goooooooono 13770 20040 92-101

92

MOSER’S QUESTION ON A SIMULTANEOUS
APPROXIMATION OF A SET OF NUMBERS AND A
SIMULTANEOUS NORMAL FORMS OF MAPS

JERRE - BEPER HH ES (Masafumi Yoshino)!
Graduate School of Sciences
Hiroshima University

1. INTRODUCTION

In the paper [5] J. Moser studied the following problem. Let f,,
v=1,...,d be the germs of commuting holomorphic functions (C, 0)
satisfying
(1.1) foofu = fuof,, viu=1,...,d,

(1.2) H0) = 0, fO)=)\ =e¥> pv=1,...,d

We want to seek a holomorphic function u(z) such that
(1.3)  u(0)=0, w'(0)=1,(u" o fyou)(2) = Az, v=1,...,d.

Following Haeflinger [2] and Banghe -Haeflinger [1] the commuting ex-
ample appears as a holonomy group of codimension one foliation.
In the case of a single map with a; = 6 the following theorem is well

- known.

Theorem 1.(Siegel) If there exist C > 0 and T > 0 such that
(1.4) 16g]| := inf l6g — p| > Cq™",¥g > 2,9 € Z

there exists a unique holomorphic solution u(z) such that

(L.5) u(0) =0, w(0)=1, u(e™z)= f(u(z)).

The difficult part of the proof of this theorem lies in proving the con-
vergence of the formal power series solution u of the so-called homology
equation. The condition (1.4) is a sufficient condition in order to show
the convergence of the formal power series solution. On the other hand
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it is a difficult and interesting problem to find a necessary condition
for the convergence. We recall a classical result due to Cremer: if
: 1 1 :

(1.6) hﬁsol:p -d—klog LT = oo, d > 2,integer
there exists a divergent formal solution u. We note that the left-hand
side is expressed by using a Nevalina function. Therefore it is an inter-
esting problem to understand the convergence without a Siegel condi-
tion.

We recall two approaches to this problem. The former one is to
weaken the Diophantine condition. The typical one is a so-called Bruno
condition: there exist ¢ > 0 and 7 > 0 such that

cq

1.7 Oq|| > ex (— ) € Zy.

@D 1ol 2 e (~ o ) g€k
The latter one is to understand from the viewpoint of the symmetry,
dh, foh = ho f. Namely, if there exist sufficiently many symmetry
then we can linearize our map without a Siegel condition or without
any Diophantine condition. This approach is closely related with the
work of Moser in [5].

We note that a similar Diophantine phenomena happen in the study
of the Goursat problem. This was first noted by J. Leray in [3]. More
precisely, let us consider the following Goursat problem.

52
(18) 858tu = 0, U‘3+t___0 = ul(S), 'UIAs.l..t:o = UQ(S),

where A # 0 be a complex number and u;(s) are analytic functions
near the origin s = 0, = 0. Here s and t are real or complex variables.
The Goursat problem is related with a moving boundary problem for
a hyperbolic equation.

A Goursat problem is also related with the Schroder equation as
follows. It follows from the equation 8,8,u = 0 that u = J¢(¢) + I (s).
By the boundary conditions we obtain

(19 g(—s)+b(s) =us(s), $(—As)+(s) = us(s).
It follows that

(110)  $(=As) = 6(=s) = us(s) — s (s) = ().
By setting s — —s we obtain the Schroder equation

(111) $(As) — 8(s) = v(s).

83



94

It is almost clear that we meet a Diophantine condition if we want to
solve (1.11) in a class of analytic functions. Indeed, let

= Z%s", v(s) = Zvns"

n=1

be the expansions of ¢ and v, respectively. By inserting the expansions
into the equation we obtain

(1.12) Z Bn(A" — N)s i

Hence, if \* —A #0 (n =1,2,...) we can construct a formal solution.
As to the convergence of a formal power series solution we need a
Diophantine condition.

By a similar argument as in the above we can prove

Theorem 2. (Leray) If

1
|AF —1]

(1.8) has a unique analytic solution for any u;(s).

(1.13) p(A) -hmsup log

< o0

We call p()) a Leray -Pisot function. (cf [4]). The necesssary part is
given by

Theorem 3. (cf. [8]) If p(A) = oo then there exist u; and uq such that
(1.8) has a formal power series solution u which does not converge in
any neighborhood of the origin.

Hence it may happen that one can weaken the Cremer’s condition
for the divergence of a formal power series solution. Leray’s result
implies us this may be case since Goursat problem is closely related
with Schréder’s equation, a linearized horuology equation.

If we consider the Goursat problem for third order equation we find
that the Leray-Pisot function of two variables

1
|A¥ — 1] + |p* - 1]

plays the same role as p()) in the case of second order equation. In fact,
the condition p(A, u) > 0 is necessary and sufficient for the unique local
solvability in some neighborhood of the origin for any right-hand side
and any boundary conditions, while if p(A, u) = 0 we have a divergence
of a formal power series solution.

(1.14) p(A, p) := limsup !

lo
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2. STATEMENT OF THE RESULTS

Simultaneous Diophantine condition. We say that the set of numbers

a; (j =1,...,d) satisfies a simultaneous Diophantine condition if there
exist 3C' > 0 and 37 > 0 such that

(2.1) max lga,ll > Cq7,¢=1,2,3,...,

where |

llges, || = min |ga, — p|.
pEZ
This condition is weaker than the so-called simultaneous Siegel condi-
tion:
(2.2) AC >,3r >i|lq|| > Cq",v =1,... ,d,q=1,2,....

We say that 3 is a Liouville number if, for every A > 0 there exist
infinitely many integers q € Z such that

(2.3) 0 < |lg8l < g

Moser’s question. Given the germs of commuting holomorphic func-
tions (C,0), f,(2),v =1,...,d satisfying (1.1) and (1.3). We consider

(2.4) f(z) == fi(z2)** o---0 fa(2)*%, @1,...,94 € Z.

Suppose that a; (7 = 1,...,d) satisfy the simultaneous Diophantine
condition. Then Moser asked whether there exist g;,... ,94 € Z such
that f(z) satisfies a Diophantine condition. If this is the case, the
linearization problem in a commuting case is reduced to the case of a
single map, hence to Siegel’s theorem. The answer to this question is
negative. In fact, Moser proved:

Theorem 4. (Moser) For d > 2 and a given 7 > 2/(d — 1) there exists
a set of cardinality of (ay,...,0q) € R? such that the simultaneous

Diophantine condition holds, but such that, for all g = (g1,-... ,94) €
Z2\ 0

ri=gqg1a;+ -+ g4q
are Liouville numbers (i.e., non Diophantine ).

In [5], Moser raised the question whether this theorem can be ex-
tended to case where a; (j = 1,...,d) are n-dimensional vectors,
a; = (aj1,... ,aj,). More precisely we consider a commuting sys-
tem of maps

(25) f,:(C*0) — (C*,0),f.(2) = A,z + O(2%),v =1,... ,d.
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Let A%, ( = 1,...,n) be the eigenvalues of A, with multiplicity, (v =
1,...,d). We write

(2.6) i =exp(2mify), 0<6Y <1,
and set 60 = (0Y,... ,0"). We define

(2.7) (a,0%) := Zaj a=(a,...,a,) € Z"

J=1

~ We say that {6¥}2_, satisfies a simultaneous Diophantine condition if

there exist C > 0 and 7 > 0 such that
d
(28  min §_:1 I(a,8") — 8%)| > Cla|™", Vla|>2,a€Z,

where ||t|| = inf,ez |t — p|.
Let p, € Z, (v=1,...,d) and set

(29) 6 - Zaupua 511 . ’Jn)'

v=1

We say that § is a Libuville vector, if for every A > 0 the inequality
(2.10) 0< k_min (e, 8) — & < |a|™

holds for mﬁmtely many a € Z%. Note that d gives the elgenvalues of
amap f= fI Then we have

Theorem 5. Suppose that d > n > 2. Tben there exists a set of
linearly independent vectors 6; = (0},...,0%) (j =1,...,n) with the
density of continuum sat15fymg a SImultaneous D1opha.11tme condition
for which, for any p = (py1,...,pa) € Z%\ 0 the § = (4y,...,4,),

d; = ZLI 6% p, is a Liouville vector.

We note that f,(z), v =1,... ,d satisfies a simultaneous Diophantine
condition while, for any p = (py,... ,ps) € Z* f := ff o --- 0 f7¢ does
not satisfy a Diophantine condition.

3. SKETCH OF THE PROOF

We will give the sketch of the proof of Theorem 5. We need lemmas
in [5]. (For the detail, see [5]). Let E® C R? be a real subspace in R
With the standard Euclidean norm |- | in R™ we define

dlst(xE)—-Ire%gl]w—yl, z € R".



Definition. We define p := p(E™) as the supremum of the numbers A
for which

(3.1) dist(j, E™) < |]72, j ezt

possesses infinitely many solutions. Here y = oo is admitted.

Clearly, the definition is independent of the norm. Note that, if Z: N
E™ = {0} and 7 > u then there exists a positive constant c such that

(3.2) dist(j, E™) > ¢|j|™", for all j € Z%\ {0}.
A subspace E™ satisfying Z¢ N E™ = {0} and (3.2) is called a Diophan-

tine subspace with respect to Z%. The following theorem is given in

Moser [Theorem 2.1, 5]. (See also [6]).

Theorem. For almost all E™ in the Grassmann manifold Gn(Rd) one

has u(E™) = .

= den

Proof of Theorem 5. Let us assume that there exists a subspace E™
in R? generated by the linearly independent vectors 8; = (6}, ... ,0%),
(7 =1,...,n) such that u(E") = 2. Let 7 be such that 7 > .
Then we have (3.2). We consider the left-hand side of (2.8)

d d
(3.3)  min Z (e, 6") — 65|l = min pl}éle(a,ﬂ ) — 85 — pul.

1<k<n 1<k<n
v=1 - T =

We set
Y=Y = (<a?6]j) - 011:)141,---,!1 €L k=1,...,n.

Let 5 = (p,)u1,..a € Z% be a multiinteger for which the infimum in
the right-hand side of (3.3) is taken. Then the right-hand side of (3.3)
is bounded from the below by ¢; min;<k<n |7 — y&| for some positive
constant ¢, independent of j and k. By the inequality |j — yx| 2>
dist(j, E™) for k = 1,... ,n and (3.2) we can estimate the right-hand
side of (3.3) from the below in the following way

G4 2o min i -l 2 adist, B 2 alil ™,

for some positive constant ¢, independent of j. Because the infimum
in (3.2) is taken for j such that |j — yi| < M|ys| for some constant M
independent of k, we obtain, by the condition |a| > 2

5] < (1 + M)yl < ¢+ |a]) < 'la|

for some positive constants ¢’ and ¢”. It follows that the right-hand
side of (3.3) is bounded from the below by c¢|a|™" for some positive
constant ¢ independent of a. This proves (2.8).
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We want to show that there exists E™ satisfying y(E™) = 5% and

the Liouville property (2.10) for any p = (p1,... ,pa) € Z%\ 0. For the
detail we refer to [10].

4, COMMUTING SYSTEM OF VECTOR FIELDS

_ In the case of a commuting vector fields the situation is completely
different from the case of maps. For the sake of simplicity, let us
consider a system of holomorphic commuting system of vector fields
X, (v =1,..,d),[X,X] =0 (vpu=1,...,n) which are singu-
lar at the origin. With a standard coordinate in C* we write X, =

1 X[ (2)0s; (u=1,...,d). Define X* := (X{,...,X}) and A¥ =
V.X*(0). Note that zA* is the linear part of X#. We assume that X
is singular at the origin. Hence we can write

(4.1)
XH(z) = X* = (X{(z),...,XE(z)) = zA* + R¥(z), 1<u<d,

where R*(z) is analytic in z in some neighborhood of the origin such
that

(4.2) R*(0) = 8,R*(0) =0, 1<u<d.

Let XY (7 = 1,... ,h,p = 1,...,d) be the eigenvalues with mul-
tiplicities of A*. We set A* = (Af,... M4, (u = 1,...,d). For a

multiinteger & = (ai,...,an) € Z% we set (\,a) = )7 Ma; and
define

d
(4.3) w(a) = 1‘%?%‘11”2:; (e, A¥) — A4

Definition. We say that X := {X,;v = 1,...,d} is non simultane-
ously resonant if w(a) # 0 for all o € Z%, |a| > 2. The set of o € Z7,
|a| > 2 such that w(a) = 0 is called a simultaneous resonance of X.

Definition. Let w; (k =2,3,...)) be given by
(4.4) wi = inf {w(a);w(a) #0, a € Z7,2 < |a| < 2°}.

We say that the system X satisfies a simultaneous Siegel condition, a
simultaneous Bruno type condition and a simultaneous Bruno condition
respectively if,

Wi 2> C(l + Qk)_T,
o > exp(—C2/(k + 1)),



for some constants C > 0 and 7 > 0 independent of k, and
- Zlnwk/Qk < 00.
k=2

In the case d = 1 we say that the vector field X = A satisfies a Siegel
condition, a Bruno type condition and a Bruno condition, respectively
if the corresponding simultaneous condition is verified. Then we have

Theorem 6. The system X, (v = 1,...,d) satisfies one of a simul-
taneous Siegel condition, a simultaneous Bruno condition and a si-
multaneous Bruno type condition if and only if there exist numbers
c,(v=1,...,d) such that the following conditions are satisfied:

(i) the vector field Xy := Y.°_, ¢, X, satifies a Siegel condition, a Bruno
condition and a Bruno type condition, respectively.

(i) the resonance of X, coincides with the simultaneous resonance of
the system X, (v =1,...,d).

We note that the case of vector fields shows a sharp contrast to that
of maps. Because we can choose a Diophantine vector field from the
Lie algebra generated by a system of vector fields if the given system
satisfies a simultaneous Diophantine condition.

5. SKETCH OF THE PROOF

We will give a sketch of the proof of Theorem 6. We will show the
necessity of (i) and (ii). We note that the commutativity of &, implies
that the linear parts of A, are pairwise commuting. Without loss of
generality we may assume that the linear part A; of &; is put in a
Jordan normal form.

Let c;,... ,cq be complex numbers. By the commutativity, the eigen-
values of the linear part of Xp := Y.°_ ¢, X, are given by Zi=1 cy Y
(j=1,...,n). For c=(c1,... ,cq) € C% and a € Z7 we define

d

S 6 (@A) = X2)

v=1l

1<i<n

(5.1) Q(a,¢) = min

Let w(a) and wy be given by (4.3) and the definition in the above,
respectively. Then we define

(5.2) A = {c=(a,... ,cd)ECi;3a€Z1,2§|a|<2k
such that w(a) # 0, Q(a,c) < 27 Fuw}.



100

We can easily show that the Lebesgue measure of the set A := limy_c0 Ak
is equal to zero. Therefore, if ¢ ¢ A there exists kg > 1 such that

Qa,¢) > w2 ™% VEk > k.

This proves that Xj satisfies a Siegel, a Bruno type and a Bruno con-
dition, respectively.

In order to show (ii) we note that if & is not in a simultaneous
resonance set of X, (v = 1,...,d), the set of ¢ € C" such that
}:Ll ¢ ({a,A’) — M) = 0 is a hyperplane for each j. The Lebesgue
measure of the sum of these hyperplanes is zero. By adding A to the
sum of these hyperplanes we can choose ¢ € A such that the resonance
of A} is equal to the simultaneous resonance of X, (v =1,... ,d).

We will prove the sufficiency. We define &(a) by

N Sl
() mjln|<a,4VVch> > e

v

We also define &y by (4.4) with w(e) replaced by &(a). We can easily
show that &(a) < Mw(«a) for some M > 0 independent of c. It follows
from the assumption (ii) that &y < Muwy. This implies that if Ap
satisfies a Siegel condition (or Bruno type condition) the system X also
satisfies a simultaneous Siegel and Bruno type condition, respectively.
Now, let us assume that X, satisfies a Bruno condition. Because In & <

In M + Inwy, it follows that — 3, In@ /28 > =Y (In M + Inwy,)/2%.
Hence X satisfies a simultaneous Bruno condition. This ends the proof.
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