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Abstract

Lately, we have obtained explicit upper bounds on |L(1, x)| (for prim-
itive Dirichlet characters x) taking into account the behaviors of x on a
given finite set of primes. This yields explicit upper bounds on residues of
Dedekind zeta functions of abelian number fields taking into account the
behavior of small primes, and we explained how such bounds yield im-
provements on lower bounds of relative class numbers of CM-fields whose
maximal totally real subfields are abelian. We present here some other
applications of such bounds together with new bounds for non-abelian
number fields.

1 Introduction

Theorem 1 (See [LouO4a] and [Lou0?], and [Raml1] and [RamZ2] for a slight
improvement, and see (BHM], [Le], [MP], [Mos], [MR], [SSW] and [Ste] for
various applications). Let S be a given finite set of pairwise distinct rational
primes. Then, for any primitive Dirichlet character x of conductor g, > 1 we
have

1 p—1

pGS

lo
oog) + Rs(a0)
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where

o = | Keven = 2+ v —log(4m) =0.046191--- if x(—1) =+1
x Kodd = 2+ v — logm = 1.432485 - - - if x(—1) = —

where w > 0 is the number of primes p € § which do not divide q,, and where
Rgs(gy) is an explicit error term which tends rapidly to zero when g, goes to
infinity. Moreover, if S = 0 or if S = {2}, then this error term Rgs(gy) is
always less than or equal to zero, and if none of the prime in S divides q, then
this error term Rgs(gy) ts less than or equal to zero for g, large enough.

Lemma 2 Assume that none of the primes p € S divide q,. If x is even then
Rs(gy) <0 for § = {2} and g > 3, Rs(gy) < 0 for § = {2,3} and ¢, > 3,
and Rs(gy) <0 for S = {2,3,5} and gy > 3. If x is odd then Rs(gy) < 0 for
S ={2,3} and g, > 9, and Rs(qy) < Q for S = {2,3,5} and g, > 217.

Proof. We assume that S # @ and that none of the primes p € S divide g,.
Hence, w = #S > 1 and we set d =[] pesP > 1.
1. Assume that x is even. Set

=> e (z>0)

n>1

According to [LouO4a, Theorem 5] 1, we may take

d lo
Rs(q")=23f/3—x(“mn*2 log(gx/4") | 2% %62 + Rs(ay)

where in setting d;q, = max{d > 1; § | d and u(é) = —1} we have

Rs(gy) = — Z“ / 0(4¥ xa;/(s?)_“.”.

éld
mwe WqX/dmaz qx/ mazx
= 6-4vg, Z 6= 4w+1 (H(P+ 1) - H(l P )
u(:)'j—-l pld
in using
e~ A —-7rA
/ G(Aa: / 0(Az)dz = 2}:1 g RS 6A .

2. Assume that x is odd. Then (see [Lou0?]),

Rs(qx)=—2\;r_ @) 12"%: (2”%@)2 #(d)¢(d)) :/224}2

1Note the misprint in [Lou04a, page 128, line 2] where the factor 2% should read 1/2%.
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where
w

Ra= 27 (0" -2 + ) + d;#(ﬂwz +1). |
pld

pld

3. Notice that the error term is much more satisfactory for even characters. e

2 Upper bounds for relative class numbers

Corollary 3 Letq="5 (mod 8), g # 5, be a prime, let x4 denote any one of
the two conjugate odd guartic characters of conductor g and let hy denote the
relative class number of the imaginary cyclic quartic field Ny of conductor g.
Then,

-_ g 2 q - 2
h; ——WIL(l’Xq)] < Axwz(rogq+2+’y—IOS(W)+1OEBX) ,

which implies hy < q for ¢ < Cy, where Ay, By and Cy are as follows:

Va.lues of (A, By, Cx)
Xq(3) Xq(3) = —1 Xq(3) = +1i
xq(5) = +1 | (40,16, 6350867) (160,192,2 - 10*%) (100,192,5-10'%)
xq(5) = —1 | (90,64+/5,10™°) | (360,768+/5,10%%) | (225,768v'5,4- 10°°)
xo(5) = +i | (65,64/5,10%) | (260,768v/5,10™) | (325/2, 768v/5, 3 - 10™°)

Proof. Since g=5 (mod 8), we have x4(2)? = (%) = —1 and x4(2) = £
Set S = {p € {2,3,5}; x(p) # +1}. Then 2 € S and according to Theorem 1
we may choose

2
p— x(p) p—x(p)
*SH =40 J] -1
peS 2#pES
and I
gp ogp
log By, -wlog4+22 =(w+1)log4+2 Z =

PGS 2#p€ES

for according to Lemma 2 we have Rs(gy) < 0 for gy > 217. o

Remarks 4 Using Corollary 3 to alleviate the amount of required relative class
number computation, M. Jacobson and the author are now trying to solve the
open problem hinted at in [Lou98]: determine the least (or at least one) prime
g=>5 (mod 8) for which hy > q. Indeed, according to Corollary 3, for finding
such a q in the range g < 5 101°, we may assume that x4(3) = +1, which
amounts to eliminating three quarters of the primes q in this range. In the same
way, in the range ¢ < 3 - 10'® we may assume that x4(3) = +1 or xq(5) = +1,
which amounts to eliminating 9/16 of the primes q in this range.
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3 Real cyclotomic fields of large class numbers

3.1 Using simplest cubic fields

In [CW], G. Cornell and L. C. Washington used simplest cubic fields to produce
real cyclotomic fields Q¥ (¢,) of class number h'; > p, where the simplest cubic
fields are the real cyclic cubic number fields associated with the Q-irreducible
cubic polynomials Py, (z) = 2% — mz? — (m + 3)z — 1 of discriminants

dm = Afn where Ap, :=m? + 3m + 9.

Since —z3Pm(1/z) = P_pm-3(z), we may assume that m > —1. We let

Pm = %(2 A, cos(% arctan(zﬁ3)) + m) =+1/lm - -;— +O(ﬁ) (1)
denote the only positive root of Pm(z'). Moreover, we will assume that the
conductor of K, is equal to A, which amounts to asking that (i) m # 0
(mod 3) and A,, is squarefree, or (ii) m =0, 6 (mod 9) and A,, /9 is squarefree
(see [Wa, Prop. 1 and Corollary]). In that situation, {—1, pm,—~1/(pm + 1)}
generate the full group of algebraic units of K, and the regulator of K,, is

Reg,, =108° pm — (log pm)(log(1 + pm)) + log?(1 + pm), (2)

which in using (1) yields

1 log A logA
Regx,, = 108" Am - (\)/gzr +0( °i

=)< ;{—log2 A, (3)

Lemma 5 The polynomial Py,(x) has no root mod 2, has at least one root mod
3 if and only if m =0 (mod 3), and has at least one root mod 5 if and only if
m=1 (mod5). Hence, if Ay, is square-free, then 2 and 3 are inert in K,,,
and if m #1 (mod 5) then 5 is also inert in K,,.

As in [Lou02b, Section 5.1], we let xg,  be the primitive cubic Dirichlet
characters modulo A,, associated with K, satisfying

_Jw? ifm=0 (mod2)
XK"‘(Z)_{w ifm=1 (mod 2).

Since the regulators of these K,,’s are small, they shéuld have large class num-
bers. In fact, we proved (see [Lou02d, (12)]):

= > —

Corollary 6 Assume that m > -1 is such that A,, is squarefree. Then,
Xk,, (2) # +1, xk,,(3) # +1 and

Km =1 An/100 fm#1 (mod 5) and m > 9.
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Proof. Ifaprimel > 2is inert in Ky, then xg (1) € {exp(2in/3), exp(4ir/3)}.
According to the previous Lemma,to Theorem 1 (with § = {2,3} and § =
{2,3,5}) and to Lemma 2, we have '

L,y ) < (log Am + Keven + log(192))?/91,
1 AKm/l = 16(log Am + Keven + 10g(768/5))%/2821 if m#1 (mod 5).

Now, according to (4) and (3), the desired results follow for mm > 95000. The
numerical computation of the class numbers of the remaining K., provides us
with the desired bounds (see [Lou02b]). e

From now on, we assume (i) that p = A,, = m? + 3m + 9 is prime and
(ii) that p = 1 (mod 12). In that case, both Kp, and kp := Q(vAy) are
subfields of the real cyclotomic field Q*(({;) and the product h;hs of the class
numbers hg := h; and h3 = hg of k and K,, divides the class number h;,"
of Q*({,). Since h3 < A,./60, h2h3 > A, implies hy > 60, hence hy > 61 (for
hy is odd), and Cohen-Lenstra heuristics predict that real quadratic number
fields of prime conductors with class numbers greater than or equal to 61 are:
few and far between. Hence, such simplest cubic fields K, of prime conductors
A, =m?2+3m+9=1 (mod4) with hghs > A,, are few and far between.
As we have at hand a very efficient method for computing class numbers of
real quadratic fields (see [Lou02c] and [WB]), we used this explicit necessary
condition hz > 61 to compute (using [Lou02b]) the class numbers of only few
of the simplest cubic fields K, of prime conductors A,, = 1 (mod 12) with
—1 < m < 1066285 to obtain the following Table. Notice that the authors of
[CW] and [SWW] only came up with one such K., the one for m = 106253.

Least values of m > —1 for which A,, = m? + 3m + 9 is prime and hzhs > Am

m | [|0(xXxn )l arg W(me ) ha hs | hahs/Bm
102496 | 20.268--- | }arctan( in Yiy+ 2 891 | 13152913 | 1.115---
106253 | 34.364--- | 1 arctan(z i F205) 2685 | 6209212 | 1.476---
319760 | 202.162--- | % arctan(Z an +3) 1887 | 57772549 | 1.066-- -
554869 | 88.861--- | % arctan(z2 2 +:_,) +Z | 7983 | 93739324 | 2.430---
726845 | 20.938--- | 1 arctan(3 2 ) 13533 | 176702419 | 4.526---
791021 | 129.812--- %arctan( 3 3) 1737 | 445142272 | 1.235---
796616 | 357.252--- | 1arctan(z 2 3) 1155 | 696739264 | 1.268---
839401 | 293.373--- | I arctan(zY +3) +7 | 1575 | 554491633 | 1.239---
906437 | 93.697--- 3 arcta,n(2 3) 1955 | 469911916 ( 1.118---
1066285 | 140.662--- | }arctan(z2Y%) + F | 5389 | 473034223 | 2.242---

Finally, it is much more efficient to use simplest sextic fields to produce
real cyclotomic fields of prime conductors and class numbers greater than their

conductors( see [Lou04c]).
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3.2 Using simplest quartic fields

In [Lazl] and [Laz2], A. Lazarus dealt with various class number problems for
the so called simplest quartic fields, the real cyclic quartic number fields
associated with the quartic polynomials Pp,(z) = z* — mz® — 622 + mz + 1 of
discriminants
' dm = 4A3, where A, := (m? + 16)3.

Since P,,(—z) = P_n,(z), we may and we will assume that m > 0. The reader
will easily check (¢) that P, (z) has no rational root, (i2) that P,(z) is Q-
irreducible, except for m = 0 and m = 3, and (iii) that P,,(z) has a only
one root p,, > 1. Set Bm = pm — p;} > 0. Then, B2 — mB, —4 = 0 and

Bm = (m+ Ap)/2. In particular, ky, = Q(v/An) is the quadratic subfield
of the cyclic quartic field K,,. It is known that h, divides hy , and we set

hk, =hg,, /hk Since p,, > 1 and pm — Bmpm —1 =0, we obtain

_%(m+2\/En-+\/Am+gz\/E;;)=\/Z;(l__§_+O(_1:))

(use m = /A, —16),

o L (m B \/A_'\/ —m\/l_) 2 +O(A1,,,)’

and

1
Reg},, =log’ pm-+log” pl, = 7 log? A - y (A ) < —log A (5)
m

for m > 1. We will say that K,, is a simplest quartic field if m > 1 is such
that A, is squarefree (which implies m odd and m # 3).

Proposition 7 Assume that m > 1 is odd and that A,, = m? + 16 is prime.
Then, the discriminant of the real quadratic subfield k,, = Q(vA,.) of Kum is
equal to A, the discriminant of K, is equal to A3, its conductor is equal to
A, the class numbers of K,,, and k,, are odd, and {see [Lou04b])

. A 20,

. 2
Picn = 4Reg} ' (Lxx)I" 2 = 3e(log A, + 0.35)2 (6)

where x g is any one of the two conjugate primitive quartic Dirichlet characters
modulo A, associated with K,,. Moreover, x Km(2) = —1, and m > 5 implies

hk, < An/26.

Proof. According to the class number formula (6), to Theorem 1 (with § =
{2}) and Lemma 2 which yield

lL(la XKm)!z S (log Am + Kodd + 108(16))2/36v
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and to the asymptotic (5), we have A}, < Ap/(36 + o(1)). Hence, hy, <
A,,/24. for m > 148000. The numerical computation of the class numbers of
the remaining K., provides us with the desired bound (see [Lou02b}). e

Since, hy, = hy _hY > Am and h, < Apn/26 imply hy > 27 (for hy
is odd), and Cohen-Lenstra heuristics predict that real quadratlc number fields
of prime discriminants with class numbers greater than or equal to 27 are few
and far between. Hence such simplest quartic fields K, of prime conductors
A, =m?+16 with hg > Ap, are few and far between. As we have at hand a
very efficient method for computing rigorously class numbers of real quadratic
fields (see [Lou02c] and {WB]), we used this explicit necessary condition h, >
27 to compute only few of the class numbers of the simplest quartic ﬁelds K
of prime conductors A,, = m? + 16 =1 (mod 4) with 1 < m < 1680401 to
obtain the following Table. Notice that G. Cornell and L. C. Washington did
not find any such K, (see [CW, bottom of page 268]).

Least values of m > 1 for which A,, =m? + 16 is prime and h Ky 2 Bm
m Am hkm h;(m th /Am
524285 | 274874761241 | 1911 | 181442581 | 1.261---
1680401 | 2823747520817 | 1537 | 1878644993 | 1.022---

4 The imaginary cyclic quartic fields with ideal
class groups of exponent < 2

We explain how one could alleviate the determination in [Lou95] of all the non-
quadratic imaginary cyclic fields of 2-power degrees 2n = 2" > 4 with ideal class
groups of exponents < 2 (the time consuming part bieng the computation of
the relative class numbers of the fields sieved by Proposition 9). To simplify,
we will only deal with imaginary cyclic quartic fields of odd conductors, and we
will prove Proposition 9 below. Recall the following result whose proof makes
use of Theorem 1 (for even characters) with S = {2}:

Theorem 8 (See [Lou03, Theorem 22]). Let K be an imaginary cyclic quartic
field of conductor fx, Let k, fr and xx denote the real quadratic subfield of K,

the conductor of k, and any one of the two conjugate primitive quartic Dirichlet

characters modulo fyx associated with K. Then,

_ Ckfx ‘
" 2 G llo i+ Re) R URTR) @

where -
392 32 if xk(2) = +1,

EREETIOI VR Sl iy
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and

24~ —log(4r) =0.046--- if fr=1 (mod 8)
Bk =12+~ ~log(r/4) =2.818--- if fr=5 (mod 8).

Proposition 9 Assume that the ezponent of the ideal class group of an imagi-
nary cyclic quartic field K of odd conductor fx is less than or equal to 2. Then,
fi < 1889 and fx < 107 (where k is the real quadratic subfield of K ). More-
over, whereas there are 1 377 361 imaginary cyclic fields K of odd conductors
fx < 107 and such that fi < 1889, only 400 out of them may have their ideal
class groups of exponents < 2, the largest possible conductor being fx = 5619

(for fr = 1873 and fK/lc 1= fK/fk = 3).

Proof. It is known that if the exponent of the ideal class group of K of odd
conductor fx is <2, then fy =1 (mod 4) is prime and

hy = 2tr/e—1 ‘ (8)

where tg/; denotes the number of prime ide"a.ls of k which are ramified in K/k
(see [Lou95, Theorems 1 and 2]). Conversely, for a given real quadratic field &
of prime conductor fr =1 (mod 4), the conductors fx of the imaginary cyclic
quartic fields K of odd conductors and containing k are of the form fx = fr fx/x
for some positive square-free integer fx/x > 1 relatively prime with fx and such
that

(fe —1)/4+ (fr/x— 1)/2 is odd (9)
(in order to have xg(—1) = —1, i.e. in order to guarantee that K is imaginary).
Moreover, for such a given k and such a given fk/x, there exists only one
imaginary cyclic quartic field K containing k and of conductor fx = fifk/k,
and for this K we have

e =1+ 3, B+(5)/2 (10)

Pl fr/k

where (f_k) denote the Legendre’s symbol. Finally, if we let ¢, denote any one
of the two conjugate quartic characters modulo a prime fy =1 (mod 4), then
xk(n) = ¢k(n)(ff_;:/—;.)’ where (Tx_/k) denote the Jacobi’s symbol, and

$e(2)=1 iffe=1 (mod8)and 2™ =1 (mod f)
XK(2) =19 ¢p(2)=-1 i fu=1 (mod 8) but 2% %1 (mod £) (11)
—¢k(2)=%i if fr =5 (mod 8).

Hence, we may easily compute ki, cx and tg, from fi and fx/x. In particular,
we easily obtain that there are 1 377 361 imaginary cyclic fields K of odd
conductors fx < 107 and such that f < 1889, and that cx = 32 for 149 187
out of them, cx = 32/5 for 938 253 out of them, and cx = 32/9 for 289 921
out of them. Now, let P, denote the product of the first n odd primes 3 =p; <
5=py <---<pp,<-- (hence, Py =1, P, =3, P, =15, ---). There are two
cases to consider:
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1. If xx(2) = +1. Then, fr =1 (mod 8) is prime, kx < 0.05, cx > 32/9,
fx = fxfx/x where fx i is a product of n > 0 distinct odd primes. Hence,
Fr/k = Py tije < 14 2n, hy = 2%/~ < 4™ and using (7) we obtain

Fi(n) := 32 Pr

_ <1.
9em24n(log fi + 0.05) log(fEP2) —

Assume that fi, > 36. Then 3 f:l 2 > 5% and for n > 1 we have Pnt1 =
p2=5,PnZP1=3and

Fe(n+1) _ Pnt log(f:/zpﬂ) > 51°g(f’3/2p") > 5log(3f,f/2) >1
Filn)  dlog(pnsrfy *Pn) ~ 4log(5fy/*Pa) ~ 4log(15£/%) ~

Since we clearly have Fi(1) < Fi(0), we obtain min,>o Fk(n) = Fi(1)
and
8fk
= Fi(1) < <1
3em2(log fi + 0.05) log(9f3) k(1) < Fi(n) < 1,
which implies fi < 1899, hence fi < 1889 (for fx =1 (mod 8) must be
prime). Hence, using (7), we obtain

A > 32fk
K = 9en2(log(1889) + 0.05) log(1889f% )

Let now n denote the number of distinct prime divisors of fx. Then
fi = Pa, tgye < 2(n—1)+ 1 and hy = 28x/:~1 < 47~1. Hence, using
(7), we obtain

1o 32P,
= 9en?(log(1889) + 0.05) log(1889P2)’

which implies n < 7, hy < 45,

45> 32fk
= 9en?(log(1889) + 0.05) log(1889f% )

and yields fx < 107.

. If xx(2) = —1. Then fx =5 (mod 8) is prime, ) < 2.82, cx > 32/5
and we follow the previous case. We obtain fi < 1329, hence fr < 1301
(for f =5 (mod 8) must be prime), n < 7, hx < 4% and fx < 7-10°.

Hence, the first assertion Proposition 9 is proved. Now, for a given odd prime
fr < 1889 equal to 1 modulo 4, and for a given odd square-free integer fx/x <
107/ f relatively prime with fx, we compute ki, tx/x (using (10)), cx (using
(11)) and use (7) and (8) to deduce that if the exponent of the ideal class group
of K is less than or equal to 2, then

cxfrfr/ (12)

2tK/k"1 .
~ en?(log fr + ki) log(fff}‘}/k)

141
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Now, an easy calculation yields that only 400 out of 1 377 361 imaginary cyclic
fields K of odd conductors and such that fr < 1889 and fx < 107 satisfy (12),
and the second assertion of the Proposition is proved. e

5 The non-abelian case

We showed in [Lou03] how taking into account the behavior of the prime 2 in
CM-fields can greatly improve upon the upper bounds on the root numbers
of the normal CM-fields with abelian maximal totally real subfields of a given
(relative) class number. We now explain how we can improve upon previously
known upper bounds for residues of Dedekind zeta functions of non-necessarily
abelian number fields by taking into accound the behavior of the prime 2. Let
K be a number field of degree m > 1. We set

Mk (2,8) := [J(1 - (N(P))~*)!

Pl2

(which is > 1 for s > 0) and Ik (2) := IIx(2,1). In particular, IIx(2)/IgG(2) <
1. However, if 2 is inert in K, then IIx(2)/1IG(2) = 1/(2™ — 1) is small

Theorem 10 Let K be o number field of degree n > 3 and root discriminant
px = d™. Set vy = (m/(m — 1)) € [9/4,¢), and E(z) = (¢* — 1)/z =
1+ O(z) for x > 0. Then,

I (2

~— ) loga \™" -t
Ryt (G () < (¢/2)" o) (108 o+ (g HEGED)) (1)

Moreover, 0 < 8 <1 and (x(B) = 0 imply

Res,o1(Cx () < (1— B)(e/2)™ 28 (IOgPK+(10g4)E( 1°gp‘j{)) - (14

Proof. We only prove (13), the proof of (14) being similar. According to
[Lou01, Section 6.1] but using the bound

i (s) < Tz Co)

instead of the bound (x(s) < {™(s), we have

m—1
Res,—1(Ck(s)) < Egg; (26(}:&%‘_1}1()) 9(sk)

= (/)" o g i)™ gl
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where sg =1+ 2(m — 1)/logdk € [1,6] and

II S II m ™m
9(o) = o) < h(s) = IR/ (2.9)

(for Ik (2,s) < Ug(2,1) = (2) for s > 1). Now, log h(1) = Oand (h'/h)(s) =
mlog2 o mlog2 for s > 1. Hence,

2—1
(m—1)log4
< - = A 2 O
logh(sk) < (sxg — 1)mlog2 o2 pre
10g4 m—1
< < [ex
9(sk) < h(sk) < ( P(long ))

and (13) follows. e

Corollary 11 (Compare with [Lou01, Theorems 12 and 14] and [Lou03, The-
orems 9 and 22]). Set c = 2(v/3 —1)? =1.07--- and v, := (m/(m—1))™1 €
[2,€). Let N be a normal CM-field of degree 2m > 2, relative class number hy
and root discriminant py = d%zm > 650. Assume that N conteins no imag-
inary quadratic subfield (or that the Dedekind zeta functions of the imaginary

quadratic subfields of N have no real zero in the range 1 — (¢/logdn) < s < 1)

Then, m
. c 4‘\/ PN
hy 2 3 c/2—1 Tog 4 . (15)

MUme 3me(log pv + (log4)E(5E-))

Hence, hyy > 1 for m > 5 and py > 14610, and for m > 10 and py = 9150.
Moreover, hy; — o0 as [N : Q] = 2m — oo for such normal CM-fields N of

root discriminants py > 3928.

Proof. To prove (15), follow the proof of [Lou0l, Theorems 12 and 14] and
[Lou03, Theorems 9 and 22], but now make use of Theorem 10 instead of [Lou01,

Theorem 1} and finally notice that

_I.IE_Q)___._;_ m __om __)_C_(Q 1 ™
M@ /MEE) TN (2)/Mx(2) = 2 ,,I,(Iz)( N(P)) > (4/3)

(x is the quadratic character associated with the quadratic extension N/K, and
P ranges over the primes ideals of K lying above the rational prime 2). o
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