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1 Introduction
A quantum information protocol usually makes use of maximally entangled states

as resources ([6]). In many cases, the protocol is based on a device which repeatedly
produce entangled resources with a constant level of quality. Hence it is important to
test the performance of the device. Since the testing is based on a physical measurement,
we should carefully analyze the noise and error. For such a testing problem, hypothesis
testing theory of mathematical statistics serves an orthodox framework. In quantum
theory of hypothesis testing, a lower bound of error is given by the quantum Neyman-
Pearson theorem for non-asymptotic cases ([3]) [5] $)$ , and by the quantum Stein’s lemma
for asymptotic cases ([4], [7], [2]). In these general arguments, an optimal test require
measurements which can not be realized by Local Operations and Classical Communi-
cations (LOCC). On this point, these arguments are not enough as testing theory for
quantum information. On the other hand, the LOCC requirement has been considered
in a context of entanglement witness though their framework is not so orthodox as that
of hypothesis testing.

In order to argue this requirement in hypothesis testing, it is necessary to characterize
the set of LOCC tests. Recently, Virmani and Plenio [8] pointed out that some invariance
restrictions measurements make the characterization more convenient. They showed
some examples in a case where the number of samples is one. Such a method had been
considered by Acin, Tarrach and Vidal [1] for statistical estimation of quantum states.

In this article, we consider a case where the number $n$ of samples is large, and a case
where rt is just two. In the former case, we derive optimal tests
(i) with a LOCC condition between two parties,
(ii) without a LOCC condition between two parties.
In the latter case, we derive optimal tests without a LOCC condition between two parties
and
(iii) with a LOCC condition between two samples,
(iv) without a LOCC condition between two samples.
As is naturally expected, the performance of the best test for (ii) is worse than that of
(i). However, if the state is close to the maximally entangled state, the difference of
performance asymptotically goes to zero with respect to the exponent of error. Similarly,
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the best test $T_{3}$ for (iii) is better than the best one $T_{4}$ for (iv). Indeed, $T_{3}$ require non-
local measurement between two samples. The condition of (iv) is most restrictive so that
it is the nearest to the real situation among $(\mathrm{i})-(\mathrm{i}\mathrm{v})$ though the mathematical story for
the optimization is not so simple as those of $(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})$ .

In Section 2, we introduce a general formulation of hypothesis testing. In Section 3,
we consider (i), (ii), (iii) and (iv) in order.

2 A general setting
Let $H$ be a finite-dimensional Hilbert space which describes a physical system of

interest. For such -?, let i(??) be the set of linear operators (matrices) on $H$ and let
$S(H)$ ( $\subset$ i(??)) be the set of density matrices on -?. Let $S_{0}$ and $S_{1}$ be mutually disjoint
and non-empty subsets of 5(??).

Suppose that the current state $\rho(\in S(H))$ of the system is unknown. Suppose also
that $\rho\in 50$ or $\rho\in S_{1}$ . In such a case, we would like to test

$H_{0}$ : $\rho\in S_{0}$ versus $H_{1}$ : $\rho\in S_{1}$ (1)

based on an appropriate measurement on $\mathcal{H}$ . $H_{0}$ is called a null hypothesis, and $H_{1}$ is
called an alternative hypothesis.

A test for the hypothesis (1) is given by a Positive Operator Valued Measure (POVM)
on $\mathcal{H}$ . Let $\mathrm{y}(\mathrm{h})$ be the set of POVM’s $T$ of the form

$T$ : $\{0, 1\}arrow \mathcal{L}(H)(\prime i \mapsto T_{i})$

where $T_{0}+T_{1}=I_{H}$ (identity on ??). We often write $T(\in 7(?\#))$ as $T=\{T_{0}, T_{1}\}$ to
specify the form of $T$ . Any test can be described by $T\in$ $7(7?)$ , that is, $H_{0}$ is accepted
( $=H_{1}$ is rejected) if 0 is observed and $H_{1}$ is accepted ( $=H_{0}$ is rejected) if 1 is observed.

A type 1 error is an event such that $H_{1}$ is accepted though $H_{0}$ is true. A type 2 error
is an event such that $H_{0}$ is accepted though $H_{1}$ is true. Hence the type 1 error probability
$\mathrm{a}(\mathrm{T}, \rho)$ and the type 2 error probability $\beta(T, \rho)$ are given by

$\mathrm{a}(\mathrm{T}, \rho)=$ Tr(pTi) $(\rho\in 50)$ , $\mathrm{a}(\mathrm{T}, p)=$ Tr(pT0) $(\rho\in S_{1})$ .

A quantity $1-\beta(T_{j}\rho)$ is called power.
A test $T$ is said to be level-a if $\alpha(T, \rho)$ $\leq\alpha$ for any $\rho\in S_{0}$ . Let $\mathcal{T}_{C}(\subset$ $7$ (??) $)$ be

the set of tests whir.h satisfy a condition $C$ . A test $T\in \mathcal{T}_{C}$ is called a Most Powerful-C
(MP-C) test at $\rho(\in-.S_{1})$ if $\mathrm{a}(\mathrm{T}, \rho)\leq\beta(T’, \rho)$ for any $T’\in \mathcal{T}_{C}$ . A test $T\in \mathcal{T}_{\alpha}$ is called $a$

Uniformly Most Powerful-C (UMP-C) test if $T$ is MP-C for any $\rho\in$ Si. In case that $S_{0}$

is a closed set with respect to the natural topology, a test $T\in \mathcal{T}_{\alpha}$ is called a Locally Most
Powcrful-C (LMP-C) test if there is an open set $S_{0}’$ such that $S_{0}\subset S_{0}’$ and $T$ is MP-C
for any $\rho\in S_{0}’$ .

3 Problems, Answers, Proofs

3.1 Problem 1
We study how to test hypotheses for entanglement between two $d$-dimensional parties

based on $n$-samples. For mathematical convenience in the optimization of tests, we
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require an invariance of tests. (This is the simplest case.)
For $\prime i$ $=1$ , 2, $\ldots$ , $n$ , let $H_{A_{\mathrm{i}}}$ and $H_{B_{i}}$ be $d$-dimensional Hilbert spaces spanned by

$|0)A_{i}$ , $|1\rangle_{A:}$ , ..., $|$”$\rangle_{A_{i}}$ and $|0$ ) $B_{\dot{\mathrm{t}}}$ , $|1|\rangle_{B_{j}}$ , ..., $|d-1\rangle_{B_{\mathrm{i}}}$ , respectively. Let $H_{i}=$ $\mathrm{H}A_{i}\otimes \mathcal{H}_{B}$ ,
$lt_{A}=\otimes_{i=1}^{n}\mathit{1}t_{A:}$ , $lt_{B}=\otimes_{i=1}^{n}\mathit{1}t_{B_{\dot{\mathrm{t}}}}$ and $H_{AB}=H_{A}\otimes$ $ltB$ be the composite spaces.

Let

$|\Phi^{+})$ $= \sum_{i=0}^{d-1}\frac{1}{\sqrt{d}}|\mathrm{i}\rangle_{A_{1}}\otimes|i)B1$

be an element of $?\mathrm{t}_{1}$ . Note that a state $\sigma_{0}=|$ $\mathrm{i}$

$+$ ) $\langle$ $\Phi^{+}|\in$ S(Hi) is a maximally entangled
state between $\gamma\{_{A_{1}}$ and $It_{B_{1}}$ .

Suppose that the state $\rho$ on $H_{AB}$ is given in the form $\rho=\sigma^{\emptyset n}$ for an unknown $d\mathrm{x}d$

matrix a with respect to an appropriate correspondence of bases. Let

$5_{0}=\{\sigma_{0}^{\otimes n}\}$ , $5_{1}=$ {a $\otimes n|\sigma_{0}\neq y$ $\in S(7\{_{1})\}$ .

We study how to test hypotheses

$H_{0}$ : $\rho\in S_{0}$ versus $H_{1}$ : $\rho\in S_{1}$ . (2)

For an invariance condition, we consider an action on $\mathrm{y}$ $(\mathrm{h}_{AB})$ given by the following
linear representation $U_{AB}$ of a $d^{n}$-dimensional special unitary group $G\cong$ SU(dn):

$U_{AB}$ : $g(\in G)\mapsto U_{A}(g)\otimes\overline{U}$B(g),

where $U_{A}(g)$ and $U_{B}(g)$ be natural representations of $g\in G,$ and where $\overline{X}$ means the
contragradient of $X$ . That is, $g\in G$ maps $T=\{T_{0}, T_{1}\}(\in \mathcal{T}(H_{AB}))$ as

$Ti\mapsto U_{AB}^{\mathrm{T}}(g)T_{i}U_{AB}(g)$ . (3)

Define a condition $C_{1}$ on $\mathcal{T}(H_{AB})$ as

$(_{\backslash }1\mathrm{e}\mathrm{v}\mathrm{e}1)$ $T(6\mathcal{T}(H_{AB}))$ is level-zero,
(invariance) $T(\in T(H_{AB}))$ is fixed by the action of $G$ .

Then, a $\mathrm{U}\mathrm{M}\mathrm{P}- C_{1}$ test for (2) is given as follows.

Theorem 1 $A$ $U$ Vり P-Cl is given by $T_{0}=\sigma_{0}^{\otimes n}$ .

Proof From the invariance, the form of a test $T=\{T_{0}, T_{1}\}\in$ $7\mathrm{i}_{1}$ is given by

$T_{0}=$ $\mathrm{U}\mathrm{J}_{1}\mathrm{j})0$ $+w_{2}(I_{\mathit{7}\{_{AB}}-\rho_{0})$ (4)

for real numbers $w_{1}$ , $w_{2}(\in[0,1])$ . The level-zero condition implies $w_{1}=1.$ The power is
maximized when $w_{2}=0.$ $\square$

Corollary 1 The type 2 error of the $UMP$-Ci test is given by $F^{2n}$ where $F$ is the fidelity
$F=\sqrt{\mathrm{T}\mathrm{r}(\sigma\sigma_{0})}$.between $\sigma$ and $\sigma_{0}$ .
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3.2 Problem 2
We consider a case where we can use only LOCC between the two parties. Under

the invariance condition introduced in the previous section, we will see that this LOCC
restriction is no longer restrictive in asymptotic sense.

Define a condition $C_{2}$ on $\mathrm{T}(\mathrm{H}\mathrm{A}\mathrm{B})$ as

(level) $T$(e $\mathcal{T}(H_{AB})$ ) is level-zero, (5)
(locality) $T(\in 7 (7\{_{AB}))$ is realized by LOCC between $\mathrm{i}\mathrm{t}_{A}$ and $lt_{B}$ , (6)

(invariance) $T$(E $\mathcal{T}(H_{AB})$ ) is fixed by the action of G. (7)

Then, a $\mathrm{U}\mathrm{M}\mathrm{P}- C_{2}$ test for (2) is given as follows.

Theorem 2 A $UMP- C_{2}$ test is given by

$T_{0}= \sigma_{0}+,\frac{d^{n}-1}{d^{-n}-1}(I_{H_{AB}}-\sigma_{0})$

Proof Prom the invariance, $T=\{T_{0}, T_{1}\}$ $\in \mathcal{T}_{C_{1}}$ is written as (4). The level-zero condition
implies $w_{1}=1.$ The locality condition implies that $T_{0}$ is Positive Partial Transpose (PPT)
(see [8]). $T_{0}$ is PPT if and only if $w_{2}\geq(d^{n}-1)/(d^{2n}-1)$ . Power of PPT tests gives
the maximum at $w_{2}=(d^{n}-1)/(d\underline’ n-1)$ . In fact, this PPT test is realized by LOCC as
follows. First, twirl the system as

$\rho\mapsto\int_{g\in G}U_{AB}(g)\rho(U_{AB}(g))^{\mathrm{t}}i^{t}(dg)$

where $\mu(\cdot)$ is the normalized uniform (Haar) measure on $G$ . Next, measure the system
by a POVM $T’=\{T_{0}’, T_{1}’\}\in \mathcal{T}(H_{AB})$ where

$T_{0}’= \sum_{i_{1},\ldots,i_{n}\in\{0,1,\ldots d-\prime 1\}j=}\otimes_{1,n}|\mathrm{i}_{j})$

$\mathrm{q}_{j}\langle\prime i_{j}|_{A_{j}}\otimes|i_{j}\rangle_{B_{\mathrm{j}}}\langle i_{j}|_{B_{j}}$ .

口

Corollary 2 The type 2 error of the $UMP- C_{2}$ test is

$\beta(T, p)$ $=$ $\frac{1+d^{n}F^{2n}}{d^{n}+1}$

$=$ $\{$

$O(F^{2n})$ if $F^{2}\geq d^{-1}$ ,
$O(d^{-n})$ if $F^{2}<d^{-1}$

as $narrow\infty$ .

This Corollary means that the LOCC condition in $C_{2}$ asymptotically gives no restriction
from the viewpoint of hypothesis testing.
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3.3 Problem 3
We set $d=2$ and $n=2$ in the setting mentioned above. We let the invariance

condition be less restrictive. We will see that the best test under such a condition needs
an non local POVM beyond the two samples.

Let $G=G_{1}\mathrm{x}G_{2}\cross G_{3}$ be the product group of $G_{1}\cong G_{2}\cong SU(2)$ and a symmetric
group $G_{3}\cong 2$ of order two. Let $U_{A_{1}}$ and $U_{B_{1}}$ the natural representations of $G_{1}$ on

$\mathit{1}t_{A_{1}}$ and $\mathcal{H}_{B_{1}}$ , respectively. Let $U_{A_{2}}$ and $U_{B_{2}}$ the natural representations of $G_{2}$ on $H_{A_{2}}$

and $H_{B_{2}}$ , respectively. Let $U_{3}$ be a representation of $G_{3}$ which permutes $H_{1}$ and $H_{2}$ by
$|x\rangle_{y_{1}}rightarrow|x\rangle y_{2}$ for $x=0,1$ and $y=A$ , $B$ . Let

$U_{AB}=U_{A_{1}}$ & $U_{B_{1}}$ & $U_{A_{2}}\otimes U_{B_{2}}\otimes U_{3}$

be the tensor product. We consider an action of $G$ on $\mathcal{T}(\mathrm{h}_{AB})$ of the form (3). For such
a $G$-action, define a condition $C_{3}$ on 7 $(?\mathrm{f}_{AB})$ as (5) to (7). Then, a LMP-C3 test for (2)
is given as follows.

Theorem 3 A LMP-C3 test is given in the form

$T_{0}= \sigma_{0}^{\otimes 2}+\frac{1}{3}(I_{4}-\sigma_{0})^{\otimes 2}$

where $I_{4}$ is a 4 $\mathrm{x}4$ identity matrix.

Proof From the invariance, the form of $T_{0}$ is

$T_{0}=w_{0}\sigma_{0}^{\otimes 2}+w_{1}(\sigma_{0}9(I_{4}-\sigma_{0})+(I_{4}-\sigma_{0})\otimes\sigma_{0})+w_{\underline{?}}(I_{4}-\sigma_{0})^{\otimes 2}$

The level-zero condition implies $w_{0}=1.$ The locality condition implies that $T_{0}$ is PPT.
$T_{0}$ is PPT if and only if

$2w_{1}+3w_{2}-$ $1\geq 0$ and $-6w_{1}+9w_{\sim}’+1\geq 0.$

Let $w_{1}=0$ and $w_{3}=1/3.$ Since $\mathrm{T}\mathrm{r}(\sigma_{0}(I_{4}-\sigma_{0}))=0,$ there is an open set $S_{0}’$ such that
$S_{0}\subset S_{0}’$ and such that power of tests in $7_{3}$’ is maximized in $S_{0}’$ . $\square$

Corollary 3 The type 2 error of the $LMP- C_{3}$ test is $F^{4}+(1-F^{2})^{2}/3$ .

3.4 Problem 4
Let $d=2$ and $n=2$ again. We consider a case where we can use only LOCC between

the two samples as well as the two parties. Moreover, we let the invariance be further less
restrictive. However, it is difficult to characterize a class of such tests for optimization.
Hence, we introduce another class of tests which is convenient for optimization. We will
see that the optimal solution in the latter class belongs to the former class.

Let
$| \mathrm{I}^{-}\rangle=\frac{|0\rangle_{A_{1}}|1\rangle_{B_{1}}-|1\rangle_{A_{1}}|0\rangle_{B_{1}}}{\sqrt{2}}$ .

Note that $\sigma_{0}=|\mathrm{V}-\rangle\langle$ V$-|$ is maximally entangled. Let

$S_{0}=\{\sigma_{0}^{\otimes n}\}$ , $S_{1}=\{\sigma^{\otimes n}|r_{0}\neq \mathrm{r}\in S(\mathcal{H}_{1})\}$ .
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We study how to test hypotheses

$H_{0}$ : $\rho\in S_{0}$ versus $H_{1}$ : $\rho\in S_{1}$ . (8)

Let $G(\cong SU(2))$ . Let $\mathrm{U}\mathrm{A}1$ , $U_{B_{1}}$ , $U_{A_{2}}$ and $U_{B_{2}}$ be the natural representations of $G$ on
$\mathcal{H}_{A_{1}}$ , $II_{B_{1}}$ , $H_{A_{2}}$ and $H_{B_{2}}$ , respectively. Let

$U_{AB}=U_{A_{1}}\mathrm{g}$ $U_{B_{1}}\otimes U_{A_{2}}\otimes U_{B_{2}}$

be the tensor product. We consider an action of $G$ on $\mathrm{y}$ $(\mathrm{h}_{AB})$ of the form (3). Define a
condition $C_{4}$ on $\mathrm{y}$ $(\mathrm{h}_{AB})$ as

(level) $T$(e $\mathcal{T}(H_{AB})$ ) is level-zero,

(locality A :B) $\mathrm{T}(\mathrm{e}\mathcal{T}(\mathcal{H}_{AB}))$ is realized by LOCC between $\mathcal{H}_{A}$ and $Tl_{B}$ ,
(locality 1:2) $\mathrm{T}(\mathrm{e}\mathcal{T}(?\{_{AB}))$ is realized by LOCC between $\mathcal{H}_{1}$ and $?t_{2}$ ,
(invariance) $\mathrm{T}(\mathrm{G}\mathcal{T}(H_{AB}))$ is fixed by the action of $G$ .

However, it is difficult to characterize the set $7_{C_{4}}$ of tests satisfying $C_{4}$ for optimization.
Hence, we introduce another conditions $C_{4}’$ which is convenient for optimization.

(level) $T(\in 7 (\#?_{AB}))$ is level-zero,
(locality &

invariance) $T=\{T_{0}, T_{1}\}$ is of the form

$T_{0}=. \sum_{=\mathrm{j}\rceil}^{q}\lambda_{i}\int_{g\in G}(U_{AB}(g))^{\dagger}M_{A_{1}}^{i}\otimes M_{B_{1}}^{i}\otimes M_{A_{-}}^{i},\otimes M_{B_{2}}^{i}U_{AB}(g)\mu(dg)$,

where

(i) $q$ is an element of the set of natural numbers,
(ii) $\lambda_{i}$ is a positive number,
(iii) $M_{A_{1}}^{i}\in$ $\mathrm{i}(\mathcal{H}_{A_{1}})$ , $M_{B_{1}}^{i}\in$ $\mathrm{C}(\mathcal{H}_{B_{1}})$ , $M_{A_{2}}^{i}\in$ $\mathrm{i}(7\{_{A_{2}})$ and $M_{B_{2}}^{i}\in$ $\mathrm{C}(H_{B_{2}})$ are projections
with rank one satisfying

$M_{A_{1}}^{i}=(1 -1)M$-Ll $(-\mathrm{l} 1)$ , $M\mathrm{x}_{2}$ $=(1 -1)M-\mathrm{f}_{2}$ $(-1 1)$ :

(iv) $\mu(\cdot)$ is the normalized Haar measure on $G$ .
Then, a UMP-C4 test for (8) is given as follows.

Theorem 4 A $UMP- C_{4}’$ test is given by

$T_{0}= \frac{1}{10}Q_{0}++\frac{1}{3}Q_{1}+\frac{1}{6}Q_{2}+\frac{1}{3}Q_{3}$ $+\sigma_{0}^{\otimes 2}$ ,

where $Q_{0}$ , $Q_{1}$ , $Q_{2}$ and $Q_{3}$ are projections defined below.

(Definitions of $Q_{0}$ , $Q_{1}$ and $Q_{2}$ ) Let 4 be a symmetric group of order four. Let $V$ be
the linear representation of 4 which is dual to $U_{AB}$ . Let

$\mathrm{n}_{0}=\mathrm{m}\square$, $\mathrm{n}_{1}=\mathrm{F}^{\supset}$ and $\mathrm{n}_{2}=$ ffl
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be Young indexes. For $i=0,1,2$ , let $U_{\mathrm{n}_{i}}$ and $V_{\mathrm{n}_{i}}$ be irreducible subrepresentations of
$U_{AB}$ and $V$ , that is,

$U_{AB}\otimes V=U_{\mathrm{n}_{0}}\otimes V_{\mathrm{n}_{0}}\oplus U_{\mathrm{n}_{1}}\otimes V_{\mathrm{n}_{1}}\oplus U_{\mathrm{n}_{2}}\otimes V_{\mathrm{n}_{2}}$ .

Let
$\mathcal{U}_{AB}\otimes \mathcal{V}=\mathcal{U}_{\mathrm{n}0}\otimes \mathcal{V}_{\mathrm{n}\mathrm{o}}\oplus \mathcal{U}_{\mathrm{n}_{1}}\otimes \mathcal{V}_{\mathrm{n}_{1}}\oplus \mathcal{U}_{\mathrm{n}_{2}}\otimes \mathcal{V}_{\mathrm{n}_{2}}$ .

denote the corresponding vector spaces.

Definition 1 Let $Q_{0}$ be the projection on $\mathcal{U}_{\mathrm{n}_{0}}\otimes \mathcal{V}_{\mathrm{n}_{0}}$ .
Let $p_{12}\in 4$ be an element such that $V(p_{12})$ transposes $|x$ )

$y_{1}$ and $|x\rangle_{y2}$ for $x=0,1$
and $y=A$, $B$ . Let $q_{1}$ be the projection on the subset of $\mathcal{V}_{\mathrm{n}_{1}}$ which is fixed by $p_{12}$ .
Definition 2 Let $Q_{1}$ be $Q\otimes$ $q_{1}$ where $Q$ is the projection on $\mathcal{U}_{\mathrm{n}_{1}}$ .

Let $p_{AB}\in 4$ be an element such that $V(p_{AB})$ transposes $|x\rangle$
$A$, and $|x\rangle_{B}$, for $x=0,1$

and $y=1,2$ . Let $q_{2}$ be the projection on the subset of $\mathcal{V}_{\mathrm{n}_{1}}$ which is fixed by $p_{AB}$ . Let $q_{3}$

be the projection on the subset of $\mathcal{V}_{\mathrm{n}_{1}}$ which is -1-scaled by both $p_{12}$ and $p_{AB}$ .

Definition 3 Let $Q_{2}$ be $Q\otimes q_{2}$ . Let $Q_{3}$ be $Q\otimes q_{3}$ .

Proof of Theorem 4 Since $\alpha(T, \sigma_{0}^{\otimes 2})=0$ (level-zero) and since the partial $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$

$\mathrm{T}\mathrm{r}_{\mathcal{H}_{B}}$
$(\sigma_{0}^{\otimes 2})$ over $\mathcal{H}_{B}$ is $4^{-1}I_{\mathcal{H}_{A}}$ , it holds that $\mathrm{T}\mathrm{r}_{\mathcal{H}_{B}}(T_{0})=I_{?t_{A}}$ . Since $T_{0}$ is $G$-invariant, it

also holds that
$\frac{1}{2}\sum_{\mathrm{i}=1}^{q}f_{j}=\langle\phi|\mathrm{T}\mathrm{r}_{B}(T_{B})|\phi\rangle=1$

where
$f_{i}$ $=$ $\mathrm{T}\mathrm{r}(M_{A_{1}}^{t}M_{A_{2}}^{l})=\mathrm{T}\mathrm{r}(M_{B_{1}}^{\iota}M_{B\underline{\mathrm{o}}}^{i})$,

$|\phi\rangle$ $=$ $\frac{|0\rangle_{A_{1}}|0\rangle_{A_{2}}+|1\rangle_{A_{1}}|1\rangle_{A_{2}}}{\sqrt{2}}$ .

The type 2 error for $\rho=\sigma^{\otimes 2}$ i $\mathrm{s}$ of the form

$\beta(T, \rho)=\sum_{i=1}^{q}\lambda_{i}(a(\sigma)f_{i}^{2}+b(\sigma)f_{i}+c(\sigma))$

where

$a(\sigma)$ $=$ $\frac{(x_{1}-x_{2})^{2}+(x_{2}-x_{3})^{2}+(x_{3}-x_{1})^{2}}{15}+\frac{6}{15}(3x_{3}^{\frac{}{2},,}"+3y_{12}^{2}+3y_{13}^{2})$ ,

$\sigma=$ $(\begin{array}{llll}x_{1} x_{12} x_{13} x_{14}x_{12} x_{2} x_{23} x_{24}x_{13} x_{23} x_{3} x_{34}x_{14} x_{24} x_{34} x_{4}\end{array})$ $+\sqrt{-1}$ $(\begin{array}{llll} -y_{12} -y_{13} -y_{14}y_{12} -y_{23} -y_{24}y_{13} y_{23} -y_{34}y_{14} y_{24} y_{34} \end{array})$ :

and $b(\sigma)$ and $\mathrm{c}(\mathrm{a}|$ are some functions of $\sigma$ . Therefore, $\beta(T, \rho)$ is minimized by $q=4,$
$\lambda_{1}=$ . . . $=\lambda_{4}=1$ and $f_{1}=\cdots=f_{4}=1f$2. For example,
and $b(\sigma)$ and $\mathrm{c}(\sigma)$ are some functions of $\sigma$ . Therefore, $\beta(T, \rho)$ is minimized by $q=4,$
$\lambda_{1}=\cdots=\lambda_{4}=1$ and $f1=\cdots=f_{4}=1f$2. For example,

$M_{A_{1}}=(^{1}$ )
$.$

, $M_{B_{1}}=($ $1)$ : $M_{A_{2}}= \frac{1}{2}$ $(\begin{array}{ll}1 11 1\end{array})$ , $M_{B_{2}}-- \frac{1}{2}$ $(\begin{array}{ll}1 -1-\mathrm{l} \mathrm{l}\end{array})$

give the $\mathrm{U}\mathrm{M}\mathrm{P}- C_{4}’$. 口
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Corollary 4 The UMP-C4 test in Theorem 4 is in $\mathcal{T}_{C_{4}}$ .

Corollary 5 The type 2 error of the $rnvtP- C_{4}’$ test is given by

${}^{t}vRv- \frac{2}{15}(x_{\underline{9}3}^{2}+y_{2}^{\frac{}{1}}’+y_{13}^{2})$

where

$v=(\begin{array}{l}x_{1}-\mathrm{l}f2x_{2}-1\oint 2x_{3}-1/2\end{array})$ : $R= \frac{1}{15}$ $(\begin{array}{lll}6 7 77 6 77 7 6\end{array})$
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