A, B)^{\langle i+1)}|_{v}$, $\in \mathbb{R}\geq 0\cup\{\infty\}$ .
$v\{\infty$

Then we have ;
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Proposition 4. ([Nl, N2])
Let $T$, $T_{1}$ , $T_{2}\in \mathrm{G}\mathrm{L}_{n}(K(x))$ , and let $A$ , $B$ , $C\in M_{n}(K(x))$ , Then
(0) $\mathrm{r}(A)$ $=\sigma(I, 0, A)$ .
(1) $\sigma(I, A, A)=0.$

(2) $\sigma(T, A, B)=\sigma(I, 4, T[B])=\sigma(I, T^{-1}[A], B)$ , where $T[B]:=TBT^{-1}+((d/dx)T)T^{-1}$ .
(3) $\sigma(T_{1}, A, \mathrm{O})=$ a(T2, 0, $A$).
(4) $\sigma(T_{1}T_{2}, A, B)\leq\sigma(T_{1}, A, C)+\sigma(T_{2}, C, B)$ . (triangle inequality)
For $\rho$ , the same (in)equalities hold. $\square$

The idea of this proof is : first, show some equations for the sequences by induction, then, apply them to
the definition to $\sigma$ . The triangle inequality (4) comes from the triangle inequalities of valuations. Q.E.D.

Although it is a good opportunity to remark about Proposition 4 here, we would like to do it in the last
section, Section 4.

As an application of Proposition 4, we obtain the next theorem.
Let’s recall Theorem 2, Chudnovsky’s result. Chudnovsky’s result assumes the linearly independence of

$G$-functions. And it is for a vector power series solution. Then, one might think it is not the strict contrary
of Andr\’e’s result, Theorem 3. Here we obtain ;

Theorem 5. ([N2])
Under the assumptions of Theorem 3, $\sigma(\mathrm{Y})<$ oo implies $\sigma(A)<\infty$ . $\square$

We can say that these results in this section is an answer of Question 1 in Section 1.

fi3 $G$-FUNCTIONS AND DIOPHANTINE APPROXIMATIONS, REVISITED (AN ANSWER OF Q2)

In this section, we want to consider the next question Q2: “Find a better analogue for G-functions”

The main idea in this section is that $” G$-functions are not so similar to $E$-functions, but algebraic func-
tions”. We would like to presume this a candidate of the solutions of the second question in Section 1. So
we will introduce here a “circumstantial evidence.”

First of all, the author has an easy thought.
For instance, the values of algebraic functions over rationals at algebraic points are, of course, algebraic

numbers. Recall that algebraic functions $/\mathbb{Q}$ are also $G$-functions. And also recall, Theorem $\mathrm{E}$ is an analogue
to Lindemann’s Theorem, which is a point of view from the transcendental number theory. So, one may
think, it is hard to regard the problems of special values of $G$-functions like as the ones of E-functions.

So, just in a private opinion, $G$-functions are not so similar to $E$-functions, but as algebraic functions.
This is a private solution of Question 2: $” G$-functions is analogue to algebraic functions.”

In this section, we introduce a “circumstantial evidenc\"e’’ with this opinion.

3-0 ALGEBRAIC FUNCTIONS

We recall algebraic functions’ case
But we don’t know the “smart formulation”, , so we are afraid that we might not give a good explanation.

Proposition 6. (Liouville’s inequality)
(We consider only the genus 0 case, and we restrict a special case.)
Let $f(x, y):=x-g(y)\in K(x, y)$ , $g(y)\in K(y)$ , $n:=\deg_{y}g$ .



as
Put

$5_{1}:=\{x\in K|\exists y\in Ks.t. f(x,y)=0\}$

$=\{g(y)\in K|y\in K\}$ .

Let $t\in K$ with $\frac{d}{dy}g(t)\neq 0.$ Put $a:=g(t)$ . Then there exists $\exists c>0$ such that

$|$ a $-a|> \frac{c}{H(\alpha)^{[K.\mathrm{Q}]/n}}$. for $\forall\alpha\in S_{1}$ with $\alpha\neq a.$

Here $H(\alpha)$ means the absolute Height of $\alpha$ . $(i.e., \mathrm{H}(\mathrm{a})=$ $\sum v\log^{+}|\alpha|_{v}.,)$ ($c$ is independent of $\alpha$ .) Cl
It is the s0-called Liouville’s inequality if $g(y)=y.$
We know also that “there exists an estimate of the number of rational points of irreducible algebraic

curve $/\mathbb{Q}$ in general cases”, but we will mention it soon.
Anyway, that is to say, for the “rational points” $S_{1}$ , the inequality holds. This is Proposition 6.

3-1 $G$-FUNCTIONS

For $G$-functions, we obtain an analogue to Proposition 6.
Theorem 7. ([N4,N5])

Let $\zeta_{0}\in K$ be given. Put $D\subset \mathbb{C}$ : a closed disc centered $\zeta_{0}$ with radius $<1/2.$ Let $\mathrm{d}\{\mathrm{x}$ ) $\in \mathrm{Z}[\mathrm{x}]$ be the
common denominator of all components of $A$ in (EQ).

We assume that
(1) (EQ) is a $G$ -operator. $n\geq 2.$

(2) $m={}^{\mathrm{t}}(f_{1}, \ldots, fn)$ is analytic on $D$ .
(3) $f_{1}$ , $\ldots$ , $f_{n}$ are linearly independent over $\mathbb{C}(x)$ .
44) $\{z\in \mathbb{C}|d(z)=0\}$ I $D=\emptyset$ .
Put

$S_{K}:=\{(\in D\cap K|\exists\kappa_{\zeta}\in \mathbb{C}\mathrm{Z}\{0\}s. t. \kappa\zeta m(\zeta)\in K^{n}\}$ .
Then we have
(i) (For $\zeta_{0}\in S_{K}$ and ) for any small real $\mathrm{V}$ $\epsilon>0,$ there exists 3 $c<\infty$ such that

$|$ ( $- \zeta_{0}|>\frac{1}{H(\zeta)^{[K\mathrm{Q}](_{n}^{1}+\epsilon)}}$ for $\forall$ ( $\in S_{K}$ with $\mathrm{H}(\mathrm{a})\geq c$ .

Here $c$ depends on $H(\zeta 0)$ , $A$ , $\epsilon$ , $D$ , and is independent of $\langle$ .
(ii)

$\varlimsup_{Barrow 0}\frac{\log\neq\{\zeta\in S_{K}|H(\zeta)\leq B\}}{1\mathrm{o}\mathrm{g}B}\leq\frac{4}{n}[K : \mathbb{Q}]$ .

(the trivial estimate $is\leq 2[K:\mathbb{Q}]$ ) $\square$

Remark 8.
(1) For algebraic functions’ case, a similar estimate in (ii) with $\leq\frac{2}{n}[K : \mathbb{Q}]$ holds (for $K=\mathbb{Q}$ with

different notations). See [Se] for the details.
(2) If $f_{1}$ , $\ldots$ , $f_{n}$ are algebraically independent over $\mathbb{C}(x)$ , we have

. the left hand side in (i) $\geq 1/H(\zeta)^{\epsilon}$ holds.

. the left hand side in (ii) $=0$ holds. $\square$

One sees that Theorem 7 is similar to Proposition 6 and the first remark (1) in Remark 8.
Moreover, Theorem 7 does not contain artificial conditions like as $1/\mathrm{g}$ in Question 2.

In conclusion, these might be an analogue of an appearance. But even so, one can think we may say that
the similarity between Proposition 6 and Theorem 7 gives a candidate of the solutions of Question 2. It
may mean that it is better that $G$-functions are not so similar to $E$-functions, but algebraic functions.
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\S 4 FURTHER PROBLEMS

We would like to introduce some further problems.

First, as for G-0perators:

(Q3) We know the triangle inequality in Proposition 4 (4).
“Find something interesting related to Proposition 4 and develop it.” $\square$

The author has spent much much time on it. But in vain. No results (except Theorem 5).
Here we would like to remark about Proposition 4:

Remark.
(1) If we put

$\mathrm{a}(\mathrm{A}, B):=\frac{1}{2}$(a ( $I$ , $A$ , $B)+$ a(A, $B$ , $A)$ )

then from (1) and (4) in Proposition 4, the map

$\overline{\sigma}$ : $M_{n}(K(x))\mathrm{x}$ $M_{n}(K(x))arrow \mathrm{R}_{\geq 0}\cup\{\infty\}$

is a pseudodistance function, that is, $\overline{\sigma}(A, A)$ $=0,\tilde{\sigma}(A, B)$ $=\overline{\sigma}(B, A),$ $\sigma-(A, B)$ $\leq\overline{\sigma}(A, C)$ $+\overline{\sigma}(C, B)$ .
But...
(2) we don’t know any relation between $A$ and $B$ with $\sigma(I, A, B)=0.$

(3) furthermore, for any $A$ and $B$ , we don’t know whether $\sigma(I, A, B)=$ a(A, $B,$ $A$) holds or not.
It means that, a pseudodistance function $\tilde{\sigma}$ on $M_{n}(K(x))$ are defined by Proposition 4, but, that’s all we

can do. $\square$

Next, as for Diophantine approximations and G-functions.

(Q4) Theorem 7 is, one may think, Liouville’s inequality for G-functions.
So, “Does a Roth’s type property on $G$-functions hold?” $\square$

Here the original Roth’s theorem is ;
(Roth’s theorem) ([R]): For a given $\alpha\in\overline{\mathbb{Q}}$ with $\deg$ ce $\geq 3$ and for any real $\epsilon>0,$

$| \alpha-\frac{p}{q}|>\frac{1}{q^{2+\epsilon}}$

holds for any $p$ , $q\in \mathbb{Z},$ $\neq 0,$ with $(p, q)=1$ but finite exceptions. 0

First of all, the author has no idea even how to formulate it for $G$-functions. And he thinks that it is not
so easy, probably very difficult.

For instance, the proof of the original Liouville’s inequality requires only a few pages, probably, only one
page, but the proof of the Roth’s theorem requires 20 pages. This means, the number of pages of the proof
of the Roth’s theorem is 20 times than the one of Liouville’s inequality.

Here, now, Theorem 7 Liouville’s inequality for $G$-functions, needs more than 30 pages. Then IF one
could prove any Roth’s type properties for $G$-functions, it would need, probably, 20 times 30 equals to 600
pages!?

Of course, it is just a joke, a large story. But in this stuation, we can not believe that any proofs of Roth’s
type statements do not require any complicated arguments.

(Q5) It is well known that the number of $\mathbb{Q}$-rational points of any (projective, smooth) algebraic curve
with large genus is finite.

How about G-functions? For example, how about the finiteness of the number of the set $S_{K}$ in Theorem 7?
“Especially, in Theorem 7 if $f_{1}$ , . . . ’

$f_{n}$ are algebraically independent over $\mathbb{C}(x)$ , does $\mathit{1}S_{K}$ $<$ oo hold?” $\square$

We have no idea at all. The author cannot imagine if it is true or not.
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(Q6) The special value of the polylogrithmic function $L_{k}(x)$ at $x=1$ , $Lk())$ equals to $\zeta(k)$ (the Riemann
zeta-function) for $k\in \mathbb{Z}_{\geq 2}$ .

“Apply $G$-function theory and deduce something about the special values of zeta-functions.” a
This is “a big problem.”
In the present situation, $G$-function theory tells NOTHING about special values at any points on the

radius of convergence.
$\zeta(k)$ is the special value of the polylogarithmic function $L_{k}(x)$ at the point $x=1,$ it is on the radius of

convergence of the polylogarithmic function Lk (x). Therefore the present $G$-function theory can tell nothing
about it in the present situaton.

The reader may think that every problem is, easy to say, but difficult to carry it out.
As for the number theory, the last question Q6 is very attractive, but we almost give up the Question 6

without some innovation.

REFERENCES
[A] Y. Andre, $G$ -functions and Geometry, Max-Planck-Institut, 1989.
[Ba] F. Baldassarri, $\mp_{\mathit{1}}A\star$’$i^{-}CV\ovalbox{\tt\small REJECT}\Leftrightarrow$ (A Lecture at Chiba Univ.)
[Bo] E. Bombieri, On $G$-functions, Resent Progress in Analytic $\mathrm{N}\mathrm{u}\mathrm{m}\mathrm{b}\epsilon$

[BC] E. Bombieri, P. B. Cohen, Siegel’s lemma, Padi approximations $|$

(4) XXV (1997), 155-178.
[C] D. V. Chudnovsky, G. V. Chudnovsky, Applications of Padi appl

$G$ -functions, Lect. Notes in Math. 1135 (1985), Springer-Verlag, (.

[G] A. I. GaloShkin, Estimates from below of polyno mials in the val
USSR Sbornik 24, 385-407; (Original article in Math. Sbornik 95

[H] T. Honda, Algebraic differential equations, Synoisia Mathematica
$\backslash \backslash \backslash$ + )|-- o J – b 38 (1974))(1981).

[N1] M. Nagata, Sequences of differential systems, Proc. Amer. Math.
[N2] –, A generali zation of the sizes of differential equations an$d$

Sup. Pisa Cl. Sci (4) XXX (2001), 465-497.
[N3] –, 7hnsfomattom on $G$ -functions, preprint RIMS (1197).
[N4] –, An estimation on the number of rational values related $t_{1}$

[N5] –, Diophantine approximations related to rational values of
[R] K. F. Roth, Rational approximations to algebraic numbers, $\mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\epsilon$

[Se] J. P. Serre, Lectures on the Mordell-Weil Theorem (3rd ed.), Wie1
[Sh] AB. Shidlovskii, Transcendental Numbers, de Gruyter Studies in

er Theory 2 (1981), Academic Press, 1-67.
and jacobians, Ann. Scoula Norm. Sup. Pisa Cl. Sci

roxrnations to Diophantine inequalities in values of
9-51.

$’|$lues of analytic functions of a certain class, Math.
$i$ $(137)$ (1974) pp 396-417) (1974).

E. Bombieri, On $G$-functions, Resent Progress in Analytic Number Theory 2(1981), Academic Press, 1-67.
E. Bombieri, P. B. Cohen, Siegel’s lemma, Pad\’e applications and jacobians, Ann. Scoula Norm. Sup. Pisa Cl. Sci
(4) $\mathrm{X}\mathrm{X}\mathrm{V}(1997)$ , 155-178.
D. V. Chudnovsky, G. V. Chudnovsky, Applications of Pade’ $app$ mx\iota mations to Diophantine inequa lities $\dot{\iota}n$ values of
$G$ -functions, Lect. Notes in Math. 1135 (1985), Springer-Verlag, 9-51.
$\mathrm{U}\mathrm{S}\mathrm{S}\mathrm{R}\mathrm{S}\mathrm{b}\mathrm{o}\mathrm{r}\mathrm{n}\mathrm{i}\mathrm{k}24,385-407_{j}(\mathrm{O}\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{a}1\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}1\mathrm{e}\mathrm{i}\mathrm{n}\mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}.\mathrm{S}\mathrm{b}\mathrm{o}\mathrm{r}\mathrm{n}\mathrm{i}\mathrm{k}95(137)(1974)\mathrm{p}\mathrm{p}396-417)\mathrm{A}.1$

.
$\mathrm{G}\mathrm{a}106\mathrm{h}\mathrm{k}\mathrm{i}\mathrm{n},Estimatesfmmbelowofpolynomialsinthevaluesofanalyticfi\iota nctions(1974)ofac.e$

rtain class, Math.

T. Honda, Algebraic differential equations, Synoisia Mathematica 24, 169-204; (Original article in 東大数学教室セ
ミナリー 0 ノート 38 (1974) $)$ $(1981)$ .

Soc. 124 (1996), 21-25.
$d$ its applications to $G$ -functions, Ann. Scoula Norm.

to $G$ -functions, preprint RIMS (1231).
G-G-functions, Acta Arith. 106.4 (2003), 311-344.

Iematika 2 (1955), 1-20.
$.’ \mathrm{w}\mathrm{e}\mathrm{g}$ , 1997

Math., Walter de Gruyter, 1989.

OIWAKE-CHO SAKYO-KU Kyoto, 606-8502, JAPAN
$E$-mail address: mnagata@kurims.kyoto $\mathrm{u}$ ac.jp


