
228

On non-archimedean diophantine approximations

by
慶應義塾大学理工学部 仲田 均 (mtoshi Nakada)

Department of Mathematics,
Keio University

Let $\mathrm{F}_{q}$ be a finite field of $q$ elements and consider the following :

$\mathrm{F}_{q}[X]$ : the ring of polynomials with $\mathrm{F}_{q}$-coe田 icients,

$\mathrm{F}_{q}(X)$ : the fraction field of $\mathrm{F}_{q}[X]$ ,

$\mathrm{F}_{q}((X^{-1}))$ : the field of formal Laurent power series with F9-c0e田 icients.

We denote by $\mathrm{L}$ the set of elements in $\mathrm{F}_{q}((X^{-1}))$ of negative degree, where we
regards

$0=0X^{-1}+0X^{-2}+0X^{-3}+$ $\cdot$ . . $\in$ L, $\deg 0=-\infty$ .
We define

$|f|=q^{\deg_{f}}=q^{n}$

if

$f=a_{n}X^{n}+a_{n-1}+\cdots$ , with $a_{n}\neq 0\in \mathrm{F}_{q}$

Since $\mathrm{L}$ is a compact abelian group with the metric $d(f, g)=|f-ct|$ for $f$ , $g\in$ L,
there exists the unique normalized Haar measure which we denote by $m$ . In the
sequel we consider the following diophantine inequality for $f\in$ L:

$|f- \frac{P}{Q}|<\frac{\Psi(Q)}{|Q|}$ , $(P, Q)=1,$ $P$, $Q\in \mathrm{F}_{q}[X]$ (1)

where $\Psi$ is a non-negative function defined on the set of positive integers. Since
$|Q|=q^{\deg q}$ we think $\Psi \mathrm{i}8$ $\mathrm{a}\{q^{n} : n\in \mathbb{Z}\}\cup\{0\}-$valued function. Our questions
are as follows,
(i) (1) has infinitely many solutions $\frac{P}{Q}$ for m-a.e. $f\in$ L or not.
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(ii) If the answer to (i) is yes, then the law of large numbers holds or not.
(iii) If the answer to (ii) is yes, then the central limit theorem holds or not.

In 1970, de Mathan [2] proved that (1) has infinitely many solutions if $q^{n}\Psi(n)$

is monotone non-increasing and $\sum_{n=1}^{\infty}q^{n}\Psi(n)=\infty$ . It is easy to see that (1)
has at most finitely many solutions if $\sum_{n=1}^{\infty}q^{n}\Psi(n)<\infty$ . This means that the
0-1 law holds if $q^{n}\Psi(n)$ is monotone non-increasing. However, this monotonicity
condition is a bit strong. Actually, recently Inoue and Nakada [5] showed the
following.

Theorem 1. (1) has infinitely many solutions $P$ , $Q$ for m-a. $e$ . $f$ if and only if

$\sum_{n=1}^{\infty}q^{n}\Psi(n)=\infty$ .

In the proof of Theorem 1, [5] used the following property. Let $l_{1}$ , $l_{2}$ , $\ldots$ be a
sequence of non-negative integers. We put

$F_{n}=$ { $f\in$ L : $|f- \frac{P}{Q}|<\frac{1}{q^{2n+l_{n}}}$ , ( $P$, $Q)=1$ , $\deg Q=n$ for some $Q\in$ Vq[X]}.

Note that here we think $\Psi(n)=\frac{1}{q^{n+l_{n}}}$ .
Proposition 1. For $0<n<m,$ we see

$m(F_{n}\cap F_{m})=\{$
$m(F_{n})$ . $m(F_{m})$ if $m>n+l_{n}$

0 othe rwise

By this property, we have the strong law of large numbers by using the quan-
titative Borel-Cantelli lemma (see Philipp [6]). We put

$W(N)$ $= \beta\{n : 1\leq n\leq N, \exists P, Q\in \mathrm{F}_{q}[X]\mathrm{s}.\mathrm{t}. |f-\frac{P}{Q}|<\frac{\Psi(\deg Q)}{|Q|}, (P, Q)=1\}$

and

$Z(N)= \sum_{n=1}^{N}q^{n}\Psi(n)(1-\frac{1}{q})$

Theorem 2.

$W(N)=Z$(N) $+O(Z^{1/2}(N)\log^{3/2+\epsilon}Z(N))$ as $Narrow$ oo for rn-a.e.$f$.

The next question is to find a sufficient condition on $\Psi$ for which the central
limit theorem holds. About this problem, Fuchs [3] showed that if $\sum_{n=1}^{\infty}q^{n}\Psi(n)=$

$\infty$ , $q^{n}\Psi(n)$ is monotone non-increasing, and some additional conditions hold, then
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the central limit theorem holds. Since his proof is based on the stochastic prop-
erty of continued fraction expansions over $\mathrm{F}_{q}[X]$ , the additional conditions were
necessary. However, it is possible to prove the central limit theorem without using
continued fractions for this problem. The idea is to generalize Proposition 1 and
to construct a non-stationary 1-dependent process from the indicator function of
$F_{n}$ . Actually it is possible to show the following.

Proposition 2. For $0<n_{1}<792$ $<$ t. $1<n_{k_{J}}$ we have

$m(. \bigcap_{1=1}^{k}F_{n}.\cdot)=\{$

$\prod_{\dot{l}=1}^{k}m(F_{n})$

: if $n_{\mathrm{i}}+l_{n}:<n_{\dot{\iota}+1}$ for $1\leq i\leq k-1$

0 otherwise.

We put $n_{1}=1,$

$G_{1}=F_{1}\cup$ $F_{2}\cup\cdots\cup F_{1+l_{1}}$ and $n_{2}=1+l_{1}+1=n_{1}+l_{n_{1}}+1$

and

$G_{k}=F_{n_{k}}\cup F_{n_{k}+1}\cup\cdot$ . . $\cup F_{n_{k}+l_{n_{k}}}$ and $n_{k+1}=n_{k}+l_{n_{k}}+1.$

Then ffom Proposition 2, we see that the sequence of the indicator functions $1_{G_{k}}$ ,
$k\geq 1$ is a l-dependent process. By using this 1-dependent process, we can prove
the following theorem.

Theorem 3. If $\sum_{n=1}^{\infty}$ $q^{n}\Psi(n)=\infty$ and $q^{n}\Psi(n)$ is monotone non-increasing,
then the central limit theorem holds, that is,
(i) if $\lim_{narrow\infty}q^{n}\Psi(n)=q^{-l}$ for some positive integer $\mathrm{I}$ , then

$\lim_{Narrow\infty}m$ { $f\in$ L: $\frac{W(N)-Z(N)}{\sqrt{N}}<\alpha$} $= \int_{-\infty}^{\alpha}e^{\frac{-x^{2}}{2A}}dx$

where $A=(_{q}^{1} \urcorner(1-\frac{1}{q}))-(2l+1)(_{q}^{1}\urcorner(1-\frac{1}{q}))^{2}$,
(i) if $\lim_{narrow\infty}q^{n}\Psi(n)=0,$ then

$\lim_{Narrow\infty}m${$f\in$ L: $\frac{W(N)-Z(N)}{\sqrt{Z(N)}}<\alpha$ } $= \int_{-\infty}^{a}e^{\frac{-a^{2}}{2}}dx$ .

Remark. In the case of (i) in the above, we note that

$Z(N)\sim N\cdot q^{-l}(1-;)$ .

The non-increasingness condition can be weakened. Indeed we can prove the
same result for the following function $\mathrm{I}\mathrm{D}$ :

1$(n)=\{$
$\frac{1}{q^{n+Tm}}$ if $n=n_{m}$

0otherwise,
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where $n_{1}<n_{2}<$ ‘ $\cdot$ . $<n,$ $<$ . . . and $l_{1}\leq l_{2}\leq$ . . $\tau$ $\leq l_{m}\leq\cdot\cdot\nearrow\infty$ are sequences
of positive integers and $\sum_{m=1}^{\infty}$ $q^{l_{m}}=\infty$ .

The rest of this paper is for more general case of $\Psi$ ’s. We consider the in-
equality

$|f$ $- \frac{P}{Q}|<\frac{\Psi(Q)}{|Q|}$ , $(P, Q)=1$ (2)

where $\Psi$ is a non-negative function defined on $\mathrm{F}_{q}[X]$ and I(Q) $=\Psi(Q’)$ whenever
$Q’=aQ$ for some non-zero $a\in \mathrm{F}_{q}$ . The main question is to find a necessary and
sufficient condition on $l$ having infinitely many solutions $\frac{P}{Q}$ for m-a.e. $f\in$ L. If
$\sum_{Q:mmi\mathrm{c}}$ I(Q) $<\infty$ , then it is easy to see from the Borel-Cantelli lemma that
there exist at most finitely many solutions $\frac{P}{Q}$ for m-a.e. $f\in$ L. Moreover we
have the following non-archimedean version of Gallagher theorem.

Theorem 4. (Inoue-Nakada [5]) For any $\Psi$ , the set of $f\in \mathrm{L}$ having infinitely
many solutions $\frac{P}{Q}$ of (2) is either $m$-measure 0 or 1.

By using this theorem we can prove a non-archimedean version of Duffin-
Schaeffer theorem, which gives a sufficient condition on $\Psi$ for having infinitely
many solutions of (2) for m-a.e. $f\in$ L.

Theorem 5. (Inoue-Nakada [5]) Let $\Psi$ be $a\{q^{-n} : n\geq 0\}\cup\{0\}$ -valued function
which satisfies

$\sum_{n=1}^{\infty}\sum_{Qman\dot{\cdot}e}\mathrm{d}\mathrm{e}\mathrm{p}Q=\mathfrak{n}$

I $(Q)=\infty$ .

Suppose there are infinitely many positive integers $n$ such that

$\mathrm{d}\mathrm{e}.\mathrm{g}Q\leq.n\sum_{Q.mon\cdot \mathrm{c}}$

I $(Q)<C$
$Qmonu \sum_{\deg Q\leq n},$

$\Psi(Q)\frac{\Phi(Q)}{|Q|}$

holds $/or$ a constant C. Then

$|f- \frac{P}{Q}|<\frac{\Psi(Q)}{|Q|}$ , $(P, Q)=1$

has infinitely many solutions $\frac{P}{Q}$ for $a.e$ . $f\in$ L.

Remark, (i) It would be natural to ask whether the Duffin-Schaeffer conjecture
is true or not in this case, that is, the following condition is a sufficient condition
for having infinitely many solutions of (2) for m-a.e. $f\in \mathrm{L}$ or not:

$\sum_{Qmm\dot{1}C}\Psi(Q)\frac{\Phi(Q)}{|Q|}=\infty$
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where $\Phi(Q)$ denotes the number of $P(\neq 0)\in \mathrm{F}_{q}[X]$ such that $\deg P<\deg Q$ and
$(P, Q)=1.$
(ii) There is a higher dimension version (the simultaneous approximations result)
of this theorem, see [4]. However, in the case of the simultaneous approximations,
it seems to be not so easy to find a necessary and sufficient condition for having
infinitely many solutions $\mathrm{a}.\mathrm{e}$ . even in the case that the function $‘ \mathrm{f}$’ depends
only on degree of the denominator $Q$ .
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