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1Introduction

Computable Analysis is regarded widely as areconstruction of analysis “effectively” by
defining every notions effectively such as computable numbers, computable functions
and effective integrability. Many approaches of this attempt have taken place. An
example is Type II computability with representation, developed by Weihrauch ([13]).
This approach is based on the coding theory. Another example is computable metric
spaces with acomputability structure, developed by Tsujii, Yasugi and Mori ([8], [15])
inheriting the preceding work of Pour-El and Richards ([9]). Roughly speaking, the
latter approach simulates the usual analysis using effective convergence instead of usual
convergence. Effective way means amethod based on the recursion theory. So, we
assume the basic knowledge of recursion theory such as recursive functions.

We start with the calculation of $\sqrt{2}$ for the sake of the illustration of computable
numbers.

$\underline{\mathrm{C}\mathrm{a}\mathrm{l}\mathrm{c}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}}$of $\sqrt{2}\cdot$.
To obtain an approximation of order $10^{-k}$ , it is suffi-
cient to repeat $k+1$ steps. Each step of calculation
consists of $\mathrm{o}\mathrm{p}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}+$ ,-, $\mathrm{x}$ and finding the maximal
integer which is less than some integer and satisfies
some conditions.

We interpret the above situation as follows: There exists asequence of rational
numbers $r_{1}=1,r_{2}=1.4$ , $r_{3}=1.4$ , $\ldots$ , which can be calculated inductively and satisfies
$|r_{n}-\sqrt{2}|<10^{-k}$ for $n\geqq kf$ $1$ . This property is generalized to the existence of recursive
functions $\alpha,\beta,\gamma$ and $\delta$ such that $r_{n}=(-1)^{\alpha} \frac{\gamma(n)}{\beta(n)}$ satisfies $|r_{n}-x|<10^{-k}$ for $n\geqq\delta(k)$ .

We can also write such aprogram that calculate $\sqrt{x}$ for each input $x$ through the
decimal expansion. But the decimal expansion has the difficulty due to the existence of
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two expansions for rational $x$ .
As a definition of computable functions,

function is determined by its values for com
condition for this, since every binary rational
that computability involves some kind of $\mathrm{c}\mathrm{o}\mathrm{l}$

it is natural to suppose that a computable
.putable numbers. Continuity is a sufficient
number is computable. Herling ([5]) proved

continuity.
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rgraphs of simple functions on $[0, 1)$ :

lonsider the graph of
$(x)=x$ (circular dots),
$(x)=x^{2}$ (triangular dots) and

$(x)=\{$
1 if $X<\underline{1}$

0 if $x \geqq\frac{21}{2}$
(square dots).

$|\mathrm{a}\mathrm{n}|$ we determine the value at $\frac{1}{2}$ from values
$\mathrm{f}$ the function of $( \frac{1}{2}-\frac{1}{n}, \frac{1}{2}+\frac{1}{n})\backslash \{\frac{1}{2}\}.$

, We can
$\mathrm{o}$ this for $f$ and $g$ . Moreover, the variations
[them become arbitrarily small when we
$\lambda \mathrm{k}\mathrm{e}$ $n$ sufficiently large.
he above decision cannot be possible for
. But it goes $\mathrm{w}\mathrm{e}\mathrm{U}$ if we take $[ \frac{1}{2}, \frac{1}{2}+\frac{1}{n})$ as a
eighborhood.

For the values of func-
tions on the set of non-
computable numbers, two
way of treatment can be
considered: (A) They are
out of consideration, (B)
they are approximated ef-
fectively. Historically, (A)
may be major. We employ
the stand point (B).
The left graph illustrates
the flow chart of Com-
putable Analysis near the
scope of this article.
Fine’s work is not included
in the field of computable
Analysis
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Practically, step functions are important and seems to be natural in some case. It
may be usual that cost for some service, such as traffic cost, is determined by a piece-
wise constant right continuous increasing function. In the digital processing, the Walsh
functions and the Haar wavelet become important tools. These functions are continuous
w.r.t. the Fine metric $d_{F}$ , although they are discontinuous w.r.t. the Euclidean metric
$d_{E}$ .

In this article, we summarize the computable analysis on ([0, 1), $d_{F})$ . Although, most
definitions and fundamental properties can be carried over to separable metric spaces.

2 Fine metric

The Fine metric on $[0, 1)$ is defined as follows ([3], [11]): Let $\Omega:=\{0,1\}^{\mathrm{t}d}$ and $\Omega_{0}$ be the
set of all elements in $\Omega$ with infinitely many zeros. For $\sigma=(\sigma_{0}, \sigma_{1}, \ldots)\in\Omega$, we define
the function $\lambda$ by

$\lambda(\sigma):=\sum_{k=0}^{\infty}\sigma_{k}2^{-(k+1)}$ . (1)

For $\sigma$, $\tau\in\Omega$ , the dyadic addition $\sigma\oplus\tau$ is defined by $(\sigma\oplus\tau)_{k}:=|\sigma_{k}-\tau_{k}|=\sigma_{k}\mathrm{X}\mathrm{O}\mathrm{R}\tau_{k}$ .
We denote the restriction of $\lambda$ to $\Omega_{0}$ by $\rho_{F}$ . It hol&that $\lambda(\Omega)=[0,1]$ , $\rho_{F}(\Omega_{0})=[0,1)$

and $\rho_{F}$ is one-t0-0ne. So we can define the inverse of $\rho_{F}$ and we denote it by $\mu(x)$ .
This $\mu(x)$ is merely the binary expansion of $x\in[0,1)$ under the restriction that it has
infinitely many zeros. $\rho_{F}$ turns out to be an admissible representation of ([0, 1), $d_{F})([1])$ .
We also define $x\oplus y:=\lambda(\mu(x)\oplus\mu(y))$ .

Let $d_{C}$ be the Cantor metric on $\Omega$ , i.e.

$d_{C}( \sigma, \tau):=\sum_{k=0}^{\infty}|\sigma_{k}-\tau_{k}|2^{-(k+1)}=\lambda(\sigma\oplus\tau)$ , (2)

it satisfies following properties.

Lemma 2.1 (i) If $d_{C}(\sigma, \tau)<2^{-k}$ , then $\sigma(\ell)=\tau(\ell)$ for $\ell<k$ .
(ii) If $\sigma(\ell)=\tau(\ell)$ for $\ell<k$ , then $\mathrm{d}\mathrm{c}(\mathrm{a}, \tau)\leqq 2^{-k}$ .
$(\Omega, dc, \oplus)$ is a compact abelian group. It is proved by Fine that Walsh functions are

characters of this group ([3]).
The Fine-metric on $[0, 1)$ is defined to be the induced metric from $d_{C}$ by $\mu$ , namely

$d_{F}(x, y):=d_{C}(\mu(x),\mu(y))=\lambda(\mu(x)\oplus\mu(y))$ . (3)

$d_{F}(x,y)$ can be thought as the sum of weighted difference between the corresponding
bits of $\mu(x)$ and $\mu(y)$ . If $r$ is a binary rational, then the inequality $d_{F}(r, x)<2^{-(n+1)}$ is
equivalent to the coincidence of the first $n$ bits of $/\mathrm{i}(\mathrm{r})$ and $\mu(x)$ .
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To specify the topological properties w.r.t. the Fine-metric, we attach Fine-at the
front of these terminologies. For example, convergence w.r.t. the Fine-metric is called
Fine-convergence.

It holds that $d_{E}(x, y)\leqq d_{F}(x, y)$ , where $d_{E}$ is the usual Euclidean metric. Therefore,
$d_{F}$ is stronger than $d_{E}$ . The metric space $([0_{1}1),$ $d_{F})$ is totally bounded. But it is not
complete, since for a positive binary rational $r$ , the sequence $\{r-2^{-n}\}$ is a Fine-Cauchy
sequence but does not Fine-converge. While, it converges to $r$ w.r.t. $d_{E}$ . In this case,
if $\mu(r)=(*, \ldots, *, 1,0,0, \ldots)$ then $\mu(r-2^{-n})=$ ( $(*, \ldots, *, 0,1, \ldots, 1, 0, 0, \ldots)$ and
it converges to $(*, \ldots, *,0,1,1, \ldots)$ in $(\Omega, d_{C})$ . This example also shows the existence
of a sequence which converges w.r.t. $d_{E}$ but does not Fine-converge. $(\Omega, d_{C})$ can be
regarded as a completion of ([0, 1), $d_{F})$ . The distinct property of the Fine-metric is that
a left-closed right-0pen interval $[r, s)$ is closed and open if $r$ and $s$ are binary rationals.
$[r, r+2^{-n})$ is equal to the open ball $\{x|d_{F}(r, x)<2^{-n})\}$ if $r$ is a binary rational and
$n$ is sufficiently large. This property corresponds to prohibition of left convergence to
binary rationals and make some discontinuous functions Fine-continuous. It also gives
rise to the existence of an open disjoint covering of $[0, 1)$ .
Definition 2.1 A sequence of binary rationals in $[0, 1)$ is said to be a recursive sequence
of binary rationals if there exist recursive functions $\alpha(n)$ and $\beta(n)$ , which sati $fy$

$r_{n}= \frac{\beta(n)}{2^{\alpha(n)}}(0\leqq\beta(n)<2^{\alpha(n)})$ .

Double sequences $\{x_{m,n}\}$ and $\{f_{m,n}\}$ mean that there exist $\{y_{n}\}$ and $\{g_{n}\}$ and a
pairing function $\langle m,n\rangle$ , which satisfy $x_{m,n}=y(m,n\rangle$ and $f_{m,n}=g\langle m,n\rangle$ respectively. We
mainly take that $\langle m, n\rangle:=\frac{1}{2}(m+n)(m+n+1)+n$ . For a triple sequence, we take
$\langle m,n, k\rangle=\langle\langle m,n\rangle, k\rangle$ .
Definition 2.2 $\{x_{m,n}\}$ is said to Fine-converge effectively to $\{x_{m}\}$ if there exist $a$

recursive function $\alpha(m, k)$ such that $n\geqq\alpha(m, k)$ implies $d_{F}(x_{m,n}, x_{m})<2^{-k}$ .
Definition 2.3 A sequence $\{x_{n}\}$ is said to be Fine-computable if there $e$$\dot{m}ts$ a recursive
sequence of binary rationals $\{r_{n,k}\}$ , which Fine-converges effectively to $\{x_{n}\}$ .

Remark 2.1 (i) $x$ is called Fine-computable if $\{x, x, \ldots\}$ is Fine-computable.
(ii) Every binary rational number is Fine-computable.
(iii) The set of Fine-computable numbers is countable.
(iv) A recursive sequence of binary rationals is computable. But the converse does

not hold.

The usual computability of real numbers is defined similarly w.r.t. $d_{E}$ instead of $d_{F}$ .
Proposition 2-1 (Brattka [1])

(i) A real number is computable if and only if it is Fine-computable.
(ii) A Fine-computable sequence of reals is a computable sequence.
(iii) There exists a computable sequence of reals which is not $F\dot{i}ne$ computable.



55

The set of aU Fine-computable sequences $S_{F}$ satisfies the following axioms of a com-
putability structure.

Definition 2.4 (Metric Space with a Computability Structure) $(X, d, S)$ is said to be
a metric space with a computability structure if the following three axioms are satisfied.

Axiom Ml (Metrics) If $\{x_{m}\}$ , $\{y_{n}\}\in S$ , then $\{d(x_{m}, y_{n})\}$ forms a double sequence
of computable reals.

Axiom M2 (${\rm Re}$-Enumerations) If $\{x_{n}\}\in S$ , then $\{x_{\alpha(n)}\}\in S$ for any recursive
function $\alpha$ .

Axiom M3 (Limits) If $\{x_{m,n}\}\in S$, $\{\mathrm{x}\mathrm{n}\}\subseteq X$ and $\{x_{m,n}\}$ converges effectively to
$\{x_{m}\}$ , then $\{x_{m}\}\in S$ .

Definition 2.5 If there exists a computable sequence $\{e_{n}\}$ which is dense in X, then
we say that (X, d,S) is effectively separable and we call $\{e_{n}\}$ an effective separating set.

As the definition of computability of a sequence in $\Omega$ , we have the following.

Definition 2.6 If there exists a recursive function $\alpha(n, \ell)$ which satisfies $\sigma_{n}(\ell)=$

$\alpha(n, \ell)$ , then we call $\{\sigma_{n}\}$ a computable sequence

Let $S_{\Omega}$ be the set of all computable $\{\sigma_{n}\}$ , then $S_{\Omega}$ is a computability structure on $\Omega$

w.r.t. $d_{C}$ .

3 Fine-continuous functions

In this section, we overview the classical results of Fine-continuous functions. We write
the set of all binary rationals in $[0, 1)$ as $\mathbb{Q}_{2}$ . The effective enumeration $\{e_{i}\}$ of $\mathbb{Q}_{2}$ is
an effective separating set of $[0, 1)$ . In the rest of this article, we take this $\{e_{i}\}$ as an
effective separating set.

Definition 3.1 A function on $\Omega$ is called a cylinder function if it depend only finite
bits, i.e. there exists an integer n such that $\sigma(\ell)=\tau(\ell)$ for $\ell<n$ imply $f(\sigma)=f(\tau)$ .

Since $(\Omega, d_{C})$ is compact, every continuous function is uniformly continuous. If we
denote the set of all continuous functions on $\Omega$ as $\mathrm{C}_{\Omega}$ , then $\mathrm{C}_{\Omega}$ is a Banach space with
the maximum norm. We can also prove the following proposition.

Proposition 3.1 A function on $(\Omega, d_{G})$ is continuous if and only if it is $approx\dot{\tau}mated$

unifomly by a sequence of cylinder functions.

Definition 3.2 A left closed right open intemal [a, b) is called a dyadic interval if
a, b $\in \mathbb{Q}_{2}$ .
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$\mathrm{F}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{x}\mathrm{a}\mathrm{m}\mathrm{p}1\mathrm{e},\mathrm{B}_{F}(\frac{1}{2},\frac{\mathrm{n}3}{4})=[0, \frac{1}{4})\cup[\frac{X1}{2},1).\mathrm{I}\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{B}_{F}(a,r)\mathrm{b}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{s}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{a}\mathrm{l},\mathrm{w}\mathrm{e}\mathrm{W}\mathrm{e}\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{b}\mathrm{a}11\{x|d_{F}(,a)<r\}\mathrm{a}\mathrm{s}\mathrm{B}_{F}(a,r).\mathrm{I}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}1,\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{a}\mathrm{l}$

.

adopt the following constraint.

Constraint: If a is binary rational, say $j2^{-k}$ , where j is odd or j $=k=0$, then
r $=2^{-\ell}$ for some $\ell\geqq k$ .

Let $r\in \mathbb{Q}_{2}$ and $\mu(r)=\sigma$ , then there exists an integer $k$ such that $\sigma(k)=1$ and
$\sigma(\ell)=0$ for $\ell\geqq k$ . We denote this $k$ as $L(r)$ . In this case, if $\ell\geqq L(r)$ then $\mathrm{B}_{F}(r, 2^{-\ell})=$

$[r, r+2^{-\ell})=[r, r\oplus 2^{-\ell})$ .

Proposition 3.2 A function $f$ on $[0, 1)$ is Fine-continuous if and imply if it satisfies
(i) continuous at $x\in Q_{2}^{C}$ , and
(ii) right continuous at $x\in Q_{2}$ .

We denote $D$ the set of uniformly Fine-continuous functions.

Proposition 3.3 The following three are equivalent.
(i) $f\in D$ .
(ii) $f$ is Fine-continuous and has a left limit at $x\in Q_{2}$ .
(iii) There $e$$\dot{m}tso$, continuous function on $\Omega$ such that $f(x)=g(\mu(x))$ for $x\in[0,1)$ .

In this case, $\sup_{x\in[0,1)}|f(x)|=\sup_{\sigma\in\Omega}|g(\sigma)|$ and $V$ is a Banach space with $\sup$-norm. We

denote the set of all Fine-continuous functions on $[0, 1)$ as $C$ . For the convergence of a se-
quence $\{f_{n}\}$ to $f$ in $\mathrm{C}$ , we have obtained pointwise convergence and uniform convergence.
These convergences depend scarcely on the topological structure on $X$ .

We can define another convergence and continuity.

Definition 3.3 $f$ is said to locally unifomly Fine-continuous if there exists a positive
integer valued function $\gamma(i)$ such that $f$ is unifomly continuous on $\mathrm{B}_{F}(e_{i}, 2^{-\gamma(i)})$ and
$\bigcup_{i=0}^{\infty}\mathrm{B}_{F}(e_{i}, 2^{-\gamma(i)})=[0,1)$ .

Definition 3.4 $\{f_{n}\}$ is said to Fine-converge locally uniformly to $f$ if there exists a pos-
itive integer valued function $\gamma(i)$ such that $\{f_{n}\}$ converges unifomly to $f$ on $\mathrm{B}_{F}(e_{i}, 2^{-\gamma(i)})$

and $\bigcup_{i=0}^{\infty}\mathrm{B}_{F}(e_{i}, 2^{-\gamma(i)})=[0,1)$.

Schr\"oder ([10]) considers the following continuous convergence.

Definition 3.5 We say that $\{f_{n}\}$ continuously Fine-converges to $f$ if $\{f_{n}(x_{n})\}$ converges
to $f(x)$ for any sequence $\{x_{n}\}$ which Fine-converges to $x$ .

The following convergence is stronger than continuous Fine-convergence: For each $e_{i}$

and $\epsilon>0$ , we can take $N=N(i, \epsilon)$ and $a=a(i, \epsilon)$ such that $n\geqq N$ and $x\in \mathrm{B}_{F}(\mathrm{q}., a)$

imply $|f_{n}(x)-f(x)|<\epsilon$ .
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Example 3. 1 Let $\mu(x)=(\sigma_{0}, \sigma_{1}, \ldots)$ and
$2n_{1}+\cdots+2^{k}n_{k}(n_{k}\neq 0)$ . Then, Walsh $\mathrm{f}\mathrm{u}\mathrm{n}|$

It is easy to see that they are obviously $\mathrm{u}1$

$\mathrm{w}.\mathrm{r}.\mathrm{t}$ . $d_{E}$ . It also holds that $w_{3}(x)=w_{1}(x)u$

The graphs of them are foUowings.

the binary expansion of an integer $n$ be $n_{0}+$

ctions are defined by $w_{n}(x)=(-1)^{\Sigma_{=0}^{k}\sigma_{*}n}.\cdot\dot{\cdot}$ .
$\dot{\mathrm{u}}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{l}\mathrm{y}$ Fine-continuous but not continuous
$)2(x)$ and $w_{5}(x)=w_{1}(x)w_{4}(x)$ .

$w_{1}(x)$ $w_{2}(x)$

$w_{\theta}(x)$ $w_{4}(x)$

Example 3.2

$f$ defined by

$f(x)=\{\frac{1}{01-2x}-1\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{f}x<x\geqq\frac{\frac{1}{21}}{2}$

is locally uniformly Fine-continuous but
not uniformly Fine-continuous.
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4 Fine-computable funct\’ions

In the formulation of Pour-El and Richards, computability of a sequence of functions
$\{f_{n}\}$ is defined by the two properties; (i) Sequential Computability, which requires that
$\{f_{n}(x_{m})\}$ is computable for any computable $\{x_{m}\}$ , and (ii) Effective Uniform Continuity.
A function $f$ is said to be uniformly computable if $\{f, f, \ldots\}$ is computable.

For a function on ([0, 1), $d_{F})$ , we have defined three kinds of continuity. So, we can
obtain three kinds of computability and corresponding effective convergence.

4.1 Computable functions on $\Omega$

Definition 4.1 A sequence offunctions $\{f_{n}\}$ on $\Omega$ is said to be computable if it satisfies
(i) Sequential Computability,
(ii) Effective Unifom Continuity, that is, there exist a recursive functions $\alpha(n, k)$

such that $d_{C}(\sigma, \tau)<2^{-\alpha(n,k)}$ implies $|f_{n}(\sigma)-f_{n}(\tau)|<2^{-k}$

We call this $\alpha$ as the modulus of continuity of $\{f_{n}\}$ .

Definition 4.2 We say that $\{f_{n}\}$ converges effectively uniformly to $f$ if there exists $a$

recursive function $\beta(k)$ such that $n\geqq\beta(k)$ implies $|f_{n}(\sigma)-f(\sigma)|<2^{-k}$ for $\forall\sigma$

Theorem 4.1 An effective uniform limit of a computable sequence is computable.

We ako need effective uniform convergence of $\{f_{mn}\}$ to $\{f_{m}\}$ . This is obtained by
changing $\beta(k)$ to $\beta(m, k)$ .

Proposition 4.1 A cylinder function which takes only computable values is uniformly
computable.

For $0\leqq j=j_{n-1}2^{n-1}+\cdots+2j_{1}+j_{0}<2^{n}$ , let $\Gamma_{n_{1}j}=\{\sigma|\sigma(\ell)=j_{n-l}, 0\leqq\ell\leqq n-1\}$ .

Definition 4.3 A sequence $\{f_{n}\}$ is called a computable sequence of cylinder functions
if there $e$$\dot{m}t$ recursive functions $\alpha(n)$ and $\{c_{n,j}\}$ such that $f_{n}(\sigma)=c_{n,j}$ for $\sigma\in\Gamma_{\alpha(n),j}$ .

Theorem 4.2 fis computable if and only if there exi ts a computable sequence of cylin-
der functions which converges effectively unifomly to f.

We can take the following approximating sequence of cylinder functions
$f_{n}(\sigma)=f((\sigma(0), \sigma(1)$ , $\ldots$ , $\sigma(n-1)$ , 0, 0, $\ldots$ ))
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4.2 Uniformly Fine-computable functions on [0, 1)

Definition 4.4 A sequence of functions $\{f_{n}\}$ is said to be Uniformly Fine-computable

if it satisfies
(i) Sequential Computability, that is} if $\{x_{m}\}$ is a Fine-computable sequence of reals,

then $\{f_{n}(x_{m})\}$ is a computable sequence of reals.
(ii) Effectively Unifomly Fine-Continuity, that is, there exist a recursive functions

$\alpha(n, k)$ such that $d_{F}(x,y)<2^{-\alpha(n,k)}$ implies $|f_{n}(x)-f_{n}(y)|<2^{-k}$

Definition 4.5 We say that $\{f_{n}\}$ Fine-converges effectively unifomly to f if there
e$\dot{m}$ts a recursive function $\beta(k)$ such that n $\geqq\beta(k)$ implies $|f_{n}(x)-f(x)|<2^{-k}$ for $\forall x$

Theorem 4.3 An effective unifom Fine-limit of an unifomly Fine-computable se-
quence is uniformly Fine-computable.

Definition 4.6 $\{f_{n}\}$ is called a computable sequence of binary step functions if there
exists a recursive function $\alpha(n)$ and a computable sequence of reals $\{c_{n,j}\}$ such that

$f_{n}(x)=c_{n,j}$ if $j2^{-n}\leqq x<(j+1)2^{-n}$ .

Theorem 4.4 The followings are equivalent.
(i) $f$ is unifomly Fine-computable.
(ii) $f(x)=g(\mu(x))$ for some computable function $g$ on $\Omega$ .
(iii) There exists a computable sequence of binary step functions which Fine-converges

effectively unifomly to $f$ .

We can apply the results by Yasugi, Tsujii and Mori.

Corollary 4.1 If $\{f_{n}\}$ is uniformly Fine-computable, then $\sup_{x\in[0,1)}|f_{n}(x)|$ is a computaBle

sequence of $real_{\mathit{5}}$ .

Example 4.1 We can take the following approximating sequence.

$f_{n}(x)=f(i2^{-n})$ if $i2^{-n}\leqq x<(i+1)2^{-n}$ (4)

4.3 Locally uniformly Fine-computable functions on [0, 1)

Definition 4.7 $\{f_{n}\}$ is said to be locally uniformly Fine-computable if it satisfies
(i) sequentially computable
(ii) effectively locally unifomly Fine-computable, that is, there $exit$ recursive func-

tions $\gamma(n,i)$ and $\alpha(n, i, k)$ , such that
(ii-a) $x$ , $y\in \mathrm{B}(e:,‘ 2^{-\gamma(n,i)})$ and $d_{F}(x,y)<2^{-\alpha(n,i,k)}$ imply $|f_{n}(x)-f_{n}(y)|<2^{-k}$ ,

(ii-b) $i=1\cup \mathrm{B}(e_{i}, 2^{-\gamma(n,i)})=[0,1)\infty$ .
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Definition 4.8 $\{f_{n}\}$ Fine-converges effectively locally unifomly to $f$ if there exist re-
cursive functions $\gamma(i)$ and $\beta(i, k)$ such that

(a) $x\in \mathrm{B}(e_{i}, 2^{-\gamma(i)})$ and $n\geqq\beta(i, k)$ imply $|f_{n}(x)-f(x)|<2^{-k}$ ,

(b) $i=1\cup \mathrm{B}(e_{i}, 2^{-\gamma(:)})=[0,1)\infty$ .

The function of Example (3.2) is locally uniformly Fine-computable but not uniformly
Fine-computable.

Definition 4.9 An effectively locally unifomly Fine-continuous sequence of functions
$w.r.t$. $\gamma(n, i)=\gamma(i)$ is said to be effectively locally unifomly qui-Fine-continuous.

Definition 4.10 $\{f_{n}\}$ is said to be effectively locally uniformly asymptotically qui-Fine-
continuous if there $exits$ recursive functions $\gamma(i),$ $\delta(i, k)$ and $\alpha(n, i, k)$ such that

(a) $x$ , $y\in \mathrm{B}(\mathfrak{g}., 2^{-\gamma(i)})$ , $n\geqq\delta(i, k)$ , $d_{F}(x,y)<2^{-\alpha(n,\iota,k)}$ imply $|f_{n}(x)-f_{n}(y)|<2^{-k}$ ,

(b) $\dot{\iota}=1\cup \mathrm{B}(e_{i}, 2^{-\gamma(i)})=[0,1)\infty$ .

Evidently, an effectively locally uniformly qui-Fine-continuous sequence is effectively
locally uniformly Fine-continuous. The sequence of functions $\{f_{n}\}$ defined by the Equa-
tion (4) is effectively locally uniformly qui-Fine-continuous and Fine-converges effectively
locally uniformly to $f$ if $f$ is locally uniformly Fine-computable.

Proposition 4.2 Let $\{f_{n}\}$ Fine-converges effectively locally unifomly to $f$ w.r.t. m-
cursive functions $\gamma(i)and\beta(i, k)$ , the the followings are equivalent.

(i) $f$ is effectively locally unifomly continuous $w.r.t$. $\gamma(i)$ and $a$ oecursive function
$\alpha(i, k)$ .

(ii) $\{f_{n}\}$ is effectively locally unifomly asymptotically qui-Fine-continuous $w.r.t\gamma(i)$ ,
recursive functions $\delta(i, k)$ and $\tilde{\alpha}(i, k)$ .

Theorem 4.5 If a locally unifomly Fine-computable sequence Fine-converges effec-
tively locally uniformly, then the limit function is locally uniformly Fine-computable.

Theorem 4.6 $f$ is locally unifomly Fine-computable if and only if there exists a com-
putable sequence of binary step functions which Fine-converges effectively locally uni-

$\mathit{0}nly$ to $f$ .

4.4 Fine-computable functions on [0, 1)

Definition 4.11 $\{f_{n}\}$ is said to be Fine-computable if sati ffies
(i) sequentially computable,
(ii) there $e$$\dot{m}ts$ a recursive function $\gamma(n, i, k)$ such that
(ii-a) $x\in \mathrm{B}(\mathrm{q}., 2^{-\gamma(n,:,k)})$ implies $|f_{n}(e_{\dot{l}})-f_{n}(x)|<2^{-k}$ ,
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(ii-b) $i=1\mathrm{U}^{\mathrm{B}(e_{i},2^{-\gamma(n,i,k)})=[0,1)}\infty$ for $\forall k$ .

(ii-a) can be replaced by $x$ , $y\in \mathrm{B}(e_{i}, 2^{-\gamma(n,i,k)})$ implies $|f_{n}(x)-f_{n}(y)|<2^{-k}$ .

Definition 4.12 $\{f_{n}\}$ Fine-converges effectively to $f$ if there exist recursive functions
$\gamma(i, k)$ and $\beta(i, k)$ such that

(a) $x\in \mathrm{B}(e_{i}, 2^{-\gamma(i,k)})$ and $n\geqq\beta(i, k)$ imply $|f_{n}(x)-f(x)|<2^{-k}$ ,

(b) $i=1\cup \mathrm{B}(e_{i}, 2^{-\gamma(i,k)})=[0,1)\infty$ for $\forall k$ .

Proposition 4.3 (Brattka) There exists a Fine-computable function, which is not
locally unifomly Fine-computable.

Definition 4.13 An effectively Fine-continuous sequence w.r.t $\gamma(n,$i,$k)=\gamma(i,$k) is
called effectively equi-Fine-continuous.

Definition 4.14 $\{f_{n}\}\dot{u}$ said to be effectively asymptotically equi-Fine-continuous if
there exist recursive functions $\gamma(i, k)$ and $\delta(i, k)$ such that

(a) $x$ , $y\in \mathrm{B}(e_{t}, 2^{-\gamma(:,k)})$ and $n\geqq\delta(i, k)$ imply $|f_{n}(x)-f_{n}(y)|<2^{-k}$ ,

(b) $i=1\cup\infty \mathrm{B}(e_{i}, 2^{-\gamma(i,k)})=[0,1)$ .

The sequence of functions $\{f_{n}\}$ defined by Equation (4) is effectively equi-Fine-
continuous and Fine-converges effectively to $f$ , if $f$ is Fine-computable.

Proposition 4.4 Let $\{f_{n}\}$ Fine-converges effectively to $fw.r.t$. recursive functions
$\gamma(i, k)$ and $\beta(i, k)$ , then the followings hold.

(i) If $f$ is effectively Fine-continuous $w.r.t$ . $\gamma(i, k)$ , then $\{f_{n}\}$ is effectively asymp-
totically equi-Fine-continuous.

(ii) if $\{f_{n}\}$ is effectively asymptotically equi-Fine-continuous $w.r.t\gamma(i, k)$ and $\delta(, k)$ ,
then $f$ is effectively Fine-continuous.

4.5 Examples and Remarks

Definition 4.15 A subset of N is called recursively enumerable if it is the range of
some recursive function.

Many examples make use of the following Proposition.

Proposition 4.5 There $e$$\dot{m}ts$ a recursive enumerable set, which is not recursive.
If the set is infinite, then we can take $a$ 1:1 recursive function.
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Let $\alpha(n)$ be a 1:1 recursive function. Suppose further that $\alpha(\mathrm{N})$ is not recursive.
Define $c_{k}= \sum_{\ell=0}^{k-1}e^{-\alpha(\ell)}$ and $c= \sum_{\ell=0}^{\infty}e^{-\alpha(\ell)}$ . Then, $c$ is not computable and $\{\mathrm{c}_{n}\}$

converges to $c$ , but the convergence is not effective.

Example 4.2 $f(x)=c_{k}1-2^{-k}\leqq x<1-2^{-(k+1)}$

is locally uniformly Fine-computable but $\sup|f|=c$ is not computable.

Example 4.3 The following $\{\varphi_{n}\}$ is a computable sequence of binary step functions.

$\psi_{k}(x)$ $=$ $\{$

1 if $1-2^{-k}\leqq x<1-2^{-(k+1)}$

0 otherwise
(5)

$\varphi_{n}(x)$ $=$ $\sum_{k=0}^{n-1}2^{-k}\psi_{\alpha(k)}(x)$ ,

$\varphi(x)$ $=$ $\{$

$2^{-k}$ if $\exists k\in A\mathrm{s}.\mathrm{t}$ . $\frac{1}{2}-2^{-k}\leqq x<\frac{1}{2}-2^{-(k+1)}$

0 otherwise

$\{\varphi_{n}\}$ Fine-converges effectively to $\varphi$ , $\varphi$ is effectively fine-continuous, but not sequen-
tiaUy computable.

5 Effect\’ive Integrability

A Fine-continuous function is continuous at every binary irrational point, so the Lebesgue
measure of the set of all discontinuous points is zero. Therefore, a bounded Fine-
continuous function is Riemann integrable and also Lebesgue integrable.

For a binary step function $\varphi$ of the form $\varphi(x)=\sum_{\dot{\iota}=0}^{2^{k}-1}c_{i}\chi_{[i2^{-k},(i+1)2^{-k})}(x)$ , its integral
$\int_{0}^{1}\varphi(x)dx$ is equal to $2^{-k} \sum_{i=0}^{2^{k}-1}c_{i}$ . Hence, $\{\int_{0}^{1}\varphi_{n}(x)dx\}$ is a computable sequence of
reals, if $\{\varphi_{n}\}$ is a computable sequence of binary step functions.

Let $f$ be an uniformly Fine-computable function and $\{\varphi_{n}\}$ be an approximating com-
putable sequence of binary step functions defined by Equation (4). Then $f$ is bounded
from Corollary 4.1, so $f$ is integrable. In addition, $\int_{0}^{1}\varphi_{n}dx$ converges effectively to
$\int_{0}^{1}fdx$ , since

$| \int_{0}^{1}\varphi_{n}(x)dx-\int_{0}^{1}f(x)dx|\leqq\int_{0}^{1}|\varphi_{n}(x)-f(x)|dx\leqq\sup_{x\in\iota 0,1)}|\varphi_{n}(x)-f(x)|$ .

Therefore, $\int_{0}^{1}fdx$ is computable. This property holds for an uniformly Fine-computable
sequence.

Theorem 5.1 If $\{f_{n}\}$ is unifomly Fine-computable, then $\{\int_{0}^{1}f_{n}dx\}$ is a computable
sequence of reals. Moreover, if $\{f_{n}\}$ Fine-converges effectively unifomly to $f$ , then
$\{\int_{0}^{1}f_{n}dx\}$ converges effectively to $\int_{0}^{1}f(x)dx$ .

The ffist part of this theorem can be proved in the same way as the proof of Theorem
0.5 in [9], since the supremum of an uniformly Fine-computable function is computable.
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Definition 5.1 A bounded Fine-computable sequence of functions $\{f_{n}\}$ is called com-
putable if $\{\int_{0}^{1}f_{n}dx\}$ is a computable sequence of reals.

Let $\{f_{n}\}$ be a bounded sequence of Fine-computable function, i.e. $\{f_{n}\}$ is an Fine-
computable sequence and there exists a real number $M$ such that $|f_{n}(x)|\leqq M$ for all
$n$ and $x$ . Assume furthermore that $\{f_{n}\}$ Fine-converges to $f$ , then $|f(x)|\leqq M$ for all
$x$ . It holds that $f$ is integrable and $\int_{0}^{1}f_{n}(x)dx$ converges to $\int_{0}^{1}f(x)dx$ by virtute of the
bounded convergence theorem.

Proposition 5.1 Let Fine-computable sequences $\{f_{m}\}$ and $\{g_{m,n}\}$ satisfy the following
conditions.

(i) There $e$$\dot{m}ts$ a computable sequence of $mls$ $\{M_{m}\}$ such that $|g_{m,n}(x)|\leqq M_{m}$ for
all $n$ and $x$ ,

(ii) $\{\int_{0}^{1}g_{m,n}(x)dx\}$ is a computable sequence of real.
(iii) (Effective Convergence) There $e$$\dot{m}t$ recursive functions $\alpha(m, i, k)$ and $\gamma(m, i, k)$

which satisfy
(iii-a) $x\in \mathrm{B}_{F}(e_{i}, 2^{-\gamma(m,i,k)})$ and $n\geqq \mathrm{a}\{\mathrm{m},$ $i,$ $k$ ) imply $|g_{m,n}(x)-f_{m}(x)|<2^{-k}$ ,
(iii-b) $\bigcup_{\mathrm{i}^{=1}}^{\infty}\mathrm{B}_{F}(e_{i}, 2^{-\gamma(m,i,k)})=[0,1)$ for each $m$ , $k$ .
Then, $\{\int_{0}g_{m,n}(x)dx\}$ converges effectively to $\{\int_{0}^{1}f_{m}(x)dx\}$ and consequently $\{f_{m}\}$ is

effectively integmble.

This proposition can be considered as the effective version of Bounded Convergence
Theorem. If $f$ is a bounded Fine-computable function, then the sequence of binary step
functions defined by Equation $(??)$ is ako bounded. So, we obtain the following theorem.

Theorem 5.2 If $\{f_{n}\}$ is Fine-computable and there exists a computable sequence of
reals such that $|f_{n}(x)|\leqq M_{n}$ for all $x$ , then $\{\int_{0}^{1}f_{n}(x)dx\}$ is a $co\sqrt putable$ sequence of
reals.

For a Fine-computable function, we have the following example:

Example 5.1 (Brattka [1]) We take the same $a$ and $\{c_{n}\}$ in Example 4.2, then
$\varphi(x)=\sum_{k=0}^{\infty}2^{k+1}2^{-\alpha(k)}\psi_{k}(x)$ , is locally uniformly computable but $\int_{0}^{1}\varphi(x)dx=c$ is
not computable. ($\psi_{k}(x)$ is defined by Equation (5).) In this case, $\varphi$ is not bounded.
If otherwise, there exists an integer $N$ such that $2^{n+1}2^{-a(n)}\leqq 2^{N}$ . This implies that
$2^{-a(n)}\leqq 2^{N-1-n}$ and $\{c_{n}\}$ converges effectively. Moreover, $\varphi_{n}(x)=\sum_{k=0}^{n-1}2^{k+1}c_{k}\psi_{k}(x)$

Fine-converges to $\varphi$ but the convergence is not effective.

Let $f\geqq 0$ be a Fine-computable function. Then $\{f_{n}\}=\{f\Lambda 2^{n}\}$ is a computable
sequence and each $f_{n}$ is bounded by $2^{n}$ . So, $\{\int_{0}^{1}f_{n}dx\}$ is a computable sequence of real
from Theorem 5.2 and monotonically increasing. If we assume that $f$ is integrable, then
the computability of $\int_{0}^{1}f(x)dx$ is equivalent to the effective converges of $\{\int_{0}^{1}f_{n}dx\}$

from Lemma ??. So we obtain the following definition of effective integrability
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Definition 5.2 An integmble Fine-computable functions $f$ is said to be effectively in-
tegmble if the integral of $f^{+}$ and $f^{-}$ are computable real.
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