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THREE-PLAYER GAME OF ‘KEEP-OR-EXCHANGE’
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ABSTRAOT. A three-player, sequential-move game with 1mperfect information is ana-
lyzed and the explicit solution is given. This work is the first extension of the present
author’s recent paper Ref.[8] to the three-player games. The solution derived is surpris-
ingly tomplicate in comparison with the one for the two-player game. Our intuition,
that the last-mover has an advantage over the middle-mover, and the middle-mover,
in turn, has an advantage over the first-mover, is proven to:correct. Three-player
simultaneous-move game is also solved. A conjecture for the solution to the four-player
game is given.

1 Three-Player Games of ‘Score Showdown’. Consider the three players I II and
1T (sometimes they are denoted by 1,2 and 3). Let X;;(i = 1,2,3;7 = 1,2) be the random
variable (r.v.) observed by player  at the j-th observation. We assume that X;;’s are i.i.d.,
each with uniform distribution in [0,1]. The game is played in the three stages.

In the first stage, I observes that Xy; = z and chooses one of the either A; (i.e., I
accepts z) or R; (i.e., I rejects z and resamples a new r.v. Xi2). The observed value = and
T's choice of either A; or R; are informed to II and ITI. But Xj2 is a r.v. for the all players
(including I himself).

In the second stage, II observes that X,; = y, and chooses either one of A, (i.e., I
accepts y) or Ry (i.e., II rejects y and resamples a new r.v. X3). The observed value y a.nd
II’s choice of either Ag or Ry are informed to ITL. But Xp3 is a r.v. for III, and II himself.

In the third stage, ITI observes that X3; = z and chooses either one of A3 (i.e., III
accepts z) or Rg (i.e., III rejects z and resamples a new r.v. X32). X3 isarv. for II
himself, that is, III doesn’t know its realized value until the showdown is made.

Let, fori=1,2,3,

s il accepted .
{1.1) L 85X, X)) = { X, ° if X;; is { rejected by player i,
which we call the score for player i.

After the third stage is over, the showdown is made, the scores are compared, and the
player with the highest score among the players becomes the winner. Each player aims to
maximize the probability of his (or her) winning. We assume that all players are intelligent,

‘and each player should prepare for that any subsequent player must use their optimal

strategies.

The three-player game of ‘Keep-or-Exchange’ (i.e., the score is defined by (1.1)) is solved
in Section 3. The solution is found to be very comphcate far more than expected. It is
compared with that of the two-player case, given in Section 2. In Ref.[8] the other two-player

.games of ‘Competing Average’, where the score is

_J Xa .. [ Xa is accepted
(1.2) Si(Xi1, Xiz) = { -;-(X.-l + Xi2) { X;» is resampled,
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and ‘Showcase Showdown’ where the score is
X . X is accepted
(13)  SilXa, Xa) = { (Xa + Xo)I(Xar + X < 1) 1 { X is resampled,
are solved. The three-player game versions of these two-player games remain to be solved
as yet. See also Ref.[1~7].

Intuitively it would seem in the three-player games, that the last-mover has an advantage
over the middle-mover, and the middle-mover, in turn, hés an advantage over the first-
mover. Theorem 2 in the present paper shows that this intuition is correct in ‘Keep-or-
Exchange’, where the score is (1.1). ]t is an interresting work to investigate whether the
counter examples do exist or not.

Three-player simultaneous-move game is solved in Section 4. A conjecture for the solu-
tion to the four-player game is given. We observe that player behaves more cautlols as he
has more competitors.

2 Keep-or-Exchange Two-Player game. First we solve the two-player game.
We will find, in the next section, that the three-player game is surprisingly complicate to
solve, compared with in the two-player case.

Let W;(i = 1,2) be the event that player i wins. To find the players’ optimal strategies

we must derive them in reverse order. Define state { (y]z, A1) } for 11, to mean that I

(yiz, R1)
accepted . . .
{ re‘](':etl:)ted }Xn = g in the first stage and II has just observed X3; = y in the second

stage. Then we have
(21)  p2a(yle, A1) = P{W;|II accepts X3 =y in state (y|z, A1)} =I(y > z),

(2:2) pr(Ylz, A1) = P{W,|rejects Xz; =y in state (y|z, A1)}
= P(Xp>z)=Z=1-2z, indep.of y,

(2.3) P24(ylz, R1) = P{W,[II accepts X2 =y in state (y|z, R;)}
P(Xy2 <y)=y, indep.of z,

and

(2.4) mr(yle,R1) = P{W,|lrejects X =y in state (y|z,R1)}

1
= P(Xi2 < Xa22) = 3 indep.of z and y,

Theorem 1 The solution to the two-player game with the score function (1.1) is as follows.
The optimal strategy for I in the first stage is given by:

(2.5) Accept (Reject)X11 =z, if x> (<)4/3/8 ~0.6124.

The optimal strategy for I in the second stage is given by

. N ) z . (ylmv Al)

(2.6)  Accept (Reject) Xo1 =y, if y> (<){ 1/2 } in state { (e Ry) [

The optimal values are
(2.7) P(W) = % {1+2(3/8)/} ~ 0.4864

P(W2)

Proof is given in Ref.[8].

il

1—- P(W;) = g {1 — (3/8)% 2} s 0.5136.
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3 Keep-or-Exchange Three-Player game. Let W; be the event that player ¢
wins. To find the players’ optimal strategies, we must derive them in reverse order. Define

state { Ez{:ﬁi’zgzg } for 111, to mean that I accepted X3; = 2 in the first stage, II

{ accepted | o _ y in the second stage, and III has just observed X3, = z in the third

rejected

stage. Also define the other two states (z|zR1,yRz) and (2| R;,yA2) similarly. Then we
easily find that

(3.1) p3a(zlz A1, yAs)

il

P{W3|III accepts X3; = z in state (z|zA1,yA2)}
= I(z>1y), (sincell behaves optimally)

(32)  psr(zlzA;,yA2) P{W;3|III rejects X3, = z in state (z|zA;,yA2)}

P(X32 > y) =4,

(3.3)  psal(zlzA;,yR3) P{W;3|III accepts X3; = z in state (z|zA;,yR2)}

I(z > z)P(2 > X2) = 2I(z > x),

(34)  par(zlzA;,yRs) P{W3|III rejects X3; = z in state (z|zA;,yRs)}

= P{X3 > (zV Xan)}= %(l - z?),

W

(3.5)  p3a(z|zRi,yR2) = P{W3|I accepts X31 = z in state (z|zR:i,yR2)}
= P(z> X1V Xp)=2%

(3.6)  par(zlzRi,yR2) = P{Ws|llrejects X3; = z in state (z|zR;,yR2)}
= 1/31 V(‘”) Y, z)i

and

(3.7 pgA(zile,yAz) P{W3|III accepts X3, = 2 in state (z|zR1,yAs)}

I(z > y)P(z > X13) = 2I(2 > y),

(3.8)  par(z|zR1,yAs)

P{W3|II rejects X3; = 2z in state (z|zR;,yAs2)}
1
= P{X32 > (y VX12)} = —2-(1 - yz).

Theorem 2 The solution to the three-player game with the score function (1.1) is as fol-
lows. The optimal strategy for I in the first stage is given by:

(3.9 Accept (Reject) X131 ==z, if £ > (<)zg = /% ~0.68774,
1/3
where ¢ &~ 0.22372 is a four-order polynomial of k'/3 = (%) ~ 0.64568, given by
(3.24). The optimal strategy for II in the second stage is:
(3.10)  Accept (Reject) X1 = v,

. ' 4
Tv> (<){ e ns 0 as6s > ™ Aot { Eﬁl‘fmﬁ



where yo(z)

V@I <z < V2 -1+ VAF@)I(VI-1<z< &)+l <z <
D,k (z) = §(8— 22% + 32%),h7(z) = L1 -z + 2% — 2%),k = 258 ~ 0.26918 and
£ ~ 0.54368 i3 in a unique root in (0,1) of the equation =3+ 22 4-z — 1 =0 (See Figure 2).
Note that yo(z) > z,Vz € (0,1). The optimal strategy for IIL in the third stage is given by:

(3.11)  Accept (Reject) X3, = z,
zll( . (2lz A1, yAs)
. s(1—-z) vz . (2|zA1,yR2)
2
if 2> (<) 1/‘/§N 0.57735 ° in state (z|zRy, yR>)
sl-9*) vy (2le Ry, yAz).
The optimal value for the three players are
(3.12) P(W1) ~0.32309, P(W)~0.33270 and P(W3) ~ 0.34421.

Proof. The theorem is proven in the four steps. (m% )

Remark 1 We observe, by Theorems 1 and 2, that the difference between the players’
winning probabilities is diminished in the three-player case than in the two-player case.

Remark 2 We give a numerical example which shows how Theorems 1 and 2 work.

Two-player game Three-player game
If I observes X,; = = = 0.482, then | If I observes X;; = z = 0.482, then
1st stage | he announces 0.482 & R; (since he announces 0.482 & R, (since
z < 4/3/8 = 0.6124) and exchange | z < zo = 0.6877) and exchange
z to Xq9 zto Xig
If I obs. Xg; =y =0.644, then he | If IT obs. X5; = y = 0.644, then he
2nd stage. | accepts it (since y > 1/2). announces 0.644 & R; (since y <
. yo = 0.6457) and exchange it to Xa2
3rd Stage If TII obs: X31 = z = 0.581, he
accepts it (since z > 1/4/3 ~ 0.5774)
I(II) wins if X5 > (<)0.644. Players’ scores are X3, X3, and
Showdown 0.581, resp. Player with the highest
score wins.

Remark 3 It seems to us that the sequential game discussed in the present paper doesn’t
belong to the area of dynamic programming. The result obtained in the two-player game
is not applicable to the three-player game.

4 Simultaneous-Move Game. In the simultaneous-move version of the game, the un-
fair information acquisition by the players disappears. Each player i,¢ = 1,2,3, privately -
observes X;; and chooses either one of A; or R;. The observed value and choice by each
player are unknown to his (or her) opponents. Suppose that players’ strategies have the

form of :

I accepts (rejects) X33 =z, if z > (<)a,
II accepts (rejects) X1 =y, if ¥ > (<),
III accepts (rejects) X31 =z, if 2> (<)e.
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Let M;(a,b,c) = P{W;|L, I, and III choose a,b and ¢, respectively},i = 1,2,3. Evi-
dently Zi’.’:l Mi(a,b,c) = 1,¥(a,b,¢) € [0,1]3, and, by symmetry, M;(a,a,a) = 1/3,Vi,VYa €
[0,1]

Let pass,PRRR:PAAR, €tc., denote the winning probability for I when the players’
choice-tripleis A-A—A, R—R—R,A—A—~R, etc. Alsolet gaaa,qrRR;JAAR(TAAATRRR,TAAR)
etc, similarly denote the winning probability for II (III). Then we find that

(4.1) Mi(a,b,c) = pasa + Prrr + (other six probabilities),
(4.2) M2 (a,b,¢) = qa44 + qrrr + (other six probabilities),
(4.3) Ms(a,b,c) =T444 + rrrR + (other six probabilities),
where
1
PAAA = P{Xn >a,X01 >b,X31 >¢,X11>XnnVXa1}= av(ch)(t - b)(t — c)dt,

A 1
PRRR = P{Xn <a,X <b,X31 <c,Xi2 > X2 VXaz} = §abc,

1
parr = P{Xi >a, X <b,Xn <c¢,X11 > Xs2VXao} = bC/ tidt,
a

1
PAAR = P{Xll >a,X91 >0,X31 <c¢,X11 > Xo; VX32} = c/ t(t—- b)dt,
aVvb
1

PARA = P{Xn >a,X0 < b, X3 > c,X114> XV X31} =b t(t— C)dt,
aVe
1

PRAA = P{Xn < a,,X21 > b,X31 > C,X]_g > le \2 X31} = a/ (t - b)(t— c)dt,
bve

1
PRRA = P{Xu <a,X91 <b,X31 >c¢,Xi12> Xoo VX31} = a,b/ t(t— C)dt,
[

1
PRAR = P{Xu <a,Xq >b,Xg <c,X12> X0 VXQQ} = a,c/ t(t—b)dt,
‘ b
Lle.

First we have to noice that

M;(a,a,a) = %,i =1,2,3,Ya € [0,1].

We prove this for i = 1 only. Proof is the same for ¢ = 2,3. From (4.1) we have
Mi(a,a,a) = [paaa+Pprrr+ (other six probabilities)], ;.

1 1 1
= (1+a)/ (t—a)zdt+%a3+a2/ t2dt+2(a+a2)/ t{t — a)dt
a a a

%(1 +a)(1-a)®+ -;-as + _;:0,2(1 —a®) +2(a+4a?)- %(2 - 3a +d®),

which is easily shown to be equal to 1/3,Va € [0, 1].

Theorem 3 Solution to the simultaneous-move three-player game. The game has a unique
equilibrium point (a*,a*,a*), and the common equilibrium value 1/3, where/g.; '48_a unique
root in (0, 1] of the equation . ‘:3{%
(4.4) 2% =1-a+a?-dd '

( Sroof is omitted )
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The two-player game is solved in Ref.[8]. Let
M (a,b) = P{W1[I (IT) chooses a(b)} =1 — Ma(a,b).
Then it is shown that
Mi(a,b) = %{—aQb +le+1)(1-b+b7)}—I(a> b)-;-(a —b)?,

6M1(a, b) _
8a
And we have the following

—ab + %(1 —b+b) ~I(a 2 b)(a—b).

Theorem 4 Solution to the simultaneous-move two-player game. The game has a unique
saddle point (g,g) and the saddle value -é— , where g = %(\/5 — 1) ~ 0.61803 (For the proof,
see Ref. [8]).

Remark 4 The optimal threshould number is g (golden bisection number) in the two-player
game and it increases to ¢* = 0.691 in the three-player game. Furthermare, by considering
Theorems 3 and 4 we have a conjecture that the simultaneous-move four-player game has a
unique eq.point (a*,a*,a*,a*) and the common eq.value 1/4, where a* ~ 0.738 is a unique
root in [0,1] of the equation 3a® = 1 — a + a2 — a® + a* — a5. Player behaves more cautious
as he (or her) has more competitors.
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