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1. INTRODUCTION
In the paper [5] J. Moser studied the following problem. Let $f_{\nu}$ ,

$\nu$ $=1$ , $.\circ$ , $d$ be the germs of commuting holomorphic functions $(\mathbb{C},0)$

satisfying

(1.1) $f_{\nu}\mathrm{o}f_{\mu}$ $=$ $f_{\mu}\mathrm{o}f_{\nu}$ , $\nu$ , $\mu=1$ , . c , d,
(1.2) $7_{\nu}(0)$ $=$ 0, $7\mathrm{u}(0)\equiv\lambda_{\nu}=e2",\nu$ , $\nu=1$ , . t , d.

We want to seek a holomorphic function $u(z)$ such that

(1.3) $u(0)=0$ , $u’(0)=1,$ (tz -1 $\mathrm{o}f_{\nu}\mathrm{o}u$ ) $(z)=\lambda_{\nu}z$ , $\nu$ $=1$ , . . , d.

Following Haeflinger [2] and Banghe -Haeflinger [1] the commuting ex-
ample appears as a holonomy group of codimension one foliation.

In the case of a single map with $\alpha_{1}=\theta$ the following theorem is well
known.
Theorem l.(Siegel) If there exist C $>0$ and $\tau>0$ such that
(1.4) $|| \theta q||:=\inf_{p\in}$’ $|\theta q-p|\geq Cq^{-\tau}$ , $lq$ $\geq 2$ , $q\in \mathbb{Z}$

there exists a unique holomorphic solution $u(z)$ such that

(1.5) $u(0)=0,$ $u’(0)=1,$ $u(e^{2\pi i\theta}z)=f(u(z))$ .

The difficult part of the proof of this theorem lies in proving the con-
vergence of the formal power series solution $u$ of the s0-called homology
equation. The condition (1.4) is a sufficient condition in order to show
the convergence of the formal power series solution. On the other hand
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it is a difficult and interesting problem to find a necessary condition
for the convergence. We recall a classical result due to Cremer: if

(1.6) $\lim_{karrow}\sup_{\infty}\frac{1}{d^{k}}\log\frac{1}{|\lambda^{k}-1|}=\infty$, d $\geq 2,$ integer

there exists a divergent formal solution $u$ . We note that the left-hand
side is expressed by using a Nevalina function. Therefore it is an inter-
esting problem to understand the convergence without a Siegel condi-
tion.

We recall two approaches to this problem. The former one is to
weaken the Diophantine condition. The typical one is a s0-called Bruno
condition: there exist $\mathrm{c}>0$ and $\tau>0$ such that

(1.7) $|| \theta q||\geq\exp(-\frac{cq}{(\log(q+1))^{1+\tau}})$ , q $\in \mathbb{Z}_{+}$ .

The latter one is to understand from the viewpoint of the symmetry,
$\exists h$ , $f\mathrm{o}h=h\mathrm{o}f$ . Namely, if there exist sufficiently many symmetry
then we can linearize our map without a Siegel condition or without
any Diophantine condition. This approach is closely related with the
work of Moser in [5].

We note that a similar Diophantine phenomena happen in the study
of the Goursat problem. This was first noted by J. Leray in [3]. More
precisely, let us consider the following Goursat problem.

(1.8) $\frac{\partial^{2}}{\partial s\partial t}u=0,$
$\mathrm{J}|_{s+t=0}$ $=$ $u_{1}(s)$ , ’u|) $s+t=0$ $=u_{2}(s)$ ,

where $\lambda\neq 0$ be a complex number and $u_{j}(s)$ are analytic functions
near the origin $s=0$ , $t=0.$ Here $s$ and $t$ are real or complex variables.
The Goursat problem is related with a moving boundary problem for
a hyperbolic equation.

A Goursat problem is also related with the Schroder equation as
follows. It follows from the equation $\partial_{t}\partial_{s}u=0$ that $u=3$ $6(t)$ $+\exists\psi(s)$ .
By the boundary conditions we obtain

(1.9) $\phi(-\mathrm{s})$ $+$ $\mathrm{t}\psi(\mathrm{s})$ $=u_{1}(s)$ , $?(-,\mathrm{s})$ $+\mathrm{A}(s)=$ $u_{2}(s)$ .
It follows that

(1.10) $\phi(-\lambda \mathrm{s})$ $-\phi(-s)=u_{2}(s)-u_{1}(s)\equiv v(-s)$ .

By setting s $\vdash+-s$ we obtain the Schroder equation

(1.11) $\phi(\lambda s)-\phi(s)=v(s)$ .
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It is almost clear that we meet a Diophantine condition if we want to
solve (1.11) in a class of analytic functions. Indeed, let

$\phi(s)=\sum_{n=1}^{\infty}\phi_{n}s^{n}$ , $v(s)= \sum_{n=1}^{\infty}vns^{n}$

be the expansions of $\phi$ and $v$ , respectively. By inserting the expansions
into the equation we obtain

(1.12) $\sum_{n=1}^{\infty}\phi_{n}(\lambda^{n}-\lambda)s^{n}=\sum_{n=1}^{\infty}v_{n}s^{n}$ .

Hence, if $\lambda^{n}-\lambda\neq 0$ $(n=1,2, . .)$ we can construct a formal solution.
As to the convergence of a formal power series solution we need a
Diophantine condition.

By a similar argument as in the above we can prove

Theorem 2. (Leray) If

(1.13) $\rho(\lambda)$ $:= \lim_{karrow}\sup_{\infty}\frac{1}{k}\log\frac{1}{|\lambda^{k}-1|}<$ op

(1.8) has a unique analytic solution for any $\mathrm{L}/,(\mathrm{s})$ .

We call $\rho(\lambda)$ a Leray -Pisot function, (cf. [4]). The necesssary part is
given by

Theorem 3. (cf [8]) If $\rho(\lambda)=\infty$ then there exist $u_{1}$ and u2 such that
(1 . 8) has a formal power series solution $\mathrm{u}$ which does not converge in
any neighborhood of the origin.

Hence it may happen that one can weaken the Cremer’s condition
for the divergence of a formal power series solution. Leray’s result
implies us this may be case since Goursat problem is closely related
with Schr\"oder’s equation, a linearized homology equation.

If we consider the Goursat problem for third order equation we find
that the Leray-Pisot function of two variables

(1.14) $\mathrm{o}(\lambda,$u) $:= \lim_{k\prec}\sup_{\infty}\frac{1}{k}\log\frac{1}{|\lambda^{k}-1|+|\mu^{k}-1|}$

plays the same role as $\rho(\lambda)$ in the case of second order equation. In fact,
the condition $\rho(\lambda,\mu)>0$ is necessary and sufficient for the unique local
solvability in some neighborhood of the origin for any right-hand side
and any boundary conditions, while if $\rho(\lambda,\mu)$ $=0$ we have a divergence
of a formal power series solution.
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2. STATEMENT OF THE RESULTS

Simultaneous Diophantine condition. We say that the set of numbers
$\alpha j$

$(j= 1, \ulcorner. . , d)$ satisfies a simultaneous Diophantine condition if there
exist $\exists C>0$ and $\exists\tau>0$ such that

(2.1) $\max_{\nu=1,\ldots,d}||q\alpha\nu||$ 2 $Cq^{-\tau}$ , q $=1,$ 2, 3, . ,

where
$||q \alpha\nu||=\min_{p\in \mathbb{Z}}|q\mathrm{c}\mathrm{z}\nu-p|$ .

This condition is weaker than the s0-called simultaneous Siegel condi-
tion:

(2.2) 3 C $>$ , $\exists\tau>;||q\alpha_{\nu}[$ $\geq Cq^{-\tau}$ , $\nu$ $=1$ , . . t , d, q $=1,$ 2, $\mathrm{t}$

We say that $\beta$ is a Liouville number if, for every $\lambda>0$ there exist
infinitely many integers q $\in \mathbb{Z}$ such that
(2.3) $0<||q!||<q^{-\lambda}$ .

Moser’s question. Given the germs of commuting holomorphic func-
thans $(\mathbb{C},$0), f(z) $\nu=1,$ , d satisfying (1.1) and (1.3). We consider

(2.4) $f(z):=f_{1}(z)^{g1}0$ , $07_{d}(z)^{gd}$ , $g_{1}$ , .. ’
$g_{d}\in \mathbb{Z}$ .

Suppose that $\alpha_{j}$ $(j=1, . , d)$ satisfy the simultaneous Diophantine
condition. Then Moser asked whether there exist $g_{1}$ , $|$ ( , $g_{d}\in \mathbb{Z}$ such
that $f(z)$ satisfies a Diophantine condition. If this is the case, the
linearization problem in a commuting case is reduced to the case of a
single map, hence to Siegel’s theorem. The answer to this question is
negative. In fact, Moser proved:

Theorem 4. (Moser) For $d\geq 2$ and a given $\tau>2’(d-1)$ there exists
a set of cardinality of $(\alpha_{1}, . , \alpha_{d})\in \mathbb{R}^{d}$ such that the simultaneous
Diophantine condition holds, but such that, for all $g=$ $(g_{1}, . , g_{d})\in$

$\mathbb{Z}^{d}\mathrm{S}$ $0$

$r:=g_{1}\alpha_{1}+$ | $+g_{d}\alpha_{d}$

are Liouville numbers ($\mathrm{i}.e.$ , non Diophantine ).

In [5], Moser raised the question whether this theorem can be ex-
tended to case where $\alpha j$ $(j=1, ..\mathrm{c} , d)$ are $n$-dimensional vectors,
$\alpha j=$ $(\alpha j,1, . , \alpha_{j,n})$ . More precisely we consider a commuting sys-
tem of maps
(2.5) $7_{\nu}$ : $(\mathbb{C}^{n}, 0)arrow(\mathbb{C}^{n},$0), $f_{\nu}(z)=A_{\nu}z+O(z^{2}),\nu=1$ , .. , d.
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Let )’, $(j=1, .l , n)$ be the eigenvalues of $A_{\nu}$ with multiplicity, $(\nu$ $=$

$1$ , . $\mathrm{c}\mathrm{o}$ , $d$). We write

(2.6) $\lambda_{j}^{\nu}=\exp(2\pi i\theta_{j}^{\nu})$ , $0\leq\theta_{j}^{\nu}\leq 1,$

and set $\theta^{\nu}=$ $(\theta_{1}^{\nu}, , , \theta_{n}^{\nu})$ . We define

(2.7) $\langle\alpha, \theta^{\nu}\rangle:=\sum_{j=1}^{n}\alpha_{j}\theta_{j}^{\nu}$, $\alpha=(\alpha_{1,.1} , \alpha_{n})\in \mathbb{Z}^{n}$ .

We say that $\{\theta^{\nu}\}_{\nu=1}^{d}$ satisfies a simultaneous Diophantine condition if
there exist $C>0$ and $\tau>0$ such that

(2.8) $\min_{k=1,\ldots,n}\sum_{\nu=1}^{d}||\langle$o, $\theta^{\nu}\rangle$ $-\theta_{k}^{\nu}||\geq C|\alpha|^{-\tau}$ , $\forall|\alpha|\geq 2$ , $\alpha\in \mathbb{Z}_{+}^{n}$ ,

where $||l||= \inf_{p\in \mathbb{Z}}|t-p|$ .
Let $p_{\nu}\in \mathbb{Z}$ , $(\nu=1,1 , d)$ and set

(2.9) $\delta_{j}=\sum_{\nu=1}^{d}\theta_{j}^{\nu}p_{\nu}$ , $\delta=(\delta_{1}, , \delta_{n})$ .

We say that $\delta$ is a Liouville vector, if for every $\lambda>0$ the inequality

(2.10) $0< \min_{k=1,\ldots n\prime}||\langle$a, $\delta\rangle$ $-\delta_{k}||<|\mathrm{c}\mathrm{J}^{-}$
’

holds for infinitely many $\alpha\in$ lln+ $\cdot$ Note that $\delta$ gives the eigenvalues of
a map $f=f_{1}^{p1}\mathrm{o}\supset\tau$ $\mathrm{o}f_{d}^{pd}$ . Then we have

Theorem 5. Suppose that $d>n\geq 2.$ Tien tiere exists a set of
linearly independent vectors $\theta_{j}=$ $(\theta_{j}^{1}, . , \theta_{j}^{d})(j=1, , n)$ with the
density of continuum satisfying a simultaneous Diophantine condition
for which, for any $p=$ $(p_{1}, ., , \mathrm{p}\mathrm{d})\in \mathbb{Z}^{d}\backslash 0$ the $\delta$ $=(\delta_{1}, ‘ , \delta_{n})$ ,
$\delta_{j}=\sum_{\nu=1}^{d}\theta_{j}^{\nu}p_{\nu}$ is a Liouville vector.

We note that $f_{\nu}(z)$ , $\nu=1$ , $\mathrm{t}$ . , $d$ satisfies a simultaneous Diophantine
condition while, for any $p=$ $(p_{1,\mathrm{c}\mathrm{o}\mathrm{c}},\mathrm{p}\mathrm{d})\in \mathbb{Z}^{d}f:=f_{1}^{p1}\mathrm{o}3C$ $\mathrm{o}f_{d}^{pd}$ does
not satisfy a Diophantine condition.

3. SKETCH 0F THE proof
We will give the sketch of the proof of Theorem 5. We need lemmas

in [5]. (For the detail, see [5]). Let $E^{n}\subset \mathbb{R}^{d}$ b$\mathrm{e}$ a real subspace in $\mathbb{R}^{d}$ .
With the standard Euclidean norm $|$ $|$ in $\mathbb{R}^{n}$ we define

dist(z, $E^{n}$ ) $=y$m\in Ein |x-y|, x $\in \mathbb{R}^{n}$
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Definition. We define $\mu:=\mu(E^{n})$ as the supremum of the numbers A
for which
(3.2) dist(j, $E^{n}$ ) $<|\dot{J}|^{-\lambda}$ , j $\in \mathbb{Z}^{d}$

possesses infinitely many solutions. Here $\mu=$ oo is admitted.

Clearly, the definition is independent of the norm. Note that, if $\mathbb{Z}^{d}\cap$

$E^{n}=$ {0} and $\tau>\mu$ then there exists a positive constant c such that

(3.2) dist(j,$E^{n})\geq c|j|^{-\tau}$ , for all j $\in \mathbb{Z}^{d}\backslash \{0\}$ .

A subspace $E^{n}$ satisfying $\mathbb{Z}^{d}\cap E^{n}=\{0\}$ and (3.2) is called a Diophan-
tine subspace with respect to $\mathbb{Z}^{d}$ . The following theorem is given in
Moser [Theorem 2.1, 5]. (See also [6]).

Theorem. For almost all $E^{n}$ in the Grassmann manifold $G_{n}(\mathbb{R}^{d})$ one
Aas $\mu(E^{n})=\frac{n}{d-n}$ .

Proof of Theorem 5. Let us assume that there exists a subspace $E^{n}$

in $\mathbb{R}^{d}$ generated by the linearly independent vectors $\theta_{j}=$ ( $\theta_{j}^{1}$ , . c-, $\theta_{j}^{d}$ ),
$(j=1, ..\mathfrak{o} ,n)$ such that $\mu(E^{n})$ $= \frac{n}{d-n}$ . Let $\mathrm{r}$ be such that $\tau>\frac{n}{d-n}$ .
Then we have (3.2). We consider the left-hand side of (2.8)

(3.3) $\min_{1\leq k\leq n}\sum_{\nu=1}^{d}||\langle\alpha, \theta^{\nu}\rangle-\theta_{k}^{\nu}||=1011\mathrm{i}_{\mathrm{n}}$ $\sum_{\nu=1}^{d}\inf_{p_{\nu}\in \mathbb{Z}}|\langle\alpha, \theta^{\nu}\rangle-\theta_{k}^{\nu}-p_{\nu}|$ .

We set

$y=ytc$ $=(\langle\alpha, \theta^{\nu}\rangle-\theta_{k}^{\nu})_{\nu\downarrow 1,\ldots,d}\in E^{n}$ , $k$ $=1$ , $\mathrm{C}3$ $\ulcorner$ , $n$ .
Let $7=(p_{\nu})_{\nu\downarrow 1,\ldots,d}\mathrm{E}$

$\mathbb{Z}^{d}$ b$\mathrm{e}$ a multiinteger for which the infimum in
the right-hand side of (3.3) is taken. Then the right-hand side of (3.3)
is bounded from the below by $c_{1} \min_{1\leq k\leq n}|$ $7$

–
$y_{k}$

$|$ for some positive
constant $c_{1}$ independent of $j$ and $k$ . By the inequality $|\mathrm{j}$ – $y*|\geq$

dist(j, $E^{n}$ ) for $k$ $=1$ , ’ , $n$ and (3.2) we can estimate the right-hand
side of (3.3) from the below in the following way

(3.4) $\geq c_{1}\min_{1\leq k\leq n}|j-y_{k}|\geq c_{1}\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(j, E^{n})\geq c_{2}|j|^{-\tau}$ ,

for some positive constant $c_{2}$ independent of $j$ . Because the infimum
in (3.2) is taken for 7 such that $|\mathrm{j}$ $-y_{k}|\leq M|y_{k}|$ for some constant $M$

independent of $k$ , we obtain, by the condition $|$ a $|\geq 2$

$|j|\leq(1+M)|y_{k}|\leq c’$ ( $1+|$ cx |) $\leq c’|\alpha|$

for some positive constants $c’$ and $c’$ . It follows that the right-hand
side of (3.3) is bounded from the below by $c|\alpha|^{-}$” for some positive
constant $c$ independent of $\alpha$ . This proves (2.8).
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We want to show that there exists $E^{n}$ satisfying $\mu(E^{n})=\frac{n}{d-n}$ and
the Liouville property (2.10) for any $p=(p_{1,.(} ,p_{d})\in \mathbb{Z}^{d}\mathrm{s}0$ . For the
detail we refer to [10].

4. COMMUTING SYSTEM OF VECTOR FIELDS

In the case of a commuting vector fields the situation is completely
different from the case of maps. For the sake of simplicity, let us
consider a system of holomorphic commuting system of vector fields
$\mathcal{X}_{\nu}$ $(\nu =1, .1 , d)$ , $[\mathcal{X}_{\nu}, \mathcal{X}_{\mu}]$ $=0(\nu,\mu=1, . , n)$ which are singu-
lar at the origin. With a standard coordinate in $\mathbb{C}^{n}$ we write $\mathcal{X}_{\mu}=$

$\sum_{j=1}^{n}X_{j}^{\mu}(x)\partial_{x_{\mathrm{j}}}(\mu=1, . , d)$ . Define $X^{\mu}:=(X_{1}^{\mu}, , \mathrm{y}\mathrm{p})$ and $\Lambda^{\mu}=$

$\nabla_{x}X^{\mu}(0)$ . Note that $x\Lambda^{\mu}$ is the linear part of $X^{\mu}$ . We assume that $\mathcal{X}$

is singular at the origin. Hence we can write

(4.1)
$X^{\mu}(x):=X^{\mu}=(X_{1}^{\mu}(x), , X_{n}^{\mu}(x))=x\Lambda^{\mu}+$ $7?”(x)$ , $1\leq$ $\mathrm{u}$ $\leq d,$

where $R^{\mu}(x)$ is analytic in $x$ in some neighborhood of the origin such
that

(4.2) $R^{\mu}(0)=\partial_{x}R^{\mu}(0)=0,$ $1\leq\mu\leq d.$

Let $\lambda_{j}^{\mu}$ $(j=1, \mathrm{t} , n,\mu=1, ..,d)$ be the eigenvalues with mul-
tiplicities of $\Lambda$’. We set $\lambda^{\mu}=$ $(\lambda_{1}^{\mu}, .., \lambda_{n}^{\mu})$ , $(\mu=1, \mathrm{c}\supset , , d)$ . For $\mathrm{a}$

multiinteger $\alpha=$ $(\alpha_{1}$ , . , . , $\alpha_{n})\in \mathbb{Z}_{+}^{n}$ we set $\langle\lambda^{\nu}, \alpha\rangle=\sum_{j=1}^{n}\lambda_{j}^{\nu}\alpha j$ and
define

(4.3) $\omega(\alpha)=1$$y $\sum_{\nu=1}^{d}|(\mathrm{c}\mathrm{r},$ $\lambda^{\nu}\rangle$ $-\lambda_{j}^{\nu}|$ .

Definition. We say that $\mathcal{X}:=\{\mathcal{X}_{\nu};\nu=1, . , d\}$ is non simultane-
ously resonant if $\omega(\alpha)\neq 0$ for all $\alpha\in \mathbb{Z}_{+}^{n}$ , $|\mathrm{c}\mathrm{y}|\geq 2.$ The set of $\alpha\in \mathbb{Z}_{+}^{n}$ ,

$|$ a $|\geq 2$ such that $\omega(\alpha)=0$ is called a simultaneous resonance of $\mathcal{X}$ .
Definition. Let $\omega_{k}$ $(k=2,3, .\mathbb{C}3 ))$ be given by

(4.4) $\omega_{k}=\inf$ { $\omega(\alpha);\omega(\alpha)\neq 0,$ a $\in \mathbb{Z}_{+}^{n},2\leq|$a$|<2k$ }
We say that the system $\mathcal{X}$ satisfies a simultaneous Siegel condition, a
simultaneous Bruno type condition and a simultaneous Bruno condition
respectively if,

$\mathrm{i}_{1k}\geq C(1+2^{k})^{-\tau}$ ,

$\omega_{k}\geq\exp(-C2^{k}/(k+1)^{1+\tau})$ ,
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for some constants C $>0$ and $\tau>0$ independent of k, and

$- \sum_{k=2}^{\infty}ln$ $w_{k}/2^{k}<\infty$ .

In the case $d=1$ we say that the vector field $\mathcal{X}=$ $1_{1}$ satisfies a Siegel
condition, a Bruno type condition and a Bruno condition, respectively
if the corresponding simultaneous condition is verified. Then we have

Theorem 6. Tie system $\mathcal{X}_{\nu}$ $(\nu =1, . \mathrm{c} , d)$ satisfies one of a simul-
taneous Siegel condition, a simultaneous Bruno condition and a si-
multaneous Bruno type condition if and only if there exist numbers
$c_{\nu}(\nu=1, .1 , d)$ such that the following conditions are satisfied:
(i) the vector field $l_{0}:= \sum \mathrm{v}_{=1}$’ $c_{\nu}\mathcal{X}_{\nu}$ satifies a Siegel condition, a Bruno
condition and a Bruno type condition, respectively.
(ii) the resonance of $\mathcal{X}_{0}$ coincides with the simultaneous resonance of
the system $1_{\nu}$ $(\nu =1, . , , d)$ .

We note that the case of vector fields shows a sharp contrast to that
of maps. Because we can choose a Diophantine vector field from the
Lie algebra generated by a system of vector fields if the given system
satisfies a simultaneous Diophantine condition.

5. SKETCH OF THE proof

We will give a sketch of the proof of Theorem 6. We will show the
necessity of (i) and (ii). We note that the commutativity of $\mathcal{X}_{\nu}$ implies
that the linear parts of 1, are pairwise commuting. Without loss of
generality we may assume that the linear part $A_{1}$ of $1_{1}$ is put in a
Jordan normal form.

Let $c_{1}$ , . ’
$c_{d}$ be complex numbers. By the commutativity, the eigen-

values of the linear part of $\mathcal{X}_{0}:=\sum_{\nu=1}^{d}c_{\nu}\mathcal{X}_{\nu}$ are given by $\sum_{\nu=1}^{d}c_{\nu}\lambda_{j}^{\nu}$

$(j=1,1 ,n)$ . For $c=(c_{1,1} , c_{d})\in \mathbb{C}_{+}^{d}$ and $\alpha\in \mathbb{Z}_{+}^{n}$ we define

(5.I) $\Omega(\alpha, c)=\min_{1\leq j\leq n}|\sum_{\nu=1}^{d}c_{\nu}(\langle\alpha, \lambda^{\nu}\rangle-\lambda_{j}^{\nu})|$

Let $\omega(\alpha)$ and $\omega_{k}$ be given by (4.3) and the definition in the above,
respectively. Then we define

(5.2) $A_{k}=$ { c $=(c_{1},$.c ,$c_{d})\in \mathbb{C}_{+}^{d};\exists\alpha\in \mathbb{Z}_{+}^{n}$ , $2\leq|$ cz $|<2^{k}$

such that $\omega(\alpha)\neq 0$ , $\Omega(\alpha, c)<2^{-nk-k}\omega_{k}\}$ ,
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We can easily show that the Lebesgue measure of the set $A:= \lim_{karrow\infty}A_{k}$

is equal to zero. Therefore, if c $\not\in A$ there exists $k_{0}\geq 1$ such that
$\Omega(\alpha, c)>\omega_{k}2^{-nk-k}$ , $\forall k\geq k_{0}$ .

This proves that $\mathcal{X}_{0}$ satisfies a Siegel, a Bruno type and a Bruno con-
dition, respectively.

In order to show (ii) we note that if $\alpha$ is not in a simultaneous
resonance set of $\mathcal{X}_{\nu}$ $(\nu =1, . . , d)$ , the set of $c\in \mathbb{C}^{n}$ such that
$\sum_{\nu=1}^{d}c_{\nu}(\langle\alpha, \mathrm{X}’)-$ xy) $=0$ is a hyperplane for each $j$ . The Lebesgue
measure of the sum of these hyperplanes is zero. By adding $A$ to the
sum of these hyperplanes we can choose $c\not\in A$ such that the resonance
of $\chi_{0}$ is equal to the simultaneous resonance of $\mathcal{X}_{\nu}$ $(\nu=1, . , d)$ .

We will prove the sufficiency. We define $\tilde{\omega}(\alpha)$ by

This proves that $\mathcal{X}_{0}$ satisfies a Siegel, aBruno type and a Bruno con-
dition, respectively.

In order to show (ii) we note that if $\alpha$ is not in asimultaneous
resonance set of $\mathcal{X}_{\nu}(\nu$ $=1,$ $|( , d)$ , the set of $c\in \mathbb{C}^{n}$ such that
$\sum_{\nu=1}^{d}c_{\nu}(\langle\alpha, \lambda^{\nu}\rangle-\lambda_{j}^{\nu})=0$ is ahyperplane for each $j$ . The Lebesgue
measure of the sum of these hyperplanes is zero. By adding $A$ to the
sum of these hyperplanes we can choose $c\not\in A$ such that the resonance
of $\chi_{\mathit{0}}$ is equal to the simultaneous resonance of $\mathcal{X}_{\nu}$ $(\nu=1, . , d)$ .

We will prove the sufficiency. We define $\omega\sim(\alpha)$ by

$\tilde{\omega}(\mathrm{c}_{\mathrm{t}})=\min_{j}|(\alpha,$ $\sum_{\nu}c_{\nu}\lambda^{\nu}\rangle-\sum_{\nu}c_{\nu}\lambda_{j}^{\nu}|$ .

We also define $\tilde{\omega}_{k}$ by (4.4) with $\omega(\alpha)$ replaced by $\tilde{\omega}(\alpha)$ . We can easily
show that $\tilde{\omega}(\mathrm{c}\mathrm{r})$ $\leq M\omega(\alpha)$ for some $M>0$ independent of $\alpha$ . It follows
from the assumption (ii) that $\tilde{\omega}$

) $\leq M\omega_{k}$ . This implies that if $1_{0}$

satisfies a Siegel condition (or Bruno type condition) the system $\mathcal{X}$ also
satisfies a simultaneous Siegel and Bruno type condition, respectively.
Now, let us assume that $1_{0}$ satisfies a Bruno condition. Because In $\tilde{\omega}_{k}<$

In $M+In$ $\omega_{k}$ , it follows that $- \sum_{k}In\tilde{\omega}_{k}/2k>-\sum k(ln M+ln\omega_{k})/2^{k}$ .
Hence $\mathcal{X}$ satisfies a simultaneous Bruno condition. This ends the proof.
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