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SPECTRAL ANALYSIS AND THE RIEMANN HYPOTHESIS

GILLES LACHAUD

ABSTRACT. The explicit formulas of Riemann and Guinad-Weil relates the
set of prime numbers with the set of non-trivial zeros of the zeta function of
Riemann. We recall Alain Connes’ spectral interpretation of the critical zeros
of the Riemann zeta function as eigenvalues of the absorption spectrum of
an unbounded operator in a suitable Hilbert space. We then give a spectral
interpretation of the zeros of the Dedekind zeta function of an algebraic number
field K of degree n in an automorphic setting.

If K is a complex quadratic field, the torical forms are the functions defined
on the modular surface X, such that the sum of this function over the Gauss
points of K is zero, and Eisenstein series provide such torical forms.

In the case of a general number field, a fundamental basis defines a maximal
torus T of the general linear group G = GL,. The torical forms are the
functions defined on the modular variety X associated to G, such that the
integral over the subvariety induced by T is zero. Alternately, the torical
forms are the functions which are orthogonal to orbital series on X.

The Riemann hypothesis is equivalent to certain conditions concerning
some spaces of torical forms, constructed from Eisenstein series, the torical
wave packets. Furthermore, we define a Hilbert space and a self-adjoint op-
erator on this space, whose spectrum equals the set of critical zeros of the
Dedekind zeta function of K.
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INTRODUCTION

1. Explicit Formulas. In Bernhard Riemann’s fundamental memoir on prime
numbers [1}, one finds many special functions introduced here for the first time.
Rather than an announcement of results, this paper is a program on the investiga-
tion of the behaviour of the distribution of prime numbers (recall that the Prime
number Theorem, namely

T
w(z) ~ 1—55,

was not proven at that time). Here w(z) = #{p € P | p < z}, where P is the set
of prime numbers. First of all, Riemann replaces P by the larger set

Q=1{2,3,4,57,9,11,13,16,17...}
of prime powers, and defines
(z) =#{geQ | g<z},
suitably normalised at integer values, in such a way that
(z) = n(z) + —;-w(x"lf) + %ﬂ(mi) + .-
The zeta function, defined by the expressions

1 =1
C(s)=n 1 =Z1F
o ——s n=

which are both convergent for Re(s) > 1 and divergent for s = 1, admits an analytic
continuation over the whole complex plane ; it has only one pole, located at the
point s = 1, and the following functional equation holds :

&s) =€ —-s), &(s) =7""2T(3)<(s),

where I'(s) is Euler’s Gamma function. By writing
log {(s) = s/ z7* ' (z)dz (Res > 1).
1

and by Mellin inversion (we owe to Riemann the discovery of Mellin transformation),
he deduces the explicit formula

(1) II{z) = Li(z) — E'Li (zf) + /w 1 dz
p z

1 % gl
z2 —~1zlogz 83
with the following notations : p runs over the set
R={peC | ¢(p) =0 and 0 < Re(s) < 1},
The function Li(z) is the integral logarithm : if Res > 0 and = > 1, then
s Ed zs—l
Li = —d
i(z®) /o Togz z
The convergence of the RHS is conditional and the summation has to be performed

as follows : )
D @(zf) = Jim. > &(z*).
pER |lm p|<T

In the same memoir, one finds Riemann’s Hypothesis (RH) : the zeros of {(s) in R
all lie on the critical line

Lz{sEC | Re(s):-zll}.
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Then Riemann deduces from (1) by heuristic considerations that if (RH) is true,

then
| Ii(z) = Liz + O(z% log z),

a strong form of the Prime Number Theorem. Formula (1), which shows the intrin-

sic relation between the two sets @ and Z, is a special case of the general ezplicit

formula of Guinand-Weil; here is the version of Bombieri [2]. Let A(n) be the von

Mangoldt function :

A(n) =logp if n is a power of p and A(n) = 0 elsewhere.
If Re(s) > 1, then
A(n)
L=yt

n=2
Then for a sufficiently regular class of test functions,

(2) w(0) +w(1) - Y Up) = Y An) [u(n) + u*(n)] + Weo (u),
pER n=1
where W, (u) is the finite part of some divergent integral, where

(o <]
(s) = / u(t)t*1dt
0
is the Mellin transform of u, and where
. 1 1
u*(t) = ?u(?)

The LHS and RHS of (2) are respectively called the spectral side and the arithmeti-
cal side of the explicit formula. André Weil proved that (RH) is equivalent to the
positivity of the distribution defined by any side of (2). Note the minus sign in (1)
and (2). Now introduce Chebyshev’s function

Y(z) = Z An)
The density of this function is -
W) — (1og ) D),
therefore, by (1)
. M), svestn

where

Z={7€C | C(%+i7)=0and IIm/\|<%}.

2. Operators in Hilbert spaces. The density (3) is a trigonometrical series and

looks like a signal, a series of eigenstates or eigenvibrations of a mysterious and
hypothetical system whose spectrum is Z. The states of this system would be given

by functions
f@) =" eya™,
ve2
and an operator of the system is then given by

Hf(z)= Y u()cya®,

~EZ
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in such a way that
SpecH = {h(7) | v € Z}
and
Trace H = Z h(7).
~EZ
Such a system would give an interpretation of the spectral side of the explicit
formula as a trace.
In his works on integral equations, David Hilbert states the following result : an
(unbounded) normal operator D of an Hilbert space H is self-adjoint if and only
if its spectrum Spec D, which is a closed subset of the complez plane, is included
in the real line. And he his reported to have said: “ And with this theorem, Sirs,
we shall prove the Riemann Hypothesis”. The same idea appears in the papers of
Pdlya. In this circle of ideas, there are two approachs of the Riemann hypothesis.
We can try the following : define a Hilbert space H and a closed unbounded operator
D in H, with dense domain, such that

Spec D =2,

then prove that Spec D is included in the real line (this condition is for instance
fulfilled if D is self-adjoint). Of course, there are tautological answers to the con-
structions of such couples (D, H), by considering for instance

H= @ Hy, dimH =1, Dz,=n~z,ifz, €H,,
v
or, as in the discussion above, # could be the space of functions

- i 2 _ .. 4a
f(x) = Ec.,x 7, Z leyl® <00, Dz = —iz —,
YEZ YEZ
(if Z C R, H is a space of Besicovitch almost periodic functions on R:_); but these
constructions do not bring much information! In his fundamental article [3], Alain
Connes reverses the process : the idea is to define a Hilbert space H and a closed
unbounded operator D in H such that

SpecD =Y,
where ‘ .
¥=ZnR={7€R [ C(5+i7)=0},

then try to prove that Spec D = Z through an analysis of the trace of the corre-
sponding representation of test functions, as to be compared to the explicit formula.
Such a couple (D, H) is called a Pdlya-Hilbert space. It is worthwile to observe that
the minus sign in the explicit formula indicates that the Pdlya-Hilbert space pro-
viding the spectral realization of the zeros should appear as the last term of an
exact sequence of Hilbert spaces,

0 > Ho > Hy — H » 0
We may as well define the Pélya-Hilbert space as
H = H, & Hy,
since this is the dual of H, and the trace formula is to be read on
Ho=Hi6H

We quote (3] : “The Pélya-Hilbert space should appear on its negative . In
other words, the spectral interpretation of the zeros of the Riemann zeta function
should be as an absorption spectrum rather than an emission spectrum, to borrow
the language of spectroscopy”.
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A POALYA-HILBERT SPACE ON THE HALF-LINE

3. Theta Series. We now describe a simplified version of the construction of
Connes. This construction lies on a key result, already appearing in Riemann’s
memoir, who expressed the zeta function as the Mellin transform of the Jacobi
theta series (Weil found the same calculations in a manuscript of Fisenstein). This
construction has been generalized by Miintz in 1922 as follows : if ¢ belongs to the
Schwartz space S(R), the function

d(p)(z) =22 p(nz), z>0,
n#0
is quickly decreasing at infinity. The Fourier-Mellin transform

T = [ ” 3(p)(@) 2 d%

defined if ImA < —1/2, admits an analytic continuation to the whole complex
plane, with at worst simple poles if A = +i/2.

Proposition 1. If p € $(R), and if A € C, then
— 1. 1,
(4) 3(e)(A) = C(5 +iX) (e, 5 + i),

where I'(yp, s) is the Mellin transform of ¢(t) + @(—t).

——

This shows that J(¢) vanishes at the zeros of {(1/2+ i}) : these zeros are missing
spectral values. Hence, we can hope that they will appear in the orthogonal of the
space generated by the series ¥(y) in a suitable space.

4. The orthogonal of theta series. Unfortunately, the space L%(RY) is not
convenient : there is no discrete spectrum inside. If § € R, denote by L? (RY)=L2
the Hilbert space of functions on R} such that

A1 = / 17 @) (1 + log? )72 4%z < +oo.

Assume now & > 1. The spaces L and L? ; are mutually duals through the scalar
product

(fr9) = f " f2) @) da.

The Fourier-Mellin transform converts the upper triple of the diagram below into
the lower one:

Ly < [* c I2
1
S§(R) c H*?R) c L*R) c H?R) c S(R)

where H™(R) is the Sobolev space of order m. If f € L? and if ¥ € L2, then

(5) [ 1@v@ e = & [ foado,

using Leibniz’ notation for distributions.
Let 8(R)o be the subspace of 8(R) made of functions such that

F(0) = (0) = 0.

Let © be the subspace of L7 generated by the series (), where € S(R)o. Thanks
to the introduction of 4, there do are discrete spectral values in ©< :
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Theorem 2. Assume § < 3 for simplicity. Then v € L% is in © if and only if

J s @ measure with support included in the locally finite set Y. In other words, any
¥ € ©F can be written as a convergent series in L

P(@) =) cya?.

Remark that we recover the tautological space of almost periodic functions!

Probf. From proposition 1 and formula (5), we get
G19@) = [ v
0
3 | T@NaH)

1 1 "
- = /m g(% +i0) (g, 5 +iA) dBOV).

I

The regular representation of R in L? induces a semi-group of operators
VOfle) = f(e's), teRY, zeR},
which is of class (Cp), since it satisfies the growth estimate
Vel = o).
The quotient space Hs = LZ/0© appears as the last term of the exact sequence

0 —— 0@ —— L%RY) — Hs » 0

Moreover,
The space © is invariant under the semi-group V, and we get in this way a semi-
group W in H;, coming with an infinitesimal generator Ds. The spectrum of Dj
can be computed in O through the transposed semi-group W : we find that
df
tD — G
Jf (24 dz
if f € © is sufficiently regular. From Theorem 2 we get:
Theorem 3. The spectrum of Ds is equal to Y : the couple (35, Ds) is o Pélya-
Hilbert space.
We remark that the operator Dy is neither self-adjoint, nor normal, since
. df i édlogz
try*
Dif =iz — — = 0 f.
if =iz dr 21+ (logz)? f
The character of W is
~ 1 .
Trace W (u) = E u(E +47),
Y€Y
where

WM:/_ W (z) u(z) dz,
ZANG(A)
and where 4 is the Mellin transform of the test function u. The strategy proposed
by Alain Connes is then to prove that ,
4(0) + u(1) — Trace W (u)

is equal to the arithmetic side of the explicit formula, and he provides deep argu-
ments towards this goal.

151



152

SPECTRAL ANALYSIS AND THE RIEMANN HYPOTHESIS

TORICAL FORMS : IMAGINARY QUADRATIC FIELDS

5. Eisenstein Series. Let H be the upper half-plane made of z = z+ 4y such that
y > 0. If s € C and if Res > 1, the Fisenstein series E(z, s) is the special function
defined by

yu’
Ez8)= ), —gm= >, (my2),
(m,n)=1 lez +d| (TAP)\T'
where I' = SL(2,Z) is the modular group and

r-{(e 3}

Then BE(vz,s) = E(z,s) if ¥ € T, and E(z,s) defines a function on the modular
surface X = ['\H. The function

E*(z,5) = £(25) E(2, )

admits a meromorphic continuation to the whole plane, and is regular except for
simple poles at s = 0 and s = 1. Moreover E(z, s) satisfies the following functional
equation :
E*(2,1-3) =E*(z,s)

that is,
£(2(1-s))

£(2s)
The Eisenstein series is not harmonic, but it is an eigenfunction of the Laplace
operator of H:

E(z,8) = c(s)E(z,1~3s), where c(s) =

82 82
2
A=-y (5?*5;,?)

AE(z,s) = 5(1 — 5)E(z2, s).

namely

6. Measures associated to imaginary quadratic fields. Let K an imaginary
quadratic field with discriminant D < 0. A Gauss point of K of discriminant D is
a complex number

-b++vD
2a

such that
a>0, (a,bc)=1, b*—4dec=D, a,bcinZ,

and belonging to the fundamental domain 3:

DO

1
—-é<RezS§, lz| > 1if —%<Rez<0, |z| >1if0<Rez <

The map

za, =2 z7Z
induces a one-to-one correspondence from the set of Gauss points of discriminant
D to the class group Clg of K, and the number hx of Gauss points is equal to the

class number of K. We denote by C +— 2. the reciprocal map from Clg to the set
of Gauss points. Introduce now the measure with finite support on H :

f Fydm(z)= ¥ F(z,).

CeClx
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Proposition 4 (Hecke’s formula for imaginary quadratic fields).
Let K be an imaginary quadratic field of discriminant D < 0, and (k(s) the
Dedekind zeta function of K. If s # 1, then

C(2s)fE(z, s)dm(z) = % (—?) 2 Cx(s),

where w is the order of the group of roots of unity in K.
Proof [6]. Consider any ideal b € C—1. If a € C, the map
£ (E)p7

induces a bijection b/W — a, where W is the set of roots of unity in XK. Hence,

_ 1 N(b)* 1
(CD=2 FaF =~ L FE

neC ¢eb

Let z, = z be the Gauss point with image C~!, in such a way that b =Z @ 2.Z.
Then

1 =
1 | =12 - 0l =% = NG)VD.
Hence,
1 (D\"*? I
(Co)=3 ('4‘) 2o Tmzg +nl
Now
1 ' 1
€(23) E(z¢, ) = '2'; fmzg ¥’
hence
¢20) Blegr9) = 2 (2) " = Loc(.9)
e 2\ 4 N(a)s>* 777
from which the result follows by summation. 0

7. Torical forms. Following Zagier [8], we say that F' is a torical form for K if

fF(z) dm(z)=0.

An (Eisenstein) wave packet is a (finite) linear combination of Eisenstein series.
More precisely, the space E(X) of wave packets is made of functions

W(u)(z) = [ Blz,8)du(s) =Y c:B(z,s) (z€ H),
B

where g = Y c;d(s;) belongs to the space M;(B) of measures with finite support
in the open strip

B={seC | 0<Re(s) <1},

this support being assumed disjoint from the set of poles of E(z, s). The spectrum
of F is the support of u. Hecke’s formula implies :

Proposition 5. F € E(X) is torical if and only ifv
SpecF C {s€eB | (k(s)=0}.

The moral is that we can use torical wave-packets to build a Pélya-Hilbert space
for the Dedekind zeta function of K !
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AN AUTOMORPHIC PAOLYA-HILBERT SPACE

8. The idele classs group. Let K be a global field. If one wish to generalize the
preceding constructions to the zeta function of K and to L-functions, the natural
setting for such constructions is the ring Ax of adeles of K [7]. In fact, the starting
point of Connes’ theory is based on the geometry of the noncommutative space

K*\Ag.

Let Cx = K*\Ag be the idele class group of K. Then one defines the mapping ¢
from the Schwartz-Bruhat space 8(Ak) to L?(Ck) given by

9e)(2) =zl Y elez), zeCk,
geEKX*

and the calculations of section 3 are a downgrade of this construction.

Moreover, the modular surface I'\H is a quotient of GL3(Q)\ GL2(A), where A
is the ring of adéles of Q, and if one wants to generalize to any number field the
construction of the preceding section, one needs to replace GL; by GL,, as we
shall show now.

Assume that K is an algebraic number field of degree n > 1, and let O be the ring
of integers of K. Let (au,...,an), with oy =1, be a fundamental basis of K, i. e.
a basis such that the map

Liu=(U1,...,Un) > U] + -+ + Upay

is an isomorphism from Z™ to . The right regular representation m of K in Q™ is
defined as follows: if ¢ € K, we denote by p(¢) the multiplication by ¢, and we
set

n(€)u =110 p(€) o u(u),
The representation 7 is “algebraic” and its image is a maximal torus T of the
algebraic group G = GL,, (T is not split over Q). For instance, if X is quadratic,
with discriminant D = 2 or 3(mod 4) and if (a1, a3) = (1,vD), then

=(z ¥

n(z+yvD) = (Dy z)"
If G, is the group of points of G with values in A, the representation 7 induces an
isomorphism

Cxk —— To\Ta C GQ\GA.

9. Eisenstein series. The Eisenstein series admits the following generalization.

r-{(4 )

be the standard maximal parabolic subgroup of G of type (n — 1, 1), with
g' € GLn_l, te Gm =GL;, z¢€ AnL

The module of P, is
tﬂ—l

dp(p) = ! detg’ iA-

Now Gp = P\K, where K is the usual maximal compact subgroup of G,. If
g = pk € Ga, with p € P and k € K, we set dp(g) = dp(p). The normalized
Eisenstein series corresponding to P is

E(g,8)= ) 4p(19)°, g€Ga.
Y€Po\Go
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This series is convergent if Re(s) > 1 and belongs to the space C(X) of continuous
functions on the modular variety

X = GoZx\Ga/K,

where Z is the center of G. The series E(g, s) admits a meromorphic continuation
to the whole plane: the function £(ns) E(g, s) is regular except for simple poles at
s =0 and s = 1. The following functional equation holds:

E(g,s) = c(s)E("g"',1 —5), where c(s)=¢&(n(1 - s))/&(ns).

Moreover, if A is the Laplace operator of X (a second order differential operator
which is a suitable multiple of the Casimir operator of the Lie algebra of G), and
if s is not a pole, then

AE(g, s) = s(1 - s) E(g, s).

10. Torical forms. Let Ur be the maximal compact subgroup of the adelic torus
Ta. The group TgZx\Tp/Ur is an extension of the class group Clg of K by a
topological torus (a product of circles) of dimension r = r; + r2 — 1, where r; and
T4 are respectively the number of real and imaginary places of K :

1 —— 30(2, R)r —_— TQZA\TA/UT —> CIK » 1
If F € C(X), the constant term of F is

fF(hg) dh = / F(hg) dh,
ToZA\T)/Ur

and we say that F' € C(X) is a torical form if the constant term of F is equal to
zero for every g € G, ; we denote by T'(X) the space of such forms.

Let £ be a primitive element of K, and ¢ the conjugacy class of 7 (£) in Gq. The
orbital series of a test function u € C.(Z,\Ga/K) is

u(g) = > u(g™ yg).

vEe

The function u. has compact support on X. Here is a vague form of presentation
of T(X) on its negative:

Proposition 6. The function F € C(X) is a torical form if and only if
[ Foudg=0
GqoZa\Ga

for every test function u.

11. The space T?(X). The adelic Hecke’s formula [5] shows that E(g,s) is a
torical form if and only if {x(s) = 0, more precisely:

Proposition 7. If g € G,, then
§ B(hg, 9)dh = () H(g,5),

where &(ns) H(g,s) is holomorphic in the half-plane Res > 0. Moreover, there is
Jx € Ga such that £(ns) H(gy, s, x) does not vanish in C.

Now we can define the space E(X) of wave-packets as in section 7, and Proposition
7 gives Proposition 5 in the general setting.

We say that a wave packet is principal if its spectrum is contained in the critical
line L, and we denote by E1(X) the space of principal wave packets. Proposition 5
implies that (x(s) satisfies (RH) if and only if any torical wave packet is principal.
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Let us go back to the case of imaginary quadratic fields for a minut. Let F,, be
the fundamental domain ¥ of I'\H truncated at y = m, and x,, the characteristic
function of F,,. If F € C(X), we define

ATF = Fxy. .
One denotes by A2(X) the pre-Hilbert space made of functions F € C(X) such
that

1
2 __ 1 m 2
|IF)l3 = mh_zgxw4 logm_/);M F(2)|* dm(z) < +o0.

The operator A™ has been generalized for the modular variety by Langlands and
Arthur [1); hence, we can define the space A?(X) in the general setting. Let A2(X)
be the Hilbert space associated to A2(X). This definition is an automorphic analog
of almost periodic functions. Then the following results hold [4], [5]. From the
Maass-Selberg relations, one deduces :
Proposition 8. If F is a non-zero principal wave-packet, then
0 < [|F|l2 < +oo,
and EY(X) C A*(X). If n =2, then
EY(X) = E(X) n A%(X).

Theorem 9. The following conditions are equivalent :

(i) The roots of {k(s) in B lie on the critical line.

(ii) Any torical wave-packet belongs to A*(X).

Now we denote by T?(X) the Hilbert space which is the closure of E(X) N T(X)
in A%(X). Let D be the unbounded operator in T2(X) defined by the Laplace
operator A, with domain the closure of E'(X) N T(X) for the norm |JAF||,. Let

1
y={reR | +in=o}.
Theorem 10. The operator D is self-adjoint, and
SpecD = {X | ,\=%+72, veY}.
The eigenvalues are double if n > 3 and simple if n = 2.
In other words, (T%(X), D) is a Pélya-Hilbert space for (x(s) (leaving aside the
change of variables from v to A). It is worthwile to notice that the spectrum
of D takes into account the zeros of {x(s) with uniform multiplicity, but this is
compatible with the usual conjectures.

Let 2(G) be the Hecke algebra of functions u € C.(Zp\G4) bi-invariant under K
and R(u) the right regular representation of %(G) in C(X) :

R(u)f(z) = / £(zy) u(y) dy.

Z(A\G(A)
If u € A(G), then R(u)E(g,s) = u(s)E(g, s), with the entire function

%)= [ dnl) ulg)dy;
Z)\Ga
we thus get a representation Ro(u) of %(G) in T?(X).
Corollary 11. If u € A(G), then

N
Trace Ro(u) = Z u(§ +17),
: €Y
where we asssume v > 0 if n = 2.
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