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Testing hypothesis for quantum systems
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1 Introduction

A quantum information protocol usually makes use of maximally entangled states
as resources ([6]). In many cases, the protocol is based on a device which repeatedly
produce entangled resources with a constant level of quality. Hence it is important to
test the performance of the device. Since the testing is based on a physical measurement,
we should carefully analyze the noise and error. For such a testing problem, hypothesis
testing theory of mathematical statistics serves an orthodox framework. In quantum
theory of hypothesis testing, a lower bound of error is given by the quantum Neyman-
Pearson theorem for non-asymptotic cases ([3], [5]), and by the quantum Stein’s lemma
for asymptotic cases ([4], [7], [2]). In these general arguments, an optimal test require
measurements which can not be realized by Local Operations and Classical Communi-
cations (LOCC). On this point, these arguments are not enough as testing theory for
quantum information. On the other hand, the LOCC requirement has been considered
in a context of entanglement witness though their framework is not so orthodox as that
of hypothesis testing.

- In order to argue this requirement in hypothesis testing, it is necessary to characterize
the set of LOCC tests. Recently, Virmani and Plenio [8] pointed out that some invariance
restrictions measurements make the characterization more convenient. They showed
some examples in a case where the number of samples is one. Such a method had been
considered by Acin, Tarrach and Vidal [1] for statistical estimation of quantum states.

In this article, we consider a case where the number n of samples is large, and a case
where n is just two. In the former case, we derive optimal tests

(i) with a LOCC condition between two parties,

(i) without a LOCC condition between two parties. _

In the latter case, we derive optimal tests without a LOCC condition between two parties
and

(iii) with a LOCC condition between two samples,

(iv) without a LOCC condition between two samples.

As is naturally expected, the performance of the best test for (ii) is worse than that of

(i). However, if the state is close to the maximally entangled state, the difference of
performance asymptotically goes to zero with respect to the exponent of error. Similarly,



the best test Ty for (iii) is better than the best one Ty for (iv). Indeed, T3 require non-
local measurement between two samples. The condition of (iv) is most restrictive so that
it is the nearest to the real situation among (i)-(iv) though the mathematical story for
the optimization is not so simple as those of (i)-(iii).

In Section 2, we introduce a general formulation of hypothesis testing. In Section 3,
we consider (i), (ii), (iii) and (iv) in order.

2 A general setting

Let M be a finite-dimensional Hilbert space which describes a physical system of
interest. For such M, let £(H) be the set of linear operators (matrices) on H and let
S(H)(C L(H)) be the set of density matrices on H. Let Sp and S be mutually disjoint
and non-empty subsets of S(H).

Suppose that the current state p(€ S(H)) of the system is unknown. Suppose also
that p € S or p € S;. In such a case, we would like to test

Hy:peSyversus Hi: p€ S (1)

based on an appropriate measurement on H. Hj is called @ null hypothesis, and H, is
called an alternative hypothesis.

A test for the hypothesis (1) is given by a Positive Operator Valued Measure (POVM)
on H. Let T(H) be the set of POVM’s T of the form

T:{0,1} = L(H) (i~ T})

where Tp + Ty = I (identity on H). We often write T(€ T(H)) as T = {To, T1} to
specify the form of T. Any test can be described by T € T(H), that is, Hp is accepted
(=H, is rejected) if 0 is observed and H; is accepted (=Hp is rejected) if 1 is observed.

A type 1 error is an event such that H; is accepted though Hj is true. A type 2 error
is an event such that Hy is accepted though H; is true. Hence the type 1 error probability
a(T, p) and the type 2 error probability 3(T', p) are given by

a(T, p) = Tr(pTh) (p € So), B(T, p) = Tr(pTo) (p € S1).

A quantity 1 — 3(T, p) is called power.

A test T is said to be level-a if a(T,p) < « for any p € So. Let To(C T(H)) be
the set of tests which satisfy a condition C. A test T € T¢ is called a Most Powerful-C
(MP-C) test at p(€.81) if B(T, p) < B(T", p) for any T" € To. A test T € 7T, is called a
Uniformly Most Poierful-C (UMP-C) test if T is MP-C for any p € S;. In case that S,
is a closed set with respect to the natural topology, a test T' € T, is called a Locally Most
Powerful-C (LMP-C) test if there is an open set Sj such that So C Sy and T is MP-C
for any p € S;.

3 Problems, Answers, Proofs

3.1 Problem 1

We study how to test hypotheses for entanglement between two d-dimensional parties
based on n-samples. For mathematical convenience in the optimization of tests, we
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require an invariance of tests. (This is the simplest case.)

For » = 1,2,...,n, let H,, and Hp, be d-dimensional Hilbert spaces spanned by
10) 45 [1) s, -y |[d — 1) 4; and |0)p,,[1)B;, ..., [d — 1) p,, Tespectively. Let H; = H,, ® Hp,,
Ha=@Q: Ha, He = Q;_, Hp, and 'HAB = Ha ® Hp be the composite spaces.

Let

|0F) = g ﬁ‘i)Ax ® |i) B,

be an element of H;. Note that a state oo = |®¥)(®*| € S(H,) is a maximally entangled
state between H 4, and Hp,.

Suppose that the state p on H4p is given in the form p = o®" for an unknown d x d
matrix o with respect to an appropriate correspondence of bases. Let

= {o¥"}, ‘Sl ={c®|oo#c€ S(H1)}.
We study how to test hypotheses
Hy:p€ Sy versus Hy : p € Sy. (2)

For an invariance condition, we consider an action on 7(H4p) given by the following
linear representation Uyp of a d"-dimensional special unitary group G & SU (d):

Uap : 9(€ G) = Ua(g) ® Us(g),

where U4(g) and Ug(g) be natural representations of g € G, and where X means the
contragradient of X. That is, g € G maps T = {Ty, T1 }(€ T (Hap)) as

T; — Ul p(9)T:Uas(g). (3)
Define a condition C) on T(Hyp) as

(level) T(€ T(Hap)) is level-zero,
(invariance) T'(€ T(Hap)) is fixed by the action of G.

Then, a UMP-C; test for (2) is given as follows.
Theorem 1 A UMP-C; is given by Ty = o™,
Proof From the invariance, the form of a test T = {T,,T1} € T, is given by
To = w1po + wa(Ir, 5 — po) (4)

for real numbers w,, wy(€ [0, 1]). The level-zero condltlon implies wy = 1. The power is
maximized when wy; = 0. 0

Corollary 1 The type 2 error of the UMP-C, test is given by F>™ where F is the fidelity

\/ Tr(oao between o and oy.
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3.2 Problem 2

We consider a case where we can use only LOCC between the two parties. Under
the invariance condition introduced in the previous section, we will see that this LOCC
restriction is no longer restrictive in asymptotic sense.

Define a condition C3 on T(H4p) as

(level)  T(€ T(Hap)) is level-zero, (5)
(locality) T(€ T(Hgzp)) is realized by LOCC between H,4 and 'HB, (6)
(invariance) T'(€ T(Hap)) is fixed by the action of G. (7)

Then, a UMP-C, test for (2) is given as follows.

Theorem 2 A UMP-C, test is given by

ar -1

To——0'0+d

(I'HAB - 00)'

Proof From the invariance, T = {Ty,T1} € ¢, is written as (4). The level-zero condition
implies w; = 1. The locality condition implies that T} is Positive Partial Transpose (PPT)
(see [8]). Ty is PPT if and only if wy > (d™ — 1)/(d?" — 1). Power of PPT tests gives
the maximum at wy = (d" — 1)/(d*" — 1). In fact, this PPT test is realized by LOCC as
follows. First, twirl the system as

e / Uas(9)p(Uag(9)) 1(dg)
g€G

where p(-) is the normalized uniform (Haar) measure on G. Next, measure the system
by a POVM T" = {To, Ti} € T(Hap) where

Ty = Z ® |25) a; (i 4; ® li5) 8, (isl ;-

814001t €{0,1,...,d—1} j=1,n

Corollary 2 The type 2 error of the UMP-C) test is

1+ drF?m
dr +1
O(F*) if F? >d7,
O(d™) if Ft<d!

B(T,p) =

as n — o0,

This Corollary means that the LOCC condition in C; asymptotically gives no restriction
from the viewpoint of hypothesis testing.
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3.3 Problem 3

We set d = 2 and n = 2 in the setting mentioned above. We let the invariance
condition be less restrictive. We will see that the best test under such a condition needs
an non local POVM beyond the two samples.

Let G = G; X G3 x G3 be the product group of G; & G, = SU(2) and a symmetric
group G3 = 5 of order two. Let Uy, and Up, the natural representations of G; on
H,4, and Hp,, respectively. Let Uy, and Up, the natural representations of G, on H,,
and Hp,, respectively. Let U; be a representation of G which permutes H; and H; by
|z)y, > |T)y, for £ =10,1and y = A, B. Let

Usp=Uys ® [731 ® Uy, ®[732 ® Us

be the tensor product. We consider an action of G on 7T (Hp) of the form (3). For such
a G-action, define a condition C3 on T(H4p) as (5) to (7). Then, a LMP-Cj test for (2)
is given as follows.

Theorem 3 A LMP-C; test is given in the form
Ty =0 + %(14 — 0¢)%?
where I is a 4 X 4 identity matriz.
Proof From the invariance, the form of T} is
To = woo§? +wy (oo ® (I — 09) + (Iy — 00) ® 00) + wa(Iy — 7o) 2.

The level-zero condition implies wy = 1. The locality condition implies that Ty is PPT.
Ty is PPT if and only if

2w; + 3wy —1>0and —6w; +9%wy;+12>0.

Let wy = 0 and w3 = 1/3. Since Tr(op(Iy — 09)) = O, there is an open set Sj such that
So C Sy and such that power of tests in 7¢, is maximized in Sj. O

Corollary 3 The type 2 error of the LMP-C; test is F* + (1 — F?)?/3.

3.4 Problem 4

Let d = 2 and n = 2 again. We consider a case where we can use only LOCC between
the two samples as well as the two parties. Moreover, we let the invariance be further less
restrictive. However, it is difficult to characterize a class of such tests for optimization.
Hence, we introduce another class of tests which is convenient for optimization. We will
see that the optimal solution in the latter class belongs to the former class.

Let
IO)A1 11)31 — Il)Al IO)BI
V2 '

Note that og = |¥~)(¥~| is maximally entangled. Let
So={0o5"}, S1={0®" | 00 # 0 € S(M1)}.

|-y =
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We study how to test hypotheses
Hy:pe S, versus H; : p € 8. (8)

Let G(= SU(2)). Let Uy, Up,, Uy, and Ug, be the natural representations of G on
Ha,, Hp,, Ha, and Hp,, respectively. Let

Uasp=Us QUp, @ Uy, ® Up,

be the tensor product. We consider an action of G on T(H4g) of the form (3). Define a
condition Cy on T(H4p) as

(level) T(€ T(Hap)) is level-zero,
(locality A : B) T(€ T(Hap)) is realized by LOCC between H4 and Hp,
(locality 1:2) T(€ T(Hap)) is realized by LOCC between H; and H;,
(invariance) T'(€ T(Hap)) is fixed by the action of G.

However, it is difficult to characterize the set Tg, of tests satisfying Cy for optimization.
Hence, we introduce another conditions Cj which is convenient for optimization.

(level)  T(€ T(Hag)) is level-zero,

(locality &
invariance) T = {Tg, T} is of the form

g
Iy = z )‘i/ (Uap(9)) My, ® Mj, ® M, ® M5, Uas(g)u(dg),
i=1 g€eCG

where

(1) g is an element of the set of natural numbers,

(ii) i is a positive number,

(i) My, € L(Ha,), Mp € L(Hp,), M}, € £L(Ha,) and Mp, € L(Hp,) are projections
with rank one satisfying

7] _1 “ra 1 73 —’1 v ].
R A e R LA

(iv) u(-) is the normalized Haar measure on G.
Then, a UMP-C] test for (8) is given as follows.

Theorem 4 A UMP-C; test is given by
1 1 1 1 -
Ty = 10Q° + +3Q1 + 6Q2 + 3Q3 +o5°,
where Qy, @1, Q2 and Q3 are projections defined below.

(Definitions of Qg, @1 and @Q;) Let 4 be a symmetric group of order four. Let V' be
the linear representation of 4 which is dual to Usp. Let

ng =111, nlr--B]:}andnngB
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be Young indexes. For ¢ = 0,1,2, let U,, and V},, be irreducible subrepresentations of
Uap and V, that is,

UAB ® V= Uno ® Vno @ Un1 ® an @ Un2 ® ‘/;12.
Let ‘ '

U @YV = Uny ® Voo ® Un; @ Vi, ® Uy, ® Va,.

denote the corresponding vector spaces.
Definition 1 Let @ be the projection on Uy, ® Vy,.

Let p1a € 4 be an element such that V(p;,) transposes |z),, and |z),, for z = 0,1
and y = A, B. Let ¢; be the projection on the subset of V,, which is fixed by p;a.

Definition 2 Let Q, be Q ® q; where Q is the projection on Uy, .

Let pap € 4 be an element such that V(pap) transposes |z),, and |z)p, for z = 0,1
and y = 1,2. Let ¢, be the projection on the subset of V,, which is fixed by psp. Let g3
be the projection on the subset of V,, which is —1-scaled by both p;, and pap.

Definition 3 Let Q; be Q@ ® ¢5. Let Q3 be Q@ ® g¢5.

Proof of Theorem 4 Since o(T,0$?) = 0 (level-zero) and since the partial trace
Try, (0$2) over Hp is 4711, it holds that Try,(To) = Ix,. Since T is G-invariant, it
also holds that .

1
3 Zf.' = (¢|Trs(Ts)|4) = 1

=1
where
fi = Te(M M},) = Tr(Mp My,),
IO>A1IO>A2 + '1>A1 |1>A3.

M)) = \/5

The type 2 error for p = 0®? is of the form

BT.0) = 3 Mal0)f? +8(0)fe + (o)

where
1 — ) 4+ (x93 - 232 + (z3 — 2,2 6
a(o) = (1 2) (z2 ) (72 ) +—(3$§3+3y32+3yf3),

15 15

Ty T2 Ti3 Ti4 ~Yi2 —Yia —Yu4

T2 Tz T2z T4 Y12 —Y23 —Yau

o = +v-1
T3 T23 T3 T3 Yiz Y23 T 7Y
Ti4 T24 T3g T4 Yia Y24 Yaq

and b(o) and c(o) are some functions of o. Therefore, 3(T, p) is minimized by ¢ = 4,
Ay=--=X=1and f; =---= fy = 1/2. For example,

1\ ‘ ‘ 1/11 11 -1\
o= () = () me=5 (0 ) =5 (5 T

give the UMP-C,. - m]
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Corollary 4 The UMP-C} test in Theorem 4 is in T¢,.

Corollary 5 The type 2 error of the UMP-C} test is given by

2
‘vRv — I‘g(xga + Y5 + ¥is)
where
v=|{z:-1/2], R== |7 6 7
23— 1/2 77 6
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