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Abstract

Within Bishop’s constructive mathematics, we briefly introduce apartness spaces
and discuss various continuity properties of mappings between these spaces.

The theory of proximity spaces originated apparently in 1908 at the mathematical
congress in Rome, when Riesz [24] presented some ideas in his ‘theory of enchainment’
which have become the basic concepts of the theory. In the early 1950’s, the subject was
rediscovered by Efrernovic [13], [14] when he axiomatically characterized the proximity re-
lation ‘A is near $B$ ’ for subsets of any set $X$ . Recently there has been quite an intense
investigation of topological structures in image processing, mostly in connection with the
analysis of connectivity and the operation of thinning (see e.g. [3, 12, 19, 21], etc.). An
interesting attempt to introduce richer structures than those of topology, and replacing thus
local’ continuity properties by a global notion of nearness, has been done in [20] where the
authors contemplated the so called semi-proximity spaces as a theoretical tool in the image
processing studies. See also $[18, 25]$ .

This paper outlines a few aspects of the theory of apartness spaces. We work entirely
within constructive mathematics \‘a la Bishop $[1, 2]$ , an informal framework which simulta-
neously generalises classical, intuitionistic, and recursive mathematics [4], and which has
turned out in practice to be just mathematics with intuitionistic logic (see, for example,
[23] $)$ . Apartness spaces are the constructive analogues of the proximity spaces studied by
some classical topologists (see, for instance, [11, 22, 15, 29]), and the theory of apartness
spaces is intended to provide a constructively meaningful development of set-theoretic to ol-
ogy1. Bridges and $\mathrm{v}_{\hat{1}}\mathrm{t}\dot{\mathrm{a}}$ began with a first-Order theory based on two primitive notions of
nearness and apartness for a point and a set [30]. They then produced a much smoother
theory based on a single primitive notion of point-set apartness [7], abstracted from the
context of a metric space { $\mathrm{X},$ $\rho)$ in which a point $x$ is apart ffom a set $S$ if

Er $>0\forall y\in S(\rho(x, y)\geq r)$ ,

and developed it in a series of papers [27, 5, 6, 10, 28, 31, 32, 8, 9].
$\mathrm{x}\mathrm{W}\mathrm{e}$ should mention here that there is an altogether different approach to constructive topology, known

as pointless topology [17, 16, 26]. The underlying idea in this approach is to generalise the classical notion
of a topological space, characterised by the lattice of its open sets, by working with frames.
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Let $X$ be a nonempty set. We assume that there is a set-set apartness relation $*3$

between pairs of subsets of $X$ , such that the following axioms hold.

Bl $X\mathrm{N}\emptyset$ .

B2 $S\mathrm{N}j$ $\Rightarrow S\cap T=\emptyset$ .

B3 $R\mathrm{N}$ $(S\mathrm{U}T)$ $\Leftrightarrow R$ $\mathrm{N}$ $S\Lambda R\mathrm{N}T$ .

B4 $S\mathrm{N}T\Rightarrow T\mathrm{N}S$ .

B5 $\{x\}\mathrm{N}$ $S\Rightarrow\exists T$ ( $\{x\}\mathrm{N}$ $T\Lambda$ Vy({y} $\mathrm{N}$ $S\vee y\in T$)).

We then call $X$ an apartness space. Defining

$x$ ’ $y\Leftrightarrow\{X\}\mathrm{N}$ $\{y\}$

B3 $R\mathrm{N}(S\cup T)\Leftrightarrow R\mathrm{N}S\Lambda R$ $\mathrm{N}T$ .

B4 $S$ $\mathrm{N}T\Rightarrow T\mathrm{N}S$ .

B5 $\{x\}\mathrm{N}S\Rightarrow\exists T(\{x\}\mathrm{N}T\Lambda\forall y(\{y\}\mathrm{N}S\vee y\in T))$.

We then call $X$ an apartness space. Defining

$x\neq y\Leftrightarrow\{x\}\mathrm{N}\{y\}$

and
$x\triangleright\triangleleft S\Leftrightarrow\{x\}\mathrm{N}S$ ,

we obtain an inequality and a point-set apartness relation associated with the given set-set
one.

If we want to restrict our study to a space that has only a point-set apartness $\triangleright$q, then we
will $\mathrm{a}\mathrm{s}\mathrm{s}$ ume that $X$ is endowed with a non-trivial inequality relation $\neq$ , that is, $X$ contains
at least two distict points and

$x\neq y$ $\Rightarrow$ $y\neq x$

$x\neq y$ $\Rightarrow$ $\mathrm{w}(x=y)$ .

We also assume that $X$ has an apartness relation $\mathrm{N}$ between points and subsets satisfying
the following axioms.

$\mathrm{A}1$
$:\mathrm{t}$ $\neq y\Rightarrow$ ${ }$r $\triangleright\triangleleft\{y\}$ .

A2 $x\mathrm{N}S\Rightarrow x\not\in S.$

A3 $x$ $\mathrm{N}$ $(S\cup T)$ $\Leftrightarrow x$ $\mathrm{N}S\Lambda x\mathrm{N}T$ .

A4 $x\in-S$ $\subset\sim T\Rightarrow x\mathrm{N}T$.

A5 $x\in-S\Rightarrow\forall y\in X(x\neq y\vee y\in-5)$ ,

in which we write

A3 $X\mathrm{N}(S\cup T)\Leftrightarrow x$ $\mathrm{N}S\Lambda X\mathrm{N}T$ .

A4 $x\in-S\subset\sim T\Rightarrow x\mathrm{N}T$.

A5 $x\in-S\Rightarrow\forall y\in X(x\neq y\vee y\in-S)$ ,

$-S=\{x\in X : X\mathrm{N} S\}$ .

Each subset $S$ of $X$ admits three types of a complement–namely, the apartness com-
plement $-S$ the logical complement $wS$ $=\{x\in X : ly\in S\neg(x=y)\}$ , and the
complement $\sim S=\{x\in X : \forall y\in S(x\neq y)\}$ . We have

$-S\subset\sim S\subset\neg S$ .
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In general, if $X$ is an apartness space, we will think of it not only as a set-set apartness
space, but also as a point-set apartness space with the point-set apartness and inequality
induced by N. A point-set apartness space that has the property stated in axiom B5 is
called locally decomposable.
A natural $\mathrm{e}\mathrm{x}\mathrm{a}$ mple of a point-set apartness is given by a $T_{1}$ topological space $(X, \tau)$ , where
by $T_{1}$ we mean the following separation property:

$x\neq y\Rightarrow\exists U\in\tau$ $(x\in U\subset\sim\{y\})$ .

If $x\in X$ and $A\subset X,$ we define

$x\mathrm{N}A\Leftrightarrow\exists U\in\tau(x\in U\subset\sim A)$ .

This relation satisfies axioms $\mathrm{A}\mathrm{I}$-A4. To make $X$ into an apartness space we need to
postulate axiom A5. A topological space $(X, \tau)$ is a topological apartness space if
the apartness defined above turns $X$ into a (point-set) apartness space; we then call the
apartness structure on $X$ the topological apartness structure corresponding to $\mathrm{r}$ .

Conversely, a point-set apartness induces a topology on $X$ as follows. A subset $S$ of
an apartness space $X$ is said to be nearly open if there exists a family $(A_{i})_{i\in I}$ such that
$S= \bigcup_{i\in I}$ -A{. It is easy to show that the nearly open sets form a topology–the apartness
topology–On $X$ for which the apartness complements form a basis.

We say that a topological apartness space is topologically consistent if every open
subset $X$ is nearly open. In contrast to the classical situation, topological consistency does
not automatically hold in constructive mathematics. Local decomposability turns out to be
a natural condition which ensures topological consistency. (Note that local decomposability
always holds classically). The following proposition gives us a topological equivalent for
local decomposability.

Proposition 1 Let $X$ be a locally decomposable apar tness space, and let $\tau$ be the corre-
.sponding apartness topology. Then for all $x\in X$ and $U\in\tau$ ,

$x\in U\Rightarrow\exists V\in\tau$ $(x\in V\Lambda ly \in X(y\in U\mathrm{V}y\in\sim V))$ . (1)

Conversely, a topological apartness space $(X, \tau)$ with this property is locally decomposable.

Proposition 2 A locally decomposable topological apartness space is topologically consis-

tent.

On the other hand, if we start off with a point-set apartness space $(X, \mathrm{N})$ arld get the
apartness topology $\tau_{\mathrm{N}}$ , we can prove that the apartness induced by $\tau_{\mathrm{N}}$ coincides with the
original apartness on $X$ .

We now introduce a fundamental example of a (set-set) apartness space. Let $X$ be a
set with a nontrivial inequality, and let $U$, $V$ be subsets of the Cartesian product $X\mathrm{x}X$ .
A family $\mathcal{U}$ of subsets of the Cartesian product $X\mathrm{x}X$ is called a uniformity on $X$ if the
following conditions hold.

Ul $\mathcal{U}$ is a filter: that is,
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$-U\neq\emptyset$ for all $U\in \mathcal{U}$ ,
$-U$ ’

$V\in \mathcal{U}$ for all $U$, $V\in \mathcal{U}$ , and

-if $U\subset V$ and $U\in \mathcal{U}$ , then $V\in \mathcal{U}$ .

U2 Every $U\in \mathcal{U}$ contains both the diagonal $\mathrm{A}$ , and a symmetric member of $u$

U3 For each $U\in \mathcal{U}$ there exists $V\in lA$ such that $V^{2}\subset U$

U4 For each $U\in \mathcal{U}$ there exists $V\in \mathcal{U}$ such that

$\forall x$ , $y\in X((x,y)\in U\vee(x, y)\not\in V)$ . (2)

Define the apartness relation $\mathrm{N}$ between subsets $S$, $T$ of our uniform space $X$ by
setting

$S\mathrm{N}T\Leftrightarrow\exists U\in \mathcal{U}$ $(S\mathrm{x} T\subset\sim U)$ .

The topology $r_{\mathit{1}\mathit{4}}$ induced on $X$ by $\mathcal{U}$ has an associated relation apart defined by

apart $(x, S)\Leftrightarrow\exists V\in\tau u$ $(x\in V\subset\sim S)$ ,

which coincides with the point-set relation N.

In the classical theory of proximity spaces, every proximity space has uniform structures
that are compatible with the denial apartness (the one in which two sets are apart if and only
if they are not near each other). Constructively there is no hope of proving constructively
that the apartness obtained from the usual point-set apartness on $\mathrm{R}$ has any compatible
uniformities.

Therefore the constructive theory of apartness spaces is strictly bigger than that of
uniform spaces. Note also that constructively the compact metric subspace $[0, 1]$ of $\mathrm{R}$ has
an apartness that induces the original topology but is not the same as the original apartness;
this contrasts with the classical situation in which any compact topological space has a
unique proximity structure compatible with the original compact topology.

It is natural to ask if a point-set apartness relation $\mathrm{N}$ on a set $X$ can be extended to a
set-set apartness. The following proposition answers this question.

Proposition 3 Let $(X, \mathrm{N})$ be a locally deco omposable point-set apartness space, and for
$S$, $T\subset X$ define

$S\mathrm{N}T\Leftrightarrow$ $1x$ $\in X(x\mathrm{N}S\vee x\mathrm{N}T)$ , (3)

where, on the right-hand side, $\mathrm{N}$ denotes the original point-set apartness on X. Then the
set-set relation $\mathrm{N}$ satisfies axioms BI-B5.

When we turn to consider continuity of functions between apartness spaces things begin
to become even more interesting because intuitionistic logic distinguishes between various
types of continuity that are classically equivalent.

We first look at continuity properties of mappings between point-set apartness spaces.
Keeping in mind that every point-set apartness induces a topology, we say that a mapping
$f$ : $Xarrow \mathrm{Y}$ is
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$\triangleright$ nearly continuous if
$\forall A\subset X(f(\overline{A})\subseteq\overline{f(A)}))$.

$\triangleright$ apart continuous if

$\forall x\in X\forall A\subset X$ ( $f(x)\mathrm{N}$ /(A) $\Rightarrow X$ $\mathrm{N}A$);

$\triangleright$ topologically continuous if $f^{-1}(S)$ is nearly open in $X$ for each nearly open $S\subset Y.$

Proposition 4 A topologically continuous mapping between apartness spaces is nearly con-
tinuous.

$\forall x\in X\forall A\subset X(f(x)\mathrm{N}f(A)\Rightarrow X\mathrm{N}A)$ ;

$\triangleright \mathrm{t}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$ continuous if $f^{-1}(S)$ is nearly open in $X$ for each nearly open $S\subset Y.$

Proposition 4A topologically continuous mapping between apartness spaces is nearly con-
$tinuo\prime us$ .

Proposition 5 A topologically continuous mapping be rween apartness spaces is apart con-
tenuous.

The converse, which holds classically, does not hold constructively. In order to obtain
a partial converse to Proposition 5, we introduce the following property of weak local
decomposability (w.l.d.) for an apartness space $X$ :

$x\mathrm{N}T\Rightarrow$ $3\mathrm{R}(\mathrm{x} \in-R \Lambda (\neg R\subset- \mathrm{i}))$ .

Proposition 6 Let $X$ and $\mathrm{Y}$ be apartness spaces, with $\mathrm{Y}$ weakly locally decomposable. Then
every continuous function $f$ : $Xarrow \mathrm{Y}$ is topologically continuous.
Proposition 6Let $X$ and $\mathrm{Y}$ be apartness spaces, with $\mathrm{Y}$ weakly locally decomposable. Then
every continuous function $f$ : $Xarrow \mathrm{Y}$ is topologically continuous.

Note that weak local decomposability is a simple consequence of local decomposability. This
observation, taken with Propositions 5, 6, and 4, yields the following.

Corollary 1 For mappings from an apartness space into a locally decomposable apartness
space, continuity and topological continuity are equivalent and imply near continuity.

It is clear by now that local decomposability–which, remember, holds trivially under clas-
sical logic–is an extremely useful constructive property. In its presence, continuity and
topological continuity coalesce, a topological apartness space is topologically consistent,
and product apartness spaces (not discussed in this paper) have precisely the properties
that one would wish for.

A mapping $f$ : $Xarrow \mathrm{Y}$ between set-set apartness spaces is said to be strongly con-
tinuous if for all subsets $S$, $T$ of $X$,

$f(S)\mathrm{N}f(T)\Rightarrow S\mathrm{N}T$.

Theorem 1 A unifor$mly$ continuous mapping berween unifor$m$ spaces is strongly continu-
ous.
Theorem 1A unifomly continuous mapping between unifom spaces is strongly continu-
ous.

Given a uniform space $(X,\mathcal{U})$ , an entourage $U$ of $X$, and $x$ in $X$ , we denote by $U[x]$ the
set $\{y\in X : (x, y)\in U\}$ . We say that $X$ is totally bounded if for each $U\in \mathcal{U}$ there exists
a finitely enumerable subset $\{x_{1}, \ldots, x_{n}\}$ of $X$ such that $X=$ $)\mathit{7}_{i=1}^{n}U[x_{i}]$ .
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Theorem 2 Let $X$ and $\mathrm{Y}$ be uniform apartness spaces, and $f$ a strongly continuous map-
ping of $X$ onto $\mathrm{Y}$ such that $\mathrm{Y}$ is totally bounded. Then $f$ is uniformly continuous.

We conclude this paper with a result that shows what can be proved by way of a converse
to Theorem 1 when the range of the strongly continuous function is not totally bounded.
Two sequences $(x_{n})_{n=1}^{\infty}$ , $(x_{n}’)_{n=1}^{\infty}$ in a uniform space $(X,\mathcal{U})$ are eventually close if

$dU\in \mathcal{U}\exists N\forall n\geq$ $/\mathrm{V}$ $((x_{n}, x_{n}’)\in U)$ .

A mapping $f$ of $X$ into a uniform space $\mathrm{Y}$ is uniformly sequentially continuous if the
sequences $(f(x_{n}))_{n=1}^{\infty}$ , $(f(x_{n}’))_{n=1}^{\infty}$ are eventually close in $\mathrm{Y}$ whenever $(x_{n})_{n=1}^{\infty}$ , $(x_{n}’)_{n=1}^{\infty}$ are
eventually close in $X$. We have the following converse of Proposition 1.

Theorem 3 A $st$ rongly continuous mapping $f$ : $Xarrow \mathrm{Y}$ between uniform spaces is uni-
formly sequentially continuous.

These results can be summarised in the following diagram.

unifo continuity ifo sequen $.\mathrm{a}1$ continui

$\mathrm{Y}\mathrm{t}.\mathrm{b}$ .
$\mathrm{s}$ ong continui

near continuity



105

Acknowledgements. The author wishes to thank FoRST New Zealand for supporting
her research since 2002 (contract $\#$ UOCX0215), Hajime Ishihara for the invitation to visit
JAIST and offering her the opportunity to attend the RIMS Symposium in September 2003.
The Japanese Society for the Promotion of Science (Grant-in-Aid for Scientific Research
(C) $\#$ 15500005) is acknowledged with thanks for the financial support offered during the
author’s stay in Japan in September 2003.

References
[1] E. Bishop, Foundations of Constructive Analysis. McGraw-Hill, New York, 1967.

[2) E. Bishop and D. Bridges, Constr uctive Analysis, Grundlehren der math. Wis
senschaften 279, Springer-Verlag, Heidelberg-Berlin-New York, 1985.

[3] L. Boxer, ‘Digitally continuous functions’, Pattern Recognition Lett. 15, 833-839, 1994.

[4] D. Bridges and F. Richman, Varieties of Constr uctive Mathematics. London Math.
Soc. Lect. Note Ser., 97 Cambridge University Press, 1987.

[5] D. Bridges and L. Vita, ‘Characterizing near continuity constructively’ , Math. Logic
Quarterly, 47(4), 535-538, 2001.

[6] D. Bridges and L. Vita, ‘Cauchy nets in the constructive theory of apartness spaces’,
Scientiae Math. Japonicae 56, No.1, 123-132, 2002.

[7] D. Bridges and L. Vita, ‘Apartness spaces as a framework for constructive topology’,
Annals of Pure and Appl. Logic, 119, 61-83, 2003.

[8] D. Bridges and L. Vita, ‘A proof-technique in uniform space theory’ . Journal of
Symbolic Logic, 68(3), 795-802, 2003.

[9] D. Bridges and L. Vita, ‘Strong and uniform continuity–the uniform space case’,
London Math. Soc. Journal of Computation and Mathematics, 6, 326-334, 2003.

[10] D. Bridges, P. Schuster and L. Vita, ‘Apartness, topology, and uniformity: a con-
structive view’, in $CCA’ 01$ Dagstuhl Seminar, Germany, November 2001, Math Logic
Quarterly 48, Suppl. 1, 16-28, 2002.

[11] P. Ca neron, $\mathrm{J}.\mathrm{G}$ . Hocking and $\mathrm{S}.\mathrm{A}$ . Naimpally, Nearness-a better approach to topolog-
ical continuity and limits, Mathematics Report #18-73, Lakehead University, Canada,
1973.

[10] D. Bridges, P. Schuster and L. $\mathrm{v}_{\hat{1}}\mathrm{t}\dot{\mathrm{a}}$, ‘Apartness, topology, and uniformity: acon-
$\mathrm{s}\mathrm{t}\mathrm{r}\iota \mathrm{l}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}$ view’, in $CCA’\mathit{0}\mathit{1}$ Dagstuhl Seminar, Germany, November 2001, Math Logic
Quarterly 48, Suppl. 1, 16-28, 2002.

[11] P. Cameron, $\mathrm{J}.\mathrm{G}$ . Hocking and $\mathrm{S}.\mathrm{A}$ . Naimpally, Neamess-a better approach to topology,
ical continuity and limits, Mathematics Report #18-73, Lakehead University, Canada,
1973.

[12] J. M. Chassery, ‘Connectivity and consecutivity in digital pictures’, Computer Graphics
and Image Processing 9, 294-300, 1979.

[13] V. A. Efremovic, ‘Infinitesimal spaces’, Dokl. Akad. Nauk SSSR, 76, 341-343 (in Rus-
sian), 1951.

[14] V. A. Efremovic, ‘The geometry of proximity $\mathrm{I}’$ , Mat.Sb. 31, (73), 189-200 (in Russian),
1952.



108

[15] H. Herrlich, ‘A concept of nearness’, General Topology Appl. 5, 191-212, 1974.

[16] $\mathrm{P}.\mathrm{T}$ . Johnstone, Stone Spaces, Cambridge Studies in Advanced Mathematics 3, Cam-
bridge Univ. Press, Cambridge, 1982.

[17] $\mathrm{P}.\mathrm{T}$ . Johnstone, ‘The point of pointless topology’, Bull. Amer. Math. Soc. $8(1)$ , 41-53,
1983.

[18] T. Y. Kong and A. Rosenfeld, ‘Digital topology: introduction and survey’, Computer
Vision, Graphics, and Image Processing 48, 367-393, 1989.

[19] 1’. Y. Kong, ‘On the problem of determining whether a parallel reduction operator of
$\mathrm{n}$-dimensional binary images always preserves topology’, Proc. SPIE’s Conf. on Vision
Geometry, 69-77, 1993.

[20] L. Latecki and F. Prokop, ‘Semi-proximity continuous functions in digital images’,
Pattern Recognition Letters 16, 1175-1187, 1995.

[21] L. Latecki, ’Topological connectedness and 8-connectedness in digital pictures’, Com-
puter Vision, Graphics and Image Processing: Image Understanding 57, 261-26, 1993.

[22] S. A. Naimpally and B. D. Warrack, Proximity Spaces, Cambridge University Press,
1970.

[$23|$ F. Richman, ‘Intuitionism as generalization’, Philosophia Math., 5, 124-128, 1990.

[24] F. Riesz, ‘Stetigkeitsbegriff und abstrakte Mengenlehr\’e, Atti IV Congr. Intern. Mat.
Roma, $\mathrm{I}\mathrm{I}$ , 18-24, 1908.

[25] A. Rosenfeld, ’Continuous’ functions on digital pictures’, Pattern Recognition Lett.
4, $177-\cdot 184$ , 1986.

[26] G. Sambin, ‘Intuitionistic formal spaces–a first communication’, in: Mathematical
Logic and its Applications ( $\mathrm{D}.\mathrm{G}$ . Skordev, ed.) Plenum Press, New York, 1987.

[27] P. Schuster, L. $\mathrm{V}_{\hat{1}}\zeta\dot{\mathrm{a}}$ and D. Bridges, ‘Apartness as a relation between subsets’, in:
Proceedings of The Third International Conference on Combinatorics, Computability
and Logic, Constanta, Romania, ( $\mathrm{C}.\mathrm{S}$ . Calude, $\mathrm{M}.\mathrm{J}$ . Dinneen, and S. Sburlan $\mathrm{e}\mathrm{d}\mathrm{s}.$ ),
DMTCS, Springer, 203–214, 2001.

[28] P. Schuster, L. $\mathrm{V}\hat{1}\mathrm{J}\dot{\mathrm{a}}$ and D. Bridges, ‘Strong versus uniform continuity: a constructive
round’ -. Quaestionaes Mathematicae, 26, 171-190, 2003.

[29] Y. M. Smirnov, ‘On proximity spaces’, Mat. Sb. 31 (73), 543 -574 (in Russian); (English
translation in Am. Math. Soc. Ransl. Ser. 2, 38, 5-35, 1952.

[30] L. $\mathrm{V}_{\hat{1}}\zeta,\dot{\mathrm{a}}$ and D. Bridges, ‘A first-Order constructive theory of nearness spaces’, in Special
Issue of Topology in Computer Science, Proceedings of Constructivity; Asymmetry and
Partiality; Digitization, Conference in Dagstuhl, Germany, 4-9 June 2000; Springer
Lecture Notes in Computer Science ($\mathrm{R}$ : Kopperman, M. B. Smyth, and D. Spreen
$\mathrm{e}\mathrm{d}\mathrm{s}.)$ , 305(1-3), 473-489, 2003.



107

[31] L. $\mathrm{V}_{\hat{1}}\zeta\dot{\mathrm{a}}$, ’Proximal and uniform convergence on apartness spaces’, Math. Logic Quar-
terly, 49(3), 255-259, 2003.

[32] L. Vi$a, ’On proximal convergence in uniform spaces’, Math Logic Quarterly, 49(6),
550-552, 2003.


