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Abstract

By the Schwartz kernel theorem, to every continuous linear sys-
tem there corresponds a unique distribution, called kernel distribution.
Formulae using wavelet transform to access time frequency informa-
tion of kernel distributions are deduced. A new wavelet based system
identification method for health monitoring systems is proposed as an
application of a discretized formula.

1 System Identification
A system $L$ illustrated in Figure 1 is an object in which variables of different
kinds interact and produce observable signals. The observable signals $g$ that
are of interest to us are called outputs. The system is also affected by external
stimuli. External signals $f$ that can be manipulated by the observer are
called inputs. Others are called disturbances and can be divided into those,
denoted by $w$ , that are directly measured, and those, denoted by $v$ , that are
only observed through their influence on the output.

Mathematically, a system can be regarded as a mapping which relates
inputs to outputs. Hereafter, we will use the terminology “system” rather
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Figure 1: System $L$ .

than “mapping”. A system $L$ is said to be linear if
$L[\alpha_{1}f_{1}+\alpha_{2}f_{2}]=\alpha_{1}L[f_{1}]+\alpha_{2}L[f_{2}]$ ,

for arbitrary constants $\alpha_{1}$ , $\alpha_{2}$ and arbitrary inputs /1, $f_{2}$ . To choose a model
set for linear systems, the most general setting should be given by using the
Schwartz kernel theorem [Tr67].

Let us denote by \^i(Rn), the space of compactly supported $C^{\infty}$ functions
with the canonical $LF$-topology [Tr67]. A distribution $T$ in $\mathbb{R}^{n}$ is a continuous
linear form on $\mathscr{D}(\mathbb{R}^{n})$ . The set of all the distributions in $\mathbb{R}^{n}$ is denoted by
$\mathscr{D}’(\mathbb{R}^{n})$ and the duality of distributions is denoted by $\langle$ ., $\cdot$

$\rangle^{*}$ , that is, the duality
between $T\in \mathscr{D}’$ and $\phi\in i$ is written as

$T(\phi)=\langle T, \phi\rangle^{*}=\langle \mathrm{y}(x), \phi(x)\rangle_{x}^{*}$ .

The space of $C^{\infty}$ functions in $\mathbb{R}^{n}$ with the canonical Fr\’echet-topology is
denoted by $d(\mathbb{R}^{n})$ and its topological dual space is denoted by $d’(\mathbb{R}^{n})$ , which
is the space of compactly supported distributions in $\mathbb{R}^{n}$ . On the other hand,
as the inner product of $L^{2}$ is denoted by $\langle\cdot, \cdot\rangle$ , we have

$\langle f, g\rangle^{*}=\langle f$ , $\overline{g}$t, $f$, $g\in L^{2}$ .

The space of $C^{\infty}$ functions in $\mathbb{R}^{n}$ rapidly decreasing at infinity is called
Schwartz space and denoted by $\mathrm{Z}(\mathbb{R}^{n})$ . The topological dual space of $\mathrm{Z}(\mathbb{R}^{n})$

is denoted by $\mathrm{Z}’(\mathbb{R}^{n})$ and an element of $\mathrm{y}’(\mathbb{R}^{n})$ is called tempered distribu-
than

Theorem 1 (The Schwartz kernel theorem) Let $L:\mathscr{D}(\mathbb{R}^{n})arrow \mathscr{D}’(\mathbb{R}^{n})$

be a continuous linear system. Then, there is a unique distribution $k\in$

$\mathscr{D}’(\mathbb{R}^{2n})\backslash$ such that

$L[f](x)=$ $\langle k(x, y), f(y)\rangle_{y}’$ , $f\in \mathscr{D}(\mathbb{R}^{n})$ .

The distribution $k$ is called kernel distribution ofL. If $L:\mathrm{Z}(\mathbb{R}^{n})$ $arrow$ $\mathrm{Z}’(\mathbb{R}^{n})$ ,
than $k\in$ $\mathrm{s}’(\mathbb{R}^{2n})$ .
The distribution $k$ is called kemel distribution ofL. If $L:\mathscr{S}(\mathbb{R}^{n})arrow\ovalbox{\tt\small REJECT}’(\mathbb{R}^{n})$ ,
then $k\in\ovalbox{\tt\small REJECT}’(\mathbb{R}^{2n})$ .
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Invariance under fundamental operators

Let us define three fundamental operators for time frequency analysis. They
are unitary operators when they act on $L^{2}(\mathbb{R}^{n})$ . Define the translation oper-
ator $T_{a}$ by

$T_{a}f(x)=f(x-a)$ , $a\in \mathbb{R}^{n}$ ,

the rnodulation operator 14 by

$M_{\xi}f(x)=e^{ix\xi}f(x)$ , $\mathrm{q}$
$\in \mathbb{R}^{n}$ ,

and the dilation operator $D_{\rho}$ by

$D_{\rho}f(x)=\rho^{-n/2}f(\rho^{-1}x)$ , $\rho\in \mathbb{R}_{+}:=\{x\in \mathbb{R} ; x>0\}$ .
and the dilation operator $D_{\rho}$ by

$D_{\rho}f(x)=\rho^{-n/2}f(\rho^{-1}x)$ , $\rho\in \mathbb{R}_{+}:=\{x\in \mathbb{R} ; x>0\}$ .

For simplicity, we consider $D_{\rho}$ only for $\rho>0$ although we can consider $D_{\rho}$

for $\rho\in \mathbb{R}\backslash \{0\}$ .
A continuous linear system $L$ : $\mathscr{D}(\mathbb{R}^{n})arrow$- $\mathscr{D}’(\mathbb{R}^{n})$ is said to be translation-

invariance if $TaL[f]=L[T_{a}f]$ for every $f\in \mathscr{D}(\mathbb{R}^{n})$ and every $a\in \mathbb{R}^{n}$ . A
continuous linear system $L$ : 9$(\mathbb{R}^{n})arrow$ ?’(R$n$ ) is said to be modulation-
invariance if $TaL[f]$ $=L[M_{\xi}f]$ for every $f\in \mathscr{D}(\mathbb{R}^{n})$ and every $\xi\in \mathbb{R}^{n}$ . A
continuous linear system $L$ : $\mathscr{D}(\mathbb{R}^{n})arrow \mathscr{D}’(\mathbb{R}^{n})$ is said to be dilation-invariance
if $D_{\rho}L[f]=L[D_{\rho}f]$ for every $f\in \mathscr{D}(\mathbb{R}^{n})$ and every $\rho\in \mathbb{R}_{+}$ .

In this section, we will give necessary and sufficient conditions on the
kernel distribution $k(x, y)$ corresponding to a continuous linear system $L$ :
9$(\mathbb{R}^{n})arrow \mathscr{D}’(\mathbb{R}^{n})$ for invariance under the three fundamental operators. The
proofs can be found in [AMM2].

Proposition 1 Let $L$ : $\mathscr{D}(\mathbb{R}^{n})arrow \mathscr{D}’(\mathbb{R}^{n})$ be a continuous linear system
and $k(x, y)$ be its kernel distr ibution. The system $L$ is translation-invariant if
and only if there eists a unique $h\in \mathscr{D}’(\mathbb{R}^{n})$ such that $k(x, y)=h(x-y)_{f}$ that
is, $L[f]=h*f.$ As a result, we have $L(\mathscr{D}(\mathbb{R}^{n}))\subset \mathit{8}(\mathbb{R}^{n})$ . The distribution
$h$ is called the impulse response of $L$ .

If $L$ is continuous from $\mathrm{y}(\mathrm{R}\mathrm{n})$ to $\mathrm{Z}’(\mathbb{R}^{n})$ , then $h\in$ $\mathrm{X}’(\mathbb{R}^{n})$ , and hence
we have $L(\ovalbox{\tt\small REJECT}(\mathbb{R}^{n}))\subset\theta_{M}(\mathbb{R}^{n})$ , where $a_{M}$ is the space of slowly increasing
$C^{\infty}$ functions.
Proposition 2 Let $L$ : $\mathscr{D}(\mathbb{R}^{n})arrow \mathscr{D}’(\mathbb{R}^{n})$ be a continuous linear system
and $k(x,y)$ be its kernel distribution. The system $L$ is modulation-invariant
if and only if there exists a unique $g\in \mathscr{D}’(\mathbb{R}^{n})$ such that $L[f]=gf$ for every
$f\in \mathit{9}(\mathbb{R}^{n})$ .
Proposition 3 Let $L$ : 9$(\mathbb{R}^{n})arrow \mathscr{D}’(\mathbb{R}^{n})$ be a continuous linear system
and $k(x, y)$ be its kernel distribution. The system $L$ is dilation-invariant if
and only if $k( \rho x, \rho y)=\frac{1}{\rho^{n}}k(x, y)$ for every $\rho\in \mathbb{R}_{+}$ .
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Stability

Let $L:\mathscr{D}(\mathbb{R}^{n})arrow \mathscr{D}’(\mathbb{R}^{n})$ be a continuous linear system, and $k$ be its kernel
distribution. $L$ is said to be $L^{p}$ -stable $(1 \leq p\leq\infty)$ if there exists a constant
$C$ such that $||L[f]||_{L^{\mathrm{p}}}\leq C||f||_{L^{p}}$ for every $f\in \mathit{9}(\mathbb{R}^{n})$ . If $p<\infty$ and $L$ is
IPlAstable, then $L$ can be extended to a bounded linear operator from $U(\mathbb{R}^{n})$

to $L^{p}(\mathbb{R}^{n})$ . Here, we concentrate on the case when $p=2.$

When the kernel distribution $k$ is locally integrable, the following is well-
known. (For example, [La02], Theorem 2 and Theorem 3, \S 16.1.)

Proposition 4 (1) If $k\in L^{2}(\mathbb{R}^{2n})$
f then $L$ is $L^{2}$ lAstable, and

$||\mathrm{L}[\mathrm{f}]$ $||L^{\mathit{2}}(U^{n})$ $\leq||$ ’c $||L^{2}(\mathrm{U}^{2n})$ $||f||L^{2}(\mathrm{t}n)$ for every $f\in L^{2}(\mathbb{R}^{n})$ . (1.1)

(2) Assume that there exist constants Mi, $M_{2}$ such that

$l_{n}|k$(x, $y$ ) $|dx\leq M_{1}$ , $\int_{1\mathrm{R}^{n}}|k(x, y)|$ $dy\leq M_{2}$ for $a.e$ . $x\in \mathbb{R}^{n}$ . (1.2)

Then, $L$ is $L^{2}$ lAstable, and

$||\mathrm{L}[\mathrm{f}]$ $||L^{2}(\mathrm{t}^{\mathrm{o}})$
$\leq\sqrt{M_{1}M_{2}}||f||L^{\mathit{2}}(i^{n})$ for every $f\in L^{2}(\mathbb{R}^{n})$ .

Let $L$ be translation-invariant and $h$ be its impulse response. We have
the following ([St70], $\mathrm{I}\mathrm{V}$ , \S 3.1; [H\"o60]).

Proposition 5 $L$ is $L^{2}$ -stable $\Leftrightarrow\hat{h}\in L^{\infty}(\mathbb{R}^{n})$ , where $\hat{h}$ is the Fourier
transform of $h$ .

Causality

Causality is natural for a physical system in which the variable is time.
It means that the response at time $t$ depends only on what has happened
before and at $t$ . In particular, a system does not respond before there is an
input. Thus causality is a necessary condition for a system to be physically
realizable.

Let $L$ be a continuous linear system $\mathscr{D}(\mathbb{R}^{n})arrow$ ?’(R$n$), and $k\in \mathscr{D}’(\mathbb{R}^{2n})$

be its kernel distribution. A continuous linear system $L$ is said to be causal
if

$\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}L[f]\subset \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}f+\overline{\mathbb{R}_{+}}$

for every $f\in \mathscr{D}(\mathbb{R}^{n})$ . Here, $A+B:=\{a+b ; a\in A, b\in B\}$ and $\overline{\mathbb{R}_{+}}:=$

$[0, \infty)$ . We simply write $a+B$ for $\{a\}+B.$ A distribution $f\in \mathscr{D}’(\mathbb{R}^{n})$ is
said to be causal if $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}f\subset\overline{\mathbb{R}_{+}}$ When $L$ is translation-invariant, we have
the following lemma.
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Lemma 1 Let $h\in \mathscr{D}’(\mathbb{R}^{n})$ . If $L[f]=h*f$ for $f\in \mathit{9}(\mathbb{R}^{n})$ , then the
following three conditions are equivalent

(a) $L$ is causal.

(b) If $f$ is causal then $L[f]$ is causal.

(c) $h$ is causal.

2 Wavelet Analysis of Linear Systems

Assume that $\psi$ $\in L^{2}(\mathbb{R}^{n})$ satisfy

$0<C_{\psi}:= \int_{0}^{\infty}\frac{|\hat{\psi}(s\xi)|^{2}}{s}ds<\infty$ , (2.3)

where $C_{\psi}$ is independent of $\xi$ . Note that this condition is satisfied if $\psi(\neq$

$0)$ is a radially symmetric continuous function with compact support, and

$\int_{\mathrm{R}^{n}}\psi(x)dx=0$ . For simplicity we further assume that
$||\mathrm{e}||L^{\mathit{2}}(\mathrm{t}^{n})$

$=1.$

The continuous wavelet transfor$rm$ of $f\in L^{2}(\mathbb{R}^{n})$ with respect to $\psi$ is
defined by

$W_{\psi}f(b, a)$ $:=|a|^{-n/2} \int_{\mathbb{R}^{n}}f(x)$ A $( \frac{x-b}{a})dx=\langle f, T_{b}D_{a}\psi\rangle_{L^{2}(\mathbb{R}^{n})}$ ,
(2.2)

$(b, a)\in \mathbb{H}_{n}:=\mathbb{R}^{n}\mathrm{x}$ $\mathbb{R}_{+}$ .

It is well-known that $W_{\psi}f\in \mathit{7}\mathit{1}\mathit{1}$ $:=L^{2}(\mathbb{H}_{n};dbda/a^{n+1})$ and

$\langle W_{\psi}f, W_{\psi}g\rangle \mathrm{x}\mathrm{a}$ $=C_{\psi}\langle f, g\rangle_{L^{2}(\mathrm{R}^{n})}$ for every $f$ , $g\in L^{2}(\mathbb{R}^{n})$ . (2.3)

(See, for example, [GrOl]. As for a group representation theoretic approach
to wavelet transforms, see $[\mathrm{W}\mathrm{o}02].)$

Let $L$ be a bounded linear operator from $L^{2}(\mathbb{R}^{n}.)$ to $L^{2}(\mathbb{R}^{n})$ . We state
theorems concerning the interaction between $L$ and $W_{\psi}$ . The proofs can be
found in [AMM2].

Wavelet analysis of kernels

For $(b, a)$ , $(u, s)\in Ill$ , set

$K_{\psi}$ ($b$ , $a$ ;it, $s$) $:=C_{\psi}^{-1}\langle L[T_{u}D_{\mathit{8}}\psi],T_{b}D_{a}\psi\rangle_{L^{2}(\mathrm{R}^{\mathfrak{n}})}$ . (2.4)
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Theorem 2(1) $K_{\psi}$ is a bounded continuous function on $(\mathbb{H}_{n})^{2}$ , and

$(b,a_{j}u, \epsilon)\in(\mathbb{H}_{n})^{2}\sup|K_{\psi}(b, a;u, s)$
$|\leq C_{\psi}^{-1}||L||_{\varphi}$ , (2.5)

where $||L||_{\varphi}$ denotes the $ope$ rator norm of $L$ .
(2) For every fixed $(u, s)\in \mathbb{H}_{n}$ , we have

$K_{\psi}(\cdot, \cdot;u, s)$ $=C_{\psi}^{-1}W4(L[T_{u}D,\psi])$ $\in\ovalbox{\tt\small REJECT}_{1}$ , (2.6)
$||K_{\mathrm{t}\mathrm{q}}(, \cdot; u, s)$ $||_{\ovalbox{\tt\small REJECT} \mathrm{i}}\leq C_{\psi^{-1/2}}||L||_{\varphi}$ . (2.7)

Similarly, for every fiecl $(b, a)\in \mathbb{H}_{n}$ , we have

$K_{\psi}(b, a;\cdot, \cdot)=C\psi^{-1}W_{\psi}(L’ [T_{b}D_{a}\psi])$ $\in M\mathit{1},$ (2.8)
$||K_{\psi}(b, a;\cdot: .)$ $||_{4}\leq C_{\psi}^{-1/2}||L||_{op}$, (2.8)

where $*$ denotes the adjoint operator.
(3) For every $F\in \mathscr{H}_{1}$ and $(b, a)\in \mathbb{H}_{n}$ , set

$L_{\psi}[F](b, a):= \int_{\mathrm{H}_{n}}K_{\psi}(b, a;u, s)F(u, s)$ $du \frac{ds}{s^{n+1}}=\langle K_{\psi}(b, a;\cdot, \cdot),\overline{F}\rangle$

.)4.

Then, we have $L_{\psi}[F]\in$ $ for every $F\in lq,$ and $||L_{\psi}||_{op}\leq||L||_{\varphi}$ . Further,
we have $W_{\psi}L=L_{\psi}W_{\psi_{f}}$ that is,

$W_{\psi}(L[f])=L_{\psi}[W_{\psi}f]$ for every $f\in L^{2}(\mathbb{R}^{n})$ . (2.10)

Then, we have $L_{\psi}[F]\in \mathscr{H}_{1}$ for every $F\in\ovalbox{\tt\small REJECT}_{1}$ , $and||L\psi||_{op}\leq||L||_{\varphi}$ . Further,
we have $W\psi L=L\psi W\psi_{f}$ that is,

$W_{\psi}(L[f])=L\psi[W\psi f]$ for every $f\in L^{2}(\mathbb{R}^{n})$ . (2.10)

(4) We have an inversion formula for $L$ from $L_{\psi}.\cdot$

$L[f](x)=C_{\psi}^{-1} \int_{(\mathbb{H}_{n})^{2}}K_{\psi}(b, a;u, s)W_{\psi}f(u, s)$

$\cross$ TbDa\psi (x) du $\frac{ds}{s^{n+1}}db\frac{da}{a^{n+1}}$ (2.10)

for every $f\in L^{2}(\mathbb{R}^{n})$ . $/fere$, the $L^{2}$ -valted integral can be considered, for
example, in the weak sense:

$\langle L[f]g\rangle\backslash ,=C_{\psi}^{-1}/n$ $($ $/$

$n$

$K_{\psi}(b, a;u, s)$ $W_{\psi}f(u, s)du \frac{ds}{s^{n+1}})$

$\cross\langle T_{b}D_{a}\psi, g\rangle db\frac{da}{a^{n+1}}$ (2.12)

for every $f\in L^{2}(\mathbb{R}^{n})$ . $/fere$, the $L^{2}$ -valued integral $mn$ be considered, for
example, in the weak sense:

$\langle L[f]g\rangle\backslash ,=C\psi-1\int_{\mathbb{H}_{n}}(\int_{\mathrm{E}\mathfrak{g}_{n}}K\psi(b, a;u, s)W\psi f(u, s)du\frac{ds}{s^{n+1}})$

$\cross\langle T_{b}D_{a}\psi, g\rangle db\frac{da}{a^{n+1}}$ (2.12)
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or

$\langle L[f], g\rangle=C_{\psi}^{-1}\lim_{Marrow\infty}\int_{(1-M,M]^{n}\mathrm{x}[1/M,M])^{2}}K_{\psi}(b, a;u, s)$

$\cross W_{\psi}f(u, s)\langle T_{b}D_{a}\psi, g\rangle du\frac{ds}{s^{n+1}}db\frac{da}{a^{n+1}}$ (2.13)

for every $f$, $g\in L^{2}(\mathbb{R}^{n})$ . Note that $W_{\psi}f$ and $\langle T_{b}D_{a}\psi, g\rangle=W_{\psi}g$ belong to
4.

Equality (2.10) can be written as

$W_{\psi}(L[f])(b, a)= \int_{\mathrm{H}_{n}}K_{\psi}(b, a;u, s)W_{\psi}f(u, s)du\frac{ds}{s^{n+1}}$

(2.14)
for every $f\in L^{2}(\mathbb{R}^{n})$ .

Formula (2.14) enables us to access to information of $K_{\psi}$ by wavelet trans-
forms $W_{\psi}f$ and $W_{\psi}(L[f])$ , which are computable from the observed input $f$

and output $L[f]$ .
When $L$ is the identity operator, the kernel $K_{\psi}$ is the reproducing kernel

of the reproducing kernel Hilbert space Range(W\psi ) ([Da92], [Ma99]).
Theor$\mathrm{e}\mathrm{m}$ 2 and other contents of this section are deeply connected with

[W002]. Roughly speaking, the localization operator in [W002] corresponds
to the operator $W_{\psi}^{-1}(F\mathrm{x})W_{\psi}$ , where $F=F(b, a)$ is a bounded function
of $(b, a)$ , while we are interested in $W_{\psi}LW_{\psi}^{-1}$ . Since $W_{\psi}$ is not injective,
$W_{\psi}^{-1}$ should be treated with care. We will choose the operator $V_{\psi}$ such that
$V\psi W\psi=I,$ where I is the identity operator, and $W_{\psi}V\psi$ has good properties.
(See (6.22).)

Wavelet analysis of Hilbert-Schmidt kernels

When $L$ is a Hilbert-Schmidt operator, that is, the kernel distribution $k$

belongs to $L^{2}(\mathbb{R}^{2n})$ , then we have the following additional result.

Theorem 3 Let $k\in L^{2}(\mathbb{R}^{2n})$ . Then,

$K_{\psi}(b, a;u, s)=C_{\psi}^{-1}$ $\langle$ $k$ , $T_{b}D_{a}\psi\otimes 7uD\epsilon\psi)L^{2}(1^{2}n)$ , (2.15)

other$re(f\otimes g)(x, y):=f(x)g(y)$ , and

$K_{\psi} \in\ovalbox{\tt\small REJECT}_{2}:=L^{2}((\mathbb{H}_{n})_{(b,a,u,s)}^{2}; db\frac{da}{a^{n+1}}du\frac{ds}{s^{n+1}})$ ,

$||K\mathrm{J}|\mathrm{q}$ $=||k||$ L2(R2n).
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Thus, $L_{\psi}$ is also a Hilbert-Schmidt operator.
We also have an inversion fomula for $k.\cdot$

$k(x, y)=C_{\psi}^{-1} \int_{(\mathbb{H}_{n})^{2}}K_{\psi}(b, a;u, s)$

$\cross T_{b}D_{a}\psi(x)$ $\overline{T_{u}D_{S}\psi(y)}db\frac{da}{a^{n+1}}du\frac{ds}{s^{n+1}}$, (2.16)

where the integral is, for example, in the weak sense:

$\langle k, h\rangle_{L^{2}(\mathrm{R}^{2n})}=C_{\psi}^{-1}\int_{(\mathbb{H}_{n})^{2}}K_{\psi}(b, a;u, s)$

(2.17)
$\mathrm{x}$

$\langle TbD_{a}\psi \otimes\overline{T_{u}D_{\mathit{8}}\psi}, h\rangle$ $db \frac{da}{a^{n+1}}du\frac{ds}{s^{n+1}}$

for every $h\in L^{2}(\mathbb{R}^{2n})$ .

Note that $\langle T_{b}D_{a}\psi \otimes T_{u}D_{s}\psi: h\rangle$ $\in\ovalbox{\tt\small REJECT}_{2}$ , just like $K\psi$ .

We can access to time-frequency information of $k$ by a similar way to the
ordinary wavelet analysis, because (2.15) means that $K_{\psi}$ is a kind of wavelet
transform of $k$ and (2.16) is a kind of inverse wavelet transform.

Next, assume condition (1.2) for $k$ .

$(b, a;u, s)\in(\mathbb{H}_{n})^{2}$ , we$(b, a;u, s)\in(\mathbb{H}_{n})^{2}$ , we

$K_{\psi}(b, a, \cdot u, s)=C_{\psi}^{-1}\int_{\mathbb{R}^{2n}}k(x, y)T_{u}D_{s}\psi(y)$
$\overline{T_{b}D_{a}\psi(x)}$ dxdy. (2.18)

We also have the inversion $fo$ rmula (2.16) for $k_{f}$ for example, in the
following sense, which is weaker than (2.17).

$\int_{\mathrm{R}^{2n}}k(x, y)\overline{\phi_{1}(x)\phi_{2}(y)}$ dxdy (2.19)

$=C_{\psi}^{-1} \int_{\mathbb{H}_{n}}(\int_{\mathrm{H}_{n}}K_{\psi}(b, a;u, s)\langle\overline{T_{u}D_{\mathit{8}}\psi}, ’ 2\rangle$ $du \frac{ds}{s^{n+1}})$

$\cross\langle T_{b}D_{a}\psi, ’ 1\rangle$ $db \frac{da}{a^{n+1}}$

$=C_{\psi}^{-1} \lim_{Marrow\infty}\int_{([-M,M]^{n}\mathrm{x}[1/M,M])^{2}}K_{\psi}(b, a;u, s)$

$\cross\langle T_{b}D_{a}j, \phi_{1}\rangle\langle\overline{T_{u}D_{s}\psi}, \phi_{2}\rangle db\frac{da}{a^{n+1}}$$du \frac{ds}{s^{n+1}}$

for every $\mathrm{F}_{1}$ , $\mathrm{E}_{2}$ $\in L^{2}(\mathbb{R}^{n})$ .
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Wavelet analysis of translation-invariant systems

When the system $L$ is translation-invariant, we have the following result, a
discrete version of which will be used in subsequent numerical experiments.

Theorem 5 Let $L$ be a continuous translation-invariant linear system
from $L^{2}(\mathbb{R}^{n})$ to $L^{2}(\mathbb{R}^{n})$ . Then, we have

$L_{\psi}[F]=P_{\psi}(G)$ , $G(b, a):=L[F(\cdot, a)](b)$ (2.20)

for every $F\in 4,$ where $P_{\psi}$ is the projection in 4 onto the range of $W_{\psi}$ .
In particular,

$(W_{\psi}(L[f]))(\cdot, a)=L[W_{\psi}f(\cdot, a)]$ (2.21)

for every $f\in L^{2}(\mathbb{R}^{n})$ and $a\in \mathbb{R}_{+}$ .

Let us discuss about system identification of a translation-invariant sys-
tem $L$ . In the real world, there are disturbances. After observing the input
$f$ , there could be an unmeasured disturbance $\nu^{\mathrm{i}\mathrm{n}}$ . Then the real input to $L$ is
$f+\nu^{\mathrm{i}\mathrm{n}}$ . Similarly, before observing the output, there could be an unmeasured
disturbance $\nu^{\mathrm{o}\mathrm{u}\mathrm{t}}$ . Then the observed output from $L$ is $L[f]+L[\nu^{\mathrm{i}\mathrm{n}}]+\nu^{\mathrm{o}\mathrm{u}\mathrm{t}}$ .
In this case, the observed input-Output pair is $\{f, L[f]+L[\nu^{\mathrm{i}\mathrm{n}}]+\nu^{\mathrm{o}\mathrm{u}\mathrm{t}}\}$ ,
which could cause a bad identification. Applying the continuous wavelet
transform $W_{\psi}$ to this observed input-Output pair and using (2.21), then we
have $\{W_{\psi}f, L[W_{\psi}f]+L[W_{\psi}\nu^{\mathrm{i}\mathrm{n}}]+W_{\psi}\nu^{\mathrm{o}\mathrm{u}\mathrm{t}}\}$ . As the denoising property of
the continuous wavelet transform reduces certain kinds of disturbances $\nu^{\mathrm{i}\mathrm{n}}$

and $\nu^{\mathrm{o}\mathrm{u}\mathrm{t}}$ , we may have an input-Output pair close to $\{W_{\psi}f, L[W_{\psi}f]\}$ , which
causes a better identification. In another disturbed case, we may observe not
$f$ but $7+\nu^{in}\mathrm{y}$ as the input. By applying the continuous wavelet transform
to the observed input-Output pair $\{f+\nu^{in}, L[f+\nu^{in}]+\nu^{out}\}$ , we could also
have a better identification.

A function $\psi$ is called wavelet function for causality if $W_{\psi}f(b, a)$ is causal
with respect to $b$ for every causal function $f$ . If we define the involution I
by

$\mathrm{I}[g(x)]:=\overline{g(-x)}$,

then wavelet transform $W_{\psi}f(b, a)$ can be represented as

$W_{\psi}f(b, a)=(f*D_{a}\mathrm{I}\psi)(b)$ . (2.22)

Corollary 1 stated below follows easily from Lemma 1 and (2.22).

Corollary 1 Let $a>0.$ Then, the following two conditions are equivalent.

(i) $f$ is causal $\Rightarrow W_{\psi}f(b, a)$ is causal with respect to $b$ .

Corollary 1stated below follows easily ffom Lemma 1and (2.22).

Corollary 1Let $a>0.$ Then, the following two conditions are equivalent.

(i) $f$ is causal $\Rightarrow$ $W_{\psi}f(b, a)$ is causal with respect to $b$ .
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(ii) 2 $[\psi]$ is causal.

In the following section, we will use a discretized version of the wavelet
function for causality constructed as follows. Take a continuous orthonormal
wavelet function $\psi$ with compact support such as Daubechies’ orthonormal
wavelet functions. Then, there exists $b\in \mathbb{R}$ such that $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}T_{b}\mathrm{I}\psi\subset\overline{\mathbb{R}_{+}}$ .
Since $T_{b}\mathrm{I}\psi=\mathrm{I}T_{-b}\psi$, the function $\mathrm{I}T_{-b}\psi$ is causal. Hence $T_{-b}\psi$ is a wavelet
function for causality, because the function $T_{-b}\psi$ is a continuous function
with compact support satisfying

$\int_{\mathrm{R}}T_{-b}\psi(x)dx=0.$

3 System Identification of Discrete Systems
Assume that the discrete system to be identified has the following form:

$m-1$

$y_{n}=$ $\mathrm{E}$ $\alpha_{\ell}x_{n-\ell}$ , (3.1)
$\ell=0$

where $\{x_{n}\}$ is the input and $\{y_{n}\}$ is the output. The assumption means that
we are considering a translation-invariant causal system of finite filter length.
Denote the filter coefficients to be identified by

$A=[\alpha_{m-1}, \alpha_{m-2}, \cdot \cdot 1 , \alpha_{0}]^{T}$.

There are various types of observable input-Output pairs. We need to
modify system identification methods according to the type. In this paper,
we will deal with only one input-Output pair of long length. This type of
input-Output pairs are observed, for example, in health monitoring systems
for structures.

Health monitoring systems

Structures under dynamic load, such as buildings, bridges, and so on, store
cumulative damages on their structural members. The main concern of
health monitoring systems is to have an efficient identification method of the
structural parameters and to find when those parameters have been changed.
Although these damages are generally estimated by continuous observation
of several measurements, such as acceleration, velocity and displacement at
several observing points, health monitoring systems based on these mea-
surements could be expensive. Therefore, approaches to health monitoring
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systems utilizing only one measurement are growing in importance. Such
health monitoring systems have only one input-Output pair of long length.
In this case, we subdivide the input-Output pair into an enough number of
input-Output pairs of short length.

Conventional method

First, let us explain the conventional method of system identification. Take
$N$ successive elements starting with the index $k$ from the output $\{y_{n}\}$ and
denote the $N$-dimensional column vector by

$\mathrm{Y}=$ $[lk, lk+1, jjk+2, \cdots, /k+N-1]^{T}$

Take a successive $N+m-1$ elements starting with the index $k-m+1$ from
the input $\{\mathrm{x}\mathrm{n}\}$ and construct an $N\cross m$ matrix $X$ defined by

$X=\{\begin{array}{l}x_{k-m+1}x_{k-m+2}x_{k-m+2}x_{k-m+3}x_{k+N-m}x_{k+N-m+1}\end{array}$

$\cdot\cdot$ .
$x_{k+N-1}x_{k+1\rfloor}x_{k}.\cdot$.

The conventional method solves $\mathrm{Y}=XA$ by the least square method.

Wavelet method

Next, we propose our wavelet method of system identification. We use a
wavelet function for causality. Then, the time-invariant discrete wavelet
transform called stationary wavelet transform is represented as

$\mathrm{S}_{j41,k}=\sum_{n=-\infty}^{k}\overline{h_{j,n-k}}S_{j,n}$ , $D_{j+1,k}= \sum_{n=-\infty}^{k}.\overline{g_{j,n-k}}S_{j,n}$ . (3.2)

Let a pair of input $\{x_{n}\}$ and output $\{\mathrm{y}\mathrm{n}\}$ be given. Put

$S_{0,n}^{\mathrm{i}\mathrm{n}}=x_{n}$ , $S_{0,n}^{\mathrm{o}\mathrm{u}\mathrm{t}}=y_{n}$ .

Applying the stationary wavelet transform (3.2) for causal systems, calculate
inductively the approximation $59\mathrm{n}$ and the detail $D_{j,k}^{\mathrm{i}\mathrm{n}}$ of level $j$ for the input
and the approximation $5\mathrm{y}7^{\mathrm{u}_{k}\mathrm{t}}$ and the detail $D_{j,k}^{\mathrm{o}\mathrm{u}\mathrm{t}}$ of level $j$ for the output.
Then, as a discrete version of Theorem 5, we have the following Theorem 6.
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Theorem 6 Let a pair of input $\{x_{n}\}$ and output $\{y_{n}\}$ be given. Assume
that the system to be identified has the form (3.1). Then,

$S_{j,k}^{\mathrm{o}\mathrm{u}\mathrm{t}}= \sum_{\ell=0}^{m-1}\alpha_{\ell}S_{j,k-\ell}^{\mathrm{i}\mathrm{n}}$ , $D_{j,k}^{\mathrm{o}\mathrm{u}\mathrm{t}}= \sum_{\ell=0}^{m-1}\alpha_{\ell}D_{j,k-\ell}^{\mathrm{i}\mathrm{n}}$.

Choosing enough approximation pairs $\{(j_{i}, k_{i})\}:\in I_{a}$ , $I_{a}=\{1,2, \ldots, N_{a}\}$

and detail pairs $\{(j_{i}, k_{i}^{\wedge})\}_{i\in I_{d}}$ , $I_{d}=\{1,2, \ldots, N_{d}\}$ , we have the following sys-
tem to solve for $A$ :

$\{\begin{array}{l}S_{j_{i},k}^{\mathrm{o}\mathrm{u}\mathrm{t}}\dot{.}=\sum_{\ell=0}^{m-1}\alpha_{\ell}S_{j_{t},k.-\ell}^{\mathrm{i}\mathrm{n}}D_{j_{i},k_{i}}^{\mathrm{o}\mathrm{u}\mathrm{t}}=\sum_{\ell=0}^{m-1}\alpha_{\ell}D_{j.,k\dot{.}-\ell}^{\mathrm{i}\mathrm{n}}\end{array}$ $i\in I_{a}i\in I_{d}’$

.

(3.3)

The wavelet method solves (3.3) by the least square method.

4 Numerical Experiment

The aim of the following numerical experiment is to compare the conventional
method with the wavelet method. Here we will deal with a prototypal math-
ematical model of simplified health monitoring systems. The model to be
identified is not a translation-invariant system. Let us use MATLAB’S colon
operator. The expression $J$ : $K$ is the same as the row vector $[J, J+1, \ldots, K]$ ,
where $J$ , $K\in \mathbb{Z}$ and $J\leq K.$ For an input $xn$ , $n=1$ : 1028, the output $Jfn$ is
given by

$\{\begin{array}{l}y_{n}=x_{n}-x_{n-1},n=2\cdot.514y_{n}=x_{n}/2-x_{n-1}+x_{n\cdot- 2}/2,n=51\mathit{5}\cdot.1028\end{array}$ (4.1)

where $n=515$ is the critical moment. This model changes its structural
parameters at a moment, that is, the filter coefficients of the system are not
constants but step functions.

In our paper [AMMI] , we propose a system identification method based
on wavelet analysis for a different kind of model called $ARX$ model and give
a numerical experiment on a simple model of vehicle suspension systems.

Outline of numerical experiment

Using the filter coefficients identified from the first part of input-Output pair,
compute an output, which will be called predicted output, from the real input.
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Compare the predicted output and the real output to detect the critical
moment for input-Output pairs without noise and with white noise. We will
explain only for the case with white noise. The input-Output pair $(\tilde{x}_{n}, \mathrm{i}_{n})$

with white noise is illustrated in Figure 2.

Figure 2: Input-Output pair with white noise.

Input-Output pair with white noise

Conventional method : Replacing the input-Output pair $(x_{n}, y_{n})$ with the
noised input-Output pair $(\tilde{x}_{n},\tilde{y}_{n})$ , do the same experiment as in the case
without noise. Comparison of the predicted output $p\tilde{y}_{n}$ with the real output
$\tilde{y}_{n}$ is illustrated with Figure 3 (a). It is impossible to detect the time when
the system changed.

Wavelet method : Replacing the input-Output pairs:

$(D_{\mathrm{l},n}^{\mathrm{i}\mathrm{n}}, D_{1,n}^{\mathrm{o}\mathrm{u}\mathrm{t}})$ , $(D_{2,n}^{\mathrm{i}\mathrm{n}}, D_{2,n}^{\mathrm{o}\mathrm{u}\mathrm{t}})$ , $(S_{3,n}^{\mathrm{i}\mathrm{n}}, 5\mathrm{H}\mathrm{u}\mathrm{i})$ , $(D_{3,n}^{\mathrm{i}\mathrm{n}}, D_{8,n}^{\mathrm{o}\mathrm{u}\mathrm{t}})$

with the noised input-Output pairs:

$(\dot{\overline{D}}_{\mathrm{l},n}^{\mathrm{i}\mathrm{n}},\overline{\overline{D}}0\mathrm{O}\mathrm{t})$, $(D_{2,n}^{\mathrm{i}\mathrm{n}},D*\mathrm{O}\mathrm{t})$ , $(S_{3,n}^{\mathrm{i}\mathrm{n}},S_{3,n}^{\circ \mathrm{u}\mathrm{t}})$ , $(D_{3,n}^{\overline{1}\mathrm{n}},D_{[mathring]_{3},n}^{\mathrm{u}\iota})$,

respectively, do the same experiment as in the case without noise.
Comparison of the predicted output $P\tilde{S}_{3,n}^{\mathrm{o}\mathrm{u}\mathrm{t}}$ with the real output 5*; is

illustrated with Figure 3 (b). It is easy to detect the time when the system
changed. The difference between $P\tilde{S}_{3,n}^{\mathrm{o}\mathrm{u}\mathrm{t}}$ and $\tilde{S}_{3,n}^{\mathrm{o}\mathrm{u}\mathrm{t}}$ is illustrated with Figure 4
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(a) Conventional Method (b) Wavelet Method

Figure 3: Comparisons of the predicted outputs with the real outputs.

and those between $PD_{j,n}^{\mathrm{o}\mathrm{u}\mathrm{t}}$ and $D_{j,n}^{\mathrm{o}\mathrm{u}\mathrm{t}}$ , $j=1,2,3$ are illustrated with Figure 5.
For each level $j=1,2,3$ , it is not so hard to detect the time when the system
changed.

Conclusion of numerical experiment

For an input-Output pair without noise, both the conventional and the wavelet
methods can detect the critical moment. On the contrary, for an input-Output
pair with white noise, the conventional method cannot detect the critical mO-

ment but the wavelet method can do. This is because the wavelet method
can filter out the white noise.
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Figure 4: Difference between $P\tilde{S}_{3,n}^{\mathrm{o}\mathrm{u}\mathrm{t}}$ and $\tilde{S}_{3,n}^{\mathrm{o}\mathrm{u}\mathrm{t}}$ .

Differece between details

Figure 5: Wavelet, with white noise. Differences between predicted outputs
$PD_{j,n}^{\mathrm{o}\mathrm{u}\mathrm{t}}$ and real outputs $\tilde{D}_{j,n}^{\mathrm{o}\mathrm{u}\mathrm{t}}$ , $j=1,2,3$ .
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