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Abstract

In algebraic quantum field theory the (inverse) temperature is shown
to be a macroscopic order parameter to parametrize mutually dis-
joint thermal sectors arising from the broken scale invariance under
renormalization-group transformations.

This is accomplished in a mathematical formalism for the consistent
treatment of explicitly broken symmetries such as broken scale invari-
ance, on the basis of a clear-cut criterion for the symmetry breakdown
in a unified scheme for sectors proposed recently by the author.

1 A scheme to control MicrO-Macro relations

In [14] a unified scheme has been proposed for selecting, classifying and
interpreting the microscopic states (treated as sectors) relevant to a given
physical theory by means of macroscopic order parameters on the basis of
selection criteri\^a which can be schematized as follows:

i) $[(q$ : $)$ $\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{o}\mathrm{b}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{s}tobeselected]\Rightarrow \mathrm{i}\mathrm{i}$)$\uparrow\tau[standardreference\mathrm{s}classifyingspace$yst$\mathrm{e}e\mathrm{m}_{\mathrm{o}r}^{\mathrm{W}}8\mathrm{i}^{\mathrm{t}\mathrm{h}}$ $($ : $c)]$

$\mathrm{i}\mathrm{i}\mathrm{i})$ comparison of i) with $\mathrm{i}\mathrm{i}$)
ff $\Downarrow$

$\mathrm{i}\mathrm{v})\lceil seleciionc\dot{n}te7\mathrm{u}on:\mathrm{i}\mathrm{i})\Rightarrow \mathrm{i})\mathrm{c}- q\mathrm{c}hannel]\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{a}1adjunctionarrowarrow$ $\{\begin{array}{ll}inte7pretaiiO’n \mathrm{o}\mathrm{f}\mathrm{i})\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{s}\mathrm{o}\mathrm{f}\mathrm{i}\mathrm{i}) \mathrm{i})\Rightarrow \mathrm{i}\mathrm{i})q\sim cchannel\end{array}\}$

In usual treatments of the physical world, we presuppose that the questions
as to from which viewpoints and which kinds of domains and aspects in na-
ture are focused upon can be answered without explicit specifications of such
issues, simply by mentioning certain appealing keywords. When one starts
to compare different domains and aspects, however, the necessity of such
specific ations becomes indispensable, without which the whole discussions
would end up with vague, heuristic and subjective arguments. While the
general method has not been established yet to answer satisfactorily these
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questions, I have so far observed that the notion of selection criteria (based
on that of sectors to be explained later) works quite well in many contexts
discussed in the above scheme. Here we select out from $\mathrm{i}$): generic physi-
cal objects (or, states in more specified terms) all those relevant to a given
physical domain under consideration which is specified in a mathematically
precise form as a specific choice of a selection criterion. This is achieved
by means of a comparison map $\mathrm{i}\mathrm{i}\mathrm{i}$) to compare i) with $\mathrm{i}\mathrm{i}$) given (or, emerg-
ing later through the analysis of i) and $\mathrm{i}\mathrm{i}$ )) as a standard reference system
(determined consistently with the choice of a selection criterion). When all
the relevant objects are enumerated by the analysis based on $\mathrm{i}$), $\mathrm{i}\mathrm{i}$) and $\mathrm{i}\mathrm{i}\mathrm{i}$ ) ,
then we can proceed to $\mathrm{i}\mathrm{v}$): if the selection criterion is chosen appropriately,
then we can find a map i) $\Rightarrow \mathrm{i}\mathrm{i}$) inverse to $\mathrm{i}\mathrm{i}$) $\Rightarrow \mathrm{i}$ ) on the image of the latter
resulting from the selection of relevant objects in $\mathrm{i}\mathrm{i}\mathrm{i}$), which provides us with
the physical interpretations of i) in the vocabulary of $\mathrm{i}\mathrm{i}$).

The applicability of this scheme has been confirmed in [15] in three ma-
jor situations, the $DHR$ superselection rule $[7, 8]$ to explain the operational
origin of internal symmetries, its extension to SSB cases [15] and the for-
mulation of non-equilibrium local states in QFT [4, 13, 14]. In all three
cases, the item i) is given by the set of states on the net $O\mapsto \mathfrak{U}(O)$ of
local observables or its global algebra $\mathfrak{U}$ to be explained in the next section
(or, a version of it slightly restricted w.r.t. the energy spectrum in the case
of non-equilibrium local states $[14, 15])$ . The item $\mathrm{i}\mathrm{i}$) is chosen in the dis-
cussion of non-equilibrium local states as the set $K:=Conv( \bigcup_{\beta\in V\beta}+K)$ of
all the convex combinations of (relativisitc) KMS states $\in K_{\beta}$ at all pos-
sible inverse temperatures $\beta$ $\in V_{+}$ . In contrast, the corresponding choices
in the DHR-DR theory and its extension to SSB are not known a priori,
which turn out through the analyses to be, respectively, the group dual $\hat{G}$

(or functions $l^{\infty}(\hat{G})$ on it) of the group $G$ of the arising internal symme-
try and the sections $l^{\infty}(\coprod_{gH\in G/Hg\hat{H}g^{-1})}$ of a fibre bundle related with the
group $H$ of unbroken remaining symmetry and that $G$ of the spontaneously
broken symmetry. The item $\mathrm{i}\mathrm{i}\mathrm{i}$ ) is just to compare a given unknown generic
state $\omega$ in i) with those special states in i) sent from the standard reference
system $\mathrm{i}\mathrm{i}$) by the embedding map as a c-q channel $\mathrm{i}\mathrm{i}$) $\Rightarrow \mathrm{i}$ ). If $\omega$ is judged to
be identified with one of such embedded reference states, then the ‘inverse’
map as a q-c channel i) $\Rightarrow \mathrm{i}\mathrm{i}$) provides the interpretation of $\omega$ in terms of $\mathrm{i}\mathrm{i}$).
In this way, the $G$-charge contents of $\omega$ in the DHR-DR case is described
in terms of some (fluctuation probability over) unitary equivalence classes
$\subset\hat{G}$ , and, in the SSB case, in terms of the data of $gH\in G/H$ specifying the
position (within the family of degenerate vacua parametrized by $G/H$) of a
vacuum sector (e.g., a spatial direction of the magnetization in the example
of a Heisenberg ferromagnet) to which $\omega$ belongs, in combination with the
$H$-charge contents of $\omega$ . In the case of non-equilibrium local states, $\omega$ is
characterized as such a state if it shows the agreement for certain restricted
class of pointlike quantum thermal observables (defined by some asymptotic
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limits of elements in the local net $O$ $\mapsto \mathfrak{U}(O)$ converging to a spacetime
point $x\in \mathbb{R}^{4}$) with a standard state of such a form as $\omega_{\rho}=\int_{B_{K}}d\rho(\beta, \mu)\omega_{\beta,\mu}$

with $,$ $\in NI_{+}(B_{K})$ describing the statistical fluctuations of thermodynamic
parameters $(\beta, \mu)\in B_{K}$ over various thermodynamic pure phases constitut-
ing a thermal classifying space $B_{K}$ . In this case, $\mathrm{d}\mathrm{p}(/3, \mu)$ gives the thermal
interpretation of a generic non-equilibrium state $\omega$ at a point $x$ . If this kind
of machinery works appropriately, then it will allow us to analyze in terms
of the selection criteria the mutual relations among different theories to de-
scribe different physical domains or aspects, on the basis of which we can
attain a framework to allow one specific form of a theory adapted to a fixed
scale region in the physical world to be freely transferred to another one, ac-
cording to the changes in length scales and aspects relevant to the problems
in question.

At this point, however we note that all the above results are obtained in
the essential use of the basic notions and mathematical techniques developed
on the notions of vacuum states (characterized by the spectrum condition)
$\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ KMS states (based on the KMS condition), which have been adopted
as they stand without being $\mathrm{r}\mathrm{e}$-viewed from the viewpoint intrinsic to the
proposed scheme. Namely, one of the most important family of $KMS$ states
(including the vacuum states as a special case of $\beta=\infty$ or $T=0$) as
standard reference systems has been left untouched without having acquired
a physically natural $\mathrm{r}\mathrm{e}$-formulation. It is clear that we cannot attain the aim
of a unified scheme in a self-consistent way unless this family is successfully
incorporated in the framework just according to the same spirit as above.

In order to solve this problem by examining the geometric and algebraic
meanings of the temperatures, we aim here to give the explanation and the
proof of the following statement:

Theorem 1 In the standard setting up of algebraic quantumfield theory, the
inverse temperature $\beta$ $:=(\beta^{\mu}\beta_{\mu})^{1/2}$ $is$ a macroscopic $\mathit{0}$ rder parameter for
parametrizing mutually disjoint sectors in the thermal situation arising from
the broken scale invariance under the renormalization-group transforma-
tions, where- $\beta^{\mu}$ $is$ an inverse temperature 4-vector to specify a relativistic
$KMS$ state $ip^{p}$ describing a the rmal equilibrium in its rest frame.

The necessary explanations for notions appearing in the above statement will
be given in the next section and in Sec.3, in the latter of which the general
and physical meanings contained in the mathematical notions of disjoint-
ness will be explained in combination with the related important and basic
notions such as quasi-equivalence of representations, folia and the role of the
spectrum of the centre in classifying mutually disjoint representations and
states. On the basis of these preparations, the criterion for symmetry break-
down is presented in Sec.4. To adapt the above ingredients to the situation
with the broken scale invariance in thermal situations, an augmented algebra
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as a composite system of a genuine quantum system and a classical macrO-

scopic system is constructed in Sec.5 to accommodate spontaneously $and/or$

explicitly broken symmetries unifying the viewpoint presented in Sec.4 and
the notion of scaling nets and algebras due to Buchholz and Verch [5]. In
use of the mappings to relate states on the original quantum system and
the augmented one, the claimed result on the role of (inverse) temperature
as an order parameter of broken scale invariance is proved in Sec.6. The fi-
nal section summarizes these consequences and briefly mentions the related
interesting problems in this context to be further investigated.

2 Temperature: a priori parameter or physical
quantity 2

When an object in thermal equilibrium with respect to its rest frame is
moving relative to our frame, we observe in it such non-equilibrium features
as heat current just for the kinematical reason. This means that the thermal
equilibrium is meaningful only in reference to the frame in which the object
is at rest, and it can be shown [11] to imply the spontaneous breakdown of
Lorentz boost symmetry in the context of (special-)relativistic QFT. In this
situation, a Lorentz 4vector $\beta^{\mu}$ of inverse-temperature is shown to be a key
member of necessary parameters for specifying a thermal equilibrium state:

$\beta^{\mu}=\beta u^{\mu}\in\overline{V_{+}}$ , $\beta:=(\beta^{\mu}\beta_{\mu})^{1j2}=$ (kBT)$)^{-1}$ , (1)

where $V_{+}$ denotes the (open) forward light in the Minkowski space de-
finel by $V_{+}:=\{(x^{\mu})\in \mathbb{R}^{4}; x x=x^{0}x^{0}-\vec{x}\vec{x}>0, x^{0}>0\}$ , and $k_{B}$

and $T$ are the Boltzmann constant and a temperature, respectively. Such a
thermal state $\omega_{(\beta^{\mu})}$ parametrized by $\beta^{\mu}$ is shown [2] to be characterized by
a relativistic $KMS$ condition, a relativistic extension of the standard KMS
condition [1], and will be called a relativisitc KMS state or simply a KMS
state hereafter.

Prom the above explanation, the timelike unit vector $u^{\mu}:=\beta^{\mu}/\beta(u^{\mu}u_{\mu}=$

$1)$ is seen to describe a relative velocity for specifying the rest frame in
which the relativisitc KIVIS state $\omega(\beta^{\mu})$ exhibits its genuine thermal equi-
librium nature, and it represents an order parameter associated with this
spontaneous symmetry breaking (SSB) of Lorentz boosts [11]. In the con-
text of non-equilibrium local states $[4]_{\mathrm{y}}$ a non-trivial spacetime-dependent
temperature distribution $x\mapsto$ \^u(x) $\in V_{+}$ is allowed to appear, in which
$x\mapsto u^{\mu}(x)=\beta^{\mu}(x)/\beta(x)$ becomes a time-like member of the vierbein field
to specify the rest frame at each spacetime point $x$ . Putting this geometric
aspect in a more general context of QFT formulated in a curved spacetime
(i.e., non-equilibrium states in a curved background spacetime [14, 12]), we
will encounter interesting mathematical-physical problems at the boundary
of geometry and thermodynamics.
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The problem to be discussed here is, however, a question concerning
another factor $\beta=(\beta^{\mu}\beta_{\mu})^{1/2}$ in the formula $\beta^{\mu}=\beta u^{\mu}\in\overline{V_{+}}$, the inverse
temperature itself as a Lorentz scalar: is $\beta$ any kind of order parameter
related with a certain symmetry similarly to the case of $u^{\mu?}$. What is sug-
gestive in this context is the following famous theorem due to Takesaki [18]
(see, for instance [1]):

Theorem 2 (Takesaki) Let $(\mathfrak{U}\mathrm{r}\mathbb{R})$ be a $C^{*}$-dynamical system, and $\sup-$
a

pose that $\omega_{1}$ and $\omega_{2}$ are $KMS$-states corresponding to tuto different values
$\beta_{1}$ , $\beta_{2}\in$ R. Assume that $\pi_{\omega_{1}}(\mathfrak{U})’$ is a type-III von Neumann algebra.
It follows that the states $\omega_{1}$ and $\omega_{2}$ are disjoint.

This mathematical fact suggests the following physical picture for such
quantum systems as QFT with infinite degrees of freedom, which intrinsi-
cally involve type-III von Neumann algebras (as representation-independent
local subalgebras $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ in thermal situations): according to standard re-
sults $[6, 17]$ in the representation theory of C’-algebras, a family of disjoint
representations generate a non-trivial centre in the representation containing
them as subrepresentations, whose elements can be regarded as macroscopic
order parameters because of their mutual commutativity and of their role in
discriminating among different representations within the family according
to its spectrum. Since all the GNS representations of the KMS states of
QFT except for $\beta=0$, $\infty$ are known to be type III von Neumann algebras,
we are naturally led to a situation with continuous superselection sectors
formed by KMS states at different temperatures, distinguished mutually by
macroscopic central observables (in a representation containing all the KMS
states) among which the (inverse) temperature $\beta$ is fcmnd. Namely, 4 be-
comes in this situation a physical macrO-variable running over the space
of all possible thermal equilibria, instead of being an a priori given fixed
parameter as is treated in the standard approach to statistical mechanics.

Starting from this observation, it will be shown in the following that

4 is a physical order parameter corresponding to the spontaneously or ex-
plicitly broken scale invariance under the renormalization-group transfor-
mations; namely, $\beta$’s not only parametrize continuous sectors of thermal
equilibria at different temperatures, but also are mutually interrelated by
the renormalization-group transformation associated with the broken scale
invariance, which clarifies the geometric structure of the thermodynamic
classifying space identified with the spectrum of the above centre of the
representation universal within the KMS family.
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3 Classification of representations and states: cen-
tral spectrum as classifying space of sectors

Just for convenience’ sake, let us briefly recall and summarize the basic
mathematical notions relevant to the present context in the following form.

1) Folium / disjointness / quasi-equivalence:
Let I be a unital $\mathrm{C}^{*}$-algebra and denote $E_{\mathfrak{U}}$ the set of all states on 21

defined as normalized positive linear functionals. All representations $(\pi, f\mathfrak{H})$

are to be understood here as unital ’-representations in the sense that $\mathrm{t}\mathrm{t}(1)=$

$1_{\mathfrak{H}}$ , $\pi(A^{*})=\pi(A)^{*}$ .

Definition 3 (Folium) Given a representation $(\pi, \mathrm{b})$ of $\mathfrak{U}_{f}$ a state $\varphi$
$\in E_{\mathfrak{U}}$

is called $\pi$ -normal if there eists a density operator in $f\mathfrak{H}$ $s.t$. $\varphi(A)$ $=$

Tr$(\sigma\pi(A))(\forall A\in \mathfrak{U})$ . The set $\mathrm{f}(\pi)$ of $\pi$-normal states

$\mathrm{f}(\pi):=$ { $\mathfrak{U}\ni A\mapsto \mathrm{H}(\sigma\pi(A))i\sigma$ : density operator in $\mathrm{f}\mathrm{J}$ }, (2)

is called a folium of $\pi$ . A folium $\mathrm{f}(\omega)$ of a state $\omega\in E_{\mathfrak{U}}$ is defined by
$\int(\omega):=\mathrm{f}(\pi_{\omega})w.r.t$ . the $GNS$ representation $\pi_{\omega}$ of $\omega$ .

From the definition, it is clear that the linear span of a folium gives the
predual $(\pi(\mathfrak{U})’)_{*}$ of the von Neumann algebra $\pi(\mathfrak{U})’$ , consisting of a-weakly
continuous linear functionals on $\pi(\mathfrak{U})’:Lin(\mathrm{f}(\pi))$ $=(\pi(\mathfrak{U})’)_{*}$ , $Lin(\mathrm{f}(\pi))^{*}=$

$\mathrm{z}\mathrm{r}(\mathfrak{U})"$ . In terms of this notion, the definitions of disjointness and quasi-
equivalence of representations can be understood in clear-cut way, as follows.

Definition 4 (Disjointness) 767 Trno representations $(\pi_{1}, \mathrm{f}))$ , $(\pi_{2}, \mathfrak{H}_{2})$ of
$\mathfrak{U}$ are said to be disjoint and written as $\pi_{1}\circ^{1}\pi_{2;}$ if and only if they have
no pair $\mathrm{p}\mathrm{i}$ , $\rho_{2}$ of unitarily equivalent non-trivial subrepresentations 07
$\rho_{1}\prec\pi_{\mathrm{b}}0\neq\rho_{2}\prec\pi_{2}$ , $Likewise_{f}$ states $\omega_{1}$ , $i_{2}$ $\in E_{\mathfrak{U}}$ with disjoint $GNS$

representations $\pi_{\omega_{1}}\circ^{\mathrm{I}}\pi_{\omega_{2}}$ are said to be disjoint and written as $\omega_{1}\circ^{1}\omega_{2}$ .

According to the standard results (see [6]), the defined disjointness is
rephrased into the following equivalent forms:

$\pi_{1}\mathrm{o}^{1}\mathrm{r}_{2}$ $\Leftrightarrow$ $\mathrm{f}(\pi_{1})\cap \mathrm{f}(\pi_{2})=i$

$\Leftrightarrow$ $7i^{\mathfrak{U}}(\pi_{2}arrow\pi_{1})=0$

$\Leftrightarrow$ $c(P(\pi_{1}))[perp] c(P(\pi_{2}))$ , (3)

where }$\mathrm{j}$’ $(\mathrm{r}_{2}arrow\pi_{1})$ is the set of intertwiners from $\pi_{1}$ to $\pi_{2}$ defined by

$H^{\mathfrak{U}}(\pi_{2}arrow\pi_{1}):=$ $\{T\in B(\mathfrak{H}_{1}, \mathfrak{H}_{2});T\pi_{1}(A)= \mathrm{r}_{2}(A)T(\forall A\in 21)\}$ (4)

and $P(\pi_{i})\in\pi(\mathfrak{U})’=H^{\mathfrak{U}}(\piarrow\pi)(i=1,2)$ are projections corresponding to
$\pi_{i}$ regarded as subrepresentations of a common representation $\pi$ (e.g., $\pi$ $=$
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$\pi_{1}\oplus\pi_{2})$ and $c(P)$ denotes the central support $c(P):= \min\{F$ : projection $\in$

$\pi(\mathfrak{U})’\cap\pi(\mathfrak{U})’;F\geq P\}$ of a projection $P$ ( $\in\pi(\mathfrak{U})’$ or $\pi(\mathfrak{U})’$). If $\pi_{1}$ , $\pi_{2}$ are both

irreducible, disjointness $\pi_{1}0^{\mathfrak{l}}\pi_{2}$ means simply their unitary inequivalence. If
both $\pi_{1}$ , $\pi_{2}$ can be uniquely decomposed into irreducible components, $\pi_{1}$ , $\pi_{2}$

have no common irreducible components.
The ‘opposite’ situation to the disjointness is given by the notion of

quasi-equivalence defined next on the basis of the following proposition:

Proposition 5 ([6]) The following conditions for representations $\pi_{1}$ , $\pi_{2}$ of
2 are all equivalent:

(i) No non-trivial subrepresentation of $\pi_{1}$ is disjoint from $\pi_{2}$ and no non-
trivial subrepresentation of $\pi_{2}$ is disjoint from $\pi_{1}$ [negation of dis-
$jointness]_{j}$

(ii) $\exists\Phi$ : $\pi_{1}(\mathfrak{U})’arrow\pi_{2}(\mathfrak{U})’$ : isomorphism of von Neumann algebras
$\mathrm{s}.\mathrm{t}$ . $\mathrm{i}\mathrm{r}2\{\mathrm{A}$) $=\Phi(\pi_{1}(A))$ for $\forall A\in \mathfrak{U}$;

(ii) $\exists n_{1}$ , $n_{2}$ : cardinals s.t $n_{1}\pi_{1}\cong n_{2}\pi_{2}$ where $n_{1}\pi_{1}$ and $n_{2}\pi_{2}$ are respec-
tively, multiples of $\pi_{1}$ and of $\pi_{2}[i.e.$ , units $w$ equivalence up to
multiplicities];

(iv) $\mathrm{f}(\pi_{1})=\mathrm{f}(\pi_{2})$ for the folia of $\pi_{1}$ , $\pi_{2}$ .

If $\pi_{1}$ , $\pi_{2}$ ore subrepresentations of a representation $\pi$ with the corre-
sponding projections $P(\pi_{1})$ , $P(\pi_{2})\in\pi(\mathfrak{U})’$ , the above $(i)-(iv)$ are also
equivalent to the next (v):

(v) $\mathrm{c}(\mathrm{P}(7\mathrm{r}\mathrm{i}))=\mathrm{c}(\mathrm{P}(\mathrm{t}\mathrm{t}2))$ for the central supports of $P(\pi_{1})$ , $\mathrm{P}(\mathrm{t}\mathrm{t}2)$ .

Definition 6 (Quasi-equivalence) Two representations $\pi_{1)}\pi_{2}$ satisfying
one (and hence, all) of the conditions $(i)-(v)$ are said to be quasi-equivalent,
and written as $\pi_{1}2$ $\pi_{2}$ . States $\omega_{1}$ and $\omega_{2}$ are said to be quasi-equivalent if
the corresponding $GNS$ representations $rr_{\omega_{1}}$ and $rv,\mathit{2}$ are quasi-equivalent,

2) Pure phase $\mathrm{v}\mathrm{s}$ . mixed phase; superselection sectors and order parameter
While KMS states $\omega\beta$ describing thermal equilibria are all mixed states

(except for the case of vacuum with $\beta$ $=\infty$ ), their decompositions into pure
states are highly non-unique for quantum dynamical systems with infinte
degrees of freedom because of their type-threeness. Therefore, it is more
legitimate to understand a KMS state as an entity in itself without refer-
ence to pure states. For this purpose, we need to know the minimal units of
KMS states in order for a generic one to be decomposed canonically. Such a
unit is known to be found in a thermodynamic pure phase $i$ $\in E\mathfrak{U}$ charac-
terized by ergodicity, or equivalently by factoriality defined by the triviality
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of centre $3_{\omega}(\mathfrak{U})=\pi_{\omega}(\mathfrak{U})’\cap\pi_{\omega}(\mathfrak{U})’=\mathbb{C}\mathrm{I}_{\overline{\mathrm{J})}_{\omega}}$ as a condition equivalent to the
extremality in the set $K_{\beta}$ of all KMS states at $\beta$ on $2\mathrm{t}$

$\wedge$ $\mathbb{R}[1]$ .
$\alpha$

Along this line, we call pure phases any factor states $\omega$ or factor repre-
sentations with trivial centre. If a given state $\omega$ is not a pure phase, it is
called a mixed phase whose GNS representation $\pi_{\omega}$ has a non-trivial centre
$3_{\omega}(\mathfrak{U})$ . As a commutative algebra, the centre $3_{\omega}(\mathfrak{U})$ admits a “simultane-
ous diagonalization” due to the well-known Gel’fand theorem expressing it
as a function algebra $L^{\infty}(Spec(3_{\omega}(\mathfrak{U})))$ on the spectrum $Spec(3_{\omega}(\mathfrak{U}))$ can
sisting of characters or maximal ideals. Corresponding to this, $\omega$ and $\pi_{\omega}$

are canonically decomposed ( $=$ central decomposition) into factor states $(=$

pure phases) and factor subrepresentations ($=$ sectors):

$\omega(A)$ $=$ $\int_{Sp(3_{\omega}(\mathfrak{U}))}\omega_{\lambda}(A)d\mu(\lambda)$ , (5)

$\pi_{\omega}(A)$ $=$ $\int_{Sp(3_{\omega}(\mathfrak{U}))}^{\oplus}\pi_{\omega_{\lambda}}(A)d\mu(\lambda)$ . (6)

According to the above proposition, any pair of factor states or fac-
tor representations are either quasi-equivalent or disjoint and if pure phases
$\omega_{1}$ , $\omega_{2}$ are disjoint, there exists $\exists C\in 3_{\pi}(\mathfrak{U})\mathrm{s}.\mathrm{t}$ . $\omega_{1}(C)\neq$ UJ2(C) within a rep-
resentation $\pi$ containing $\pi_{\omega_{1}}\oplus\pi_{\omega_{2}}$ . In this sense, each point of Spec(3uj(2U))
represents a realized value of parameters to distinguish among different
pure phases contained in a mixed phase $\omega$ , and hence, each central element
$C\in 3_{\omega}(\mathfrak{U})$ can be identified with a macroscopic order parameter.

Therefore, a mixed phase represents just the situation of a superselection
rule consisting of sectors each of which is identified with a folium of pure
phases or its factor representations labelled by a point in $Spec(3_{\mathrm{u}\mathit{1}}(\mathfrak{U}))$ .

4 Criterion for symmetry breakdown
To show that the inverse temperature appears as an order parameter of
broken scale invariance, we need to give precise formulations of

a) the scale transformations which may possibly be allowed to involve
explicit breaking effects such as non-vanishing mass terms,

and of

b) a criterion for symmetry breakdown,

and then to exhibit

c) the role of the inverse temperature as an order parameter for this
broken scale invariance.
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For this purpose, we start here with the criterion for a spontaneous
symmetry breaking (SSB), as a special case of b) applicable to the symme-
tries described by a strongly continuous automorphic action $\tau$ of a locally
compact group $G$ on the $\mathrm{C}^{*}$ algebra $S$ of quantum fields: $Gr\backslash$ J. To be

$\tau$

more precise, the algebraic formulation of QFT is usually not based upon
a $\mathrm{C}^{*}$ algebra 5 of quantum fields which are in general not directly observ-
able owing to their non-trivial behaviours under the group $G$ of an internal
symmetry. Instead, the basic ingredient to play the principal roles is a net
$O\mapsto$ 21(0) of local observables with each local subalgebra $\mathfrak{U}(O)$ defined as
a $\mathrm{W}^{*}$-algebra; any self-adjoint element $A=A^{*}\in$ 21(0) is supposed to corre-
spond to a physical quantity, experimentally observable within a spacetime
region a chosen from a suitable family of spacetime regions which consti-
tute a directed set w.r.t. the inclusion relation, the typical choice being the
family $\mathcal{K}:=$ $\{(b+V_{+})\cap(c-V_{+})7^{\cdot}a, b\in \mathbb{R}^{4}\}$ of double cones in the Minkowski
spacetime $\mathbb{R}^{4}$ . The common properties to be naturally satisfied by this net
are taken as follows (see, for instance, [10]):

i) “Isotony” : for $O_{1}$ , $O_{2}\in \mathcal{K}$ , the inclusion relation $O_{1}\subset O_{2}$ should
imply $\mathfrak{U}(O_{1})\subset 21(02)$ , on the basis of which the global algebra 1 $=$

$\overline{\bigcup_{\mathcal{K}\ni \mathcal{O}\nearrow \mathbb{R}^{4}}\mathfrak{U}}$(’)
$||\cdot||$

of observables can be defined as the $\mathrm{C}^{*}$-inductive limit of

all the local subalgebras $\mathfrak{U}(O)$ , $O$ $\in \mathcal{K}$ .
$\mathrm{i}\mathrm{i})$ Relativistic covariance: the family $\mathcal{K}$ can be regarded as a category

consisting of objects as double cones $0\in \mathcal{K}$ and of arrows $Oarrow(a,\Lambda)(a, \Lambda)O$

defined by the elements $(a, \Lambda)\in P_{+}^{\mathrm{T}}=\mathbb{R}^{4}\aleph$ $L_{+}^{\uparrow}$ of the Poincare group
acting on the Minkowski spacetime $\mathbb{R}^{4}$ and $\mathcal{K}$ , respectively, by $[(a, \Lambda)x]^{\mu}=$

$\Lambda_{\nu}^{\mu}x^{\nu}+a^{\mu}$ , $(a, \Lambda)O=\Lambda O$ $+a.$ Then, the local net $0\mapsto \mathfrak{U}(O)$ should
constitute a functor 2 : $\mathcal{K}arrow Alg[12,3]$ from the category $\mathcal{K}$ to the category
$Alg$ of $\mathrm{W}^{*}$-algebras whose arrows are (normal) $*$-homomorphisms:

$\mathcal{K}\ni O$ $arrow$ $\mathfrak{U}(O)\in Alg$

$(a, \Lambda)\downarrow$ $\mathrm{O}$ $\downarrow\alpha_{(a,\mathrm{A})}-.=\mathit{2}(a, \Lambda)$

$\Lambda O$ $+a$ $arrow$ $\mathfrak{U}(\Lambda O+a)$ (7)

$\mathrm{i}\mathrm{i}\mathrm{i})$ Local commutativity (as a mathematical formulation of Einstein
causality) : for spacelike separated regions $O_{1}$ , $O_{2}\in \mathcal{K}$ (i.e., $(x-y)\cdot(x-y)$ $<0$

($\forall x\in$ 0i,Vy $\in O_{2}$) $)$ the local subalgebras $\mathfrak{U}(O_{1})$ and 21(02) are commuta-
tive in the sense of $AB=BA(\forall A\in \mathfrak{U}(O_{1}),\forall B\in \mathfrak{U}(O_{2}))$ .

The basic standpoint of the algebraic QFT (though not completely im-
plemented yet) is to regard the algebra $S$ of unobservable quantum fields
acted upon by a group $G$ of internal symmetry as a kind of mathematical
device constructed by the method of Galois extension from 1 by ‘solving
some equations’ identified with a suitably chosen criterion to select out a
family of physically relevant states $[7, 8]$ . This strategy has definite merits
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in providing a clear picture for the mutual relations between the two as-
pects involving spacetime( $=$external) and internal symmetries, treating the
former in such a form as the spacetime dependence of the net a $\mapsto \mathfrak{U}(\mathrm{c}\mathrm{p})$

and the latter in terms of an abstract non-commutative version of Tannaka-
Krein duality between an internal symmetry group $G$ and the representation
category Repc realized in the superselection sectors of 21, respectively, and
then combining two aspects in the form of the dynamical system $\mathrm{J}$ $\wedge G$ .
In the next section, the former aspect in relation with the scale changes is
focused by means of the above net a $\mapsto \mathfrak{U}(O)$ of local observables. Con-
cerning the problem of a symmetry breaking, what is to be in focgs is the
global aspects in which the differences of symmetries between internal and
external become largely irrelevant.

With this understanding, we treat, as the algebra of the system under
consideration, the $\mathrm{C}$’-algebra $S$ of qunatum fields acted upon by a group
$G$ which is supposed to represent all the possible kinds of symmetries char-
acterizing the physical system. In the case of unbroken internal symmetry,
the emerging group $G$ is verified to be a compact Lie group, whereas there
is no guarantee of such a characterization of $G$ in the case of SSB. However,
we assume here for technical reasons such a restriction on $G$ that it should
be a locally compact group.

Now, the traditional treatment of SSB is just based on the sO-called
Goldstone commutators expressing the non-invariance $\omega(\delta(F))$ A 0 $(\exists F\in$

$\mathrm{V})$ of a state $\omega$ under the infinitesimal transformations $\delta(\in Der(\mathrm{f}S)$ : densely
defined ’-derivations on 3) in the directions of symmetry breaking; while
this is a necessary condition for SSB in a pure (or more generally, factor)
state, its sufficiency can be assured only for spatially homogeneous states
such as vacuum ones. For instance, if factoriality of the representation is
not required, one can easily obtain a $G$-invariant state even in the situation
of SSB by averaging over a $G$-noninvariant factor state, which evades the
necessity of $\omega(\delta(F))\neq 0.$ On the other hand, such a representation $(\pi, fl)$

can exist that in spite of the absence of $G$-invariant states in $\mathfrak{H}$ the symmetry
is descibed by a unitary representation $G\ni g\mapsto$ U{g) $\in \mathcal{U}(f)$ satisfying
the sO-called covariance condition $\mathrm{q}(\tau_{\mathit{9}}(F))=U(g)\pi(F)U(g)^{*}-$ A general
criterion for SSB can be given in the following form of definition so as to
avoid these kinds of complications and to incorporate more general situations
in an intrinsic way:

Definition 7 [$14\mathrm{J}$ A $s$ ymmetry described by a strongly continous automor-
phic action $\tau$ of a locally compact group $G$ on $a$ (global) $C$’-algebra 15 of
quantum fields is said to be $unb$ roken in a given representation $(\pi, f\mathfrak{H})$ of
$S$ if the spectr um of centre $3_{\pi}(S):=\pi(S)’\cap\pi(S)’$ is pointwise invar iant
(p-a. $e$ . $w.r.t$ . the central measure $\mu$ for the central decomposition of $\pi$ into
factor representations) under the $G$ -action induced on $Spec(3_{\pi}(\mathrm{f}\mathrm{f}))$ . If this
is not the case, it is said to be broken spontaneously in $(\pi, \mathrm{f}\mathrm{i})$ .
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This definition exhibits the essence of SSB as the conflict berween fac-
toriality of (or, b) and unitar$ry$ implementability of $G$ in it; in the usual ap-
proaches, the former point is respected at the expense of the latter. Taking
the opposite choice to respect implementability we are led to the non-trivial
centre which provides convenient tools for analyzing sector structure
and flexible treatment of macroscopic order parameters to distinguish
different sectors, as explained in the previous section: the central spectrum
$Spec(3_{\pi}(S))$ physically means macroscopic order parameters appearing in
low-energy infrared modes, and hence, the physical essence of this definition
can be found in iheuinfrared instability” of the representation $(\pi, \sim 6)$ along
the direction of $G$-action which is in harmony with the intuitive physical
picture of SSB.

Note, however, that this definition admits the coexistence of unbroken
and broken sttbrepresentations in a given representation $\pi$ suffering from
SSB, according to which the central spectrum $Spec(3_{\pi}(\mathrm{f}S))$ can further be
decomposed into $G$-invariant subdomains. In view of the requirement of G-
invariance, each such minimal subdomain is characterized by G-ergodicity,
which means central ergodicity in the whole system. Therefore, $\pi$ is decom-
posed into the direct sum (or, direct integral) of unbroken factor represen-
tations and broken non-factor representations, each component of which is
centrally $G$-ergodic. In this way we obtain a phase diagram on the spectrum
of centre.

We can now construct a covari ant representation of $(S \mathrm{r}G)$ implement-
$\tau$

ing broken $G$ minimally in the sense of central $G$-ergodicity as follows:

1) Let $H$ be the maximal closed subgroup of $G$ unbroken in $(\pi, 5))$ with a
covariant representation $(\pi, U, f\mathfrak{H})$ of a $\mathrm{C}$ ’-dynamical system $\mathrm{J}$ $\wedge$ $H$ sat-

$\tau[]_{H}$

isfying $\pi(\tau_{h}(F))=U(h)\pi(F)U(h)^{*}$ for $lh$ $\in H.$ An augmented algebra
$\mathrm{J}$ $:=S$ $\aleph$ $(H\backslash G)[15]$ is defined by a $\mathrm{C}^{*}$-crossed product of $S$ with the hO-
mogeneous space $H\backslash G$ which is realized as the algebra of continuous cross
sections of $\mathrm{C}’-$algebra bundle $G\mathrm{x}_{H}S$ $arrow H_{5}$G:

$\dot{\overline{S}}=S$ $\aleph$ $(H\backslash G)=\Gamma(G\mathrm{x}_{H}ff)$ . (8)

This can conveniently be identified with the algebra $C_{H}(G, S)$ of $\mathrm{i}\mathrm{Z}$-equivariant
continuous functions $\hat{F}$ on $G$ satisfying the condition

$F(hg)=7^{-}h(F(g))$ for $lg$ $\in G$ , $\forall h\in H.$ (9)

In what follows the identification of a cross section of $G\mathrm{x}_{H}\mathrm{J}$ $arrow H\backslash G$

with an $H$-equivariant continuous function on $G$ is always understood and,
without changing the notation, we freely move from one version to an-
other. The product structure of $\hat{\mathrm{f}}S$ is simply given by the pointwise prod-
uct, $(F\wedge 1 \mathrm{r}_{2})(\dot{g})$ $:=\mathrm{F}_{1}(\dot{g})\hat{F}_{2}(\dot{g}),\mathrm{f}\mathrm{o}\mathrm{r}\hat{F}_{1},\hat{F}_{2}\in$ $\mathrm{J}$ , $\dot{g}\in H\backslash G$ , which is equiv-
alent to $(\hat{F}_{1}\hat{F}_{2})(g):=\mathrm{F}_{1}(g)\hat{F}_{2}(g)$ in the version of $H$-equivariant contin-
uous functions on $G$ consistently with the constraint of H-equivariance:
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$(F_{1}F_{2})(hg)=F_{1}(hg)F_{2}(hg)=\tau_{h}(F_{1}(g))\tau_{h}(F_{2}(g))=\tau_{h}((F_{1}F_{2})(g))$. The
action $\hat{\tau}$ of $G$ on $\hat{F}\in\hat{S}$ is defined by $[\hat{\tau}_{g}(\hat{F})](\dot{g}_{1})=\hat{F}(\dot{g}_{1}g)$ , or equivalently,
$[\hat{\tau}_{\mathit{9}}(\hat{F})](g_{1})=\hat{F}(g_{1}g)$ for $H$-equivariant functions. The fixed-point subalge-
bra $\hat{S}^{G}$ of $\hat{S}$ under the action $\hat{\tau}$ of $G$ is given by the constant section $\hat{F}$ : $g\mapsto$

$F\in S^{H}$ because of the $H$-equvariance condition: $F=\hat{F}(hg)$ $=\tau_{h}(\hat{F}(g))=$

$\tau_{h}(F)$ :

$\hat{s}^{G}\cong s^{H}$ . (10)

Then a representation $(\hat{\pi}, f\mathfrak{H})$ of the crossed product $S$ is induced from
$(\pi, U, \mathfrak{H})$ of a $\mathrm{C}$’-dynamical system $\mathrm{J}$

$\tau \mathrm{f}_{H}\cap H$ in the following way.

2) With the left-invariant Haar measure $d\xi$ on $G[H$ (with left G-action),
the Hilbert space $\hat{f\mathfrak{H}}$ is given by $L^{2}$ section of $G\mathrm{x}_{H}f$):

$\hat{\mathfrak{H}}=f_{\in G/H}^{\oplus}$ $(d\xi)^{1/2}\mathfrak{H}=\Gamma_{L^{2}}(G\mathrm{x}_{H}f\mathfrak{H}, d\xi)$ , (11)

which can be identified with the $L^{2}$ space of $\mathfrak{H}$-valued $(U, H)$-equivariant
functions $\mathrm{e}$ on $G$ , $\psi(gh)=U(h^{-1})$ ($tt$ , for $\psi$

$\in\hat{\mathfrak{H}}$ , $g\in G,$ $h\in H.$ On this
6, the representations $\hat{\pi}$ and $\hat{U}$ of $S$ and $G$ are defined, respectively, by

$(\hat{\pi}(\hat{F})\psi)(g):=\pi(j (tt^{-1}))$ $(\psi(g))$ for $\hat{F}\in\hat{S},O\in\hat{\mathfrak{H}},g\in G,$ (12)
$(\hat{U}(g_{1})\psi)(g)$ $:=\psi(g_{1}^{-1}g)$ for $g$ , $g_{1}\in G,$ (13)

and satisfy the covariance relation $\hat{\pi}(\hat{\tau}_{g}(\overline{F}))=U$

^

$(g\mathrm{E}(\hat{F})\hat{U}(g)^{-1}$ .
3) $S$ is embedded into $\hat{S}$ by $\text{\^{i}}_{H\backslash G}$ : $\mathrm{J}$ . !5 given by $[\hat{l}_{H\backslash G(F)](g)}:=\tau_{g}(F)$ ,
which is consistent with the $H$-equivariance condition: $[\hat{i}_{H\backslash G(F)](hg)}=$

$\tau hg(F)$ $=\tau_{h}([\hat{\iota}_{H\backslash G}(F)](g))$ . This embedding map intertwines the G-actions
$\tau$ on 3 and $\hat{\tau}$ on 3, $\hat{l}_{H\backslash G}\circ\tau_{g}=\cdot\hat{\tau}_{g}\circ\hat{i}_{H\backslash G}$ $(\forall g\in G)$ , and hence, we have

$[$\^iH\G(fS) $]^{G}$ =\^iH\G $(S^{G})\subset\hat{i}H\backslash G(S^{H})=\hat{\mathrm{f}}S^{G}-$ (14)

The mutual relations among (sub)algebras and mappings are depicted as

$S$
$=\Gamma(GH\cross \mathfrak{F})$

$\hat{l}_{G}$ ’$7_{\hat{m}_{G}}$ $j_{H\backslash G}\backslash [searrow]\hat{m}_{H\backslash G}$

$\mathrm{f}S^{H}\cong\hat{l}_{H\backslash G}(\mathrm{f}S^{H})=\hat{S}^{G}$ $m_{H}arrowarrow i_{H}$ $S$

$i_{(/H}$ $\nwarrow[searrow] m_{G/H}$ $i_{G}\nearrow\swarrow m_{G}$

$S$ (15)
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where the maps $i_{G}$ and $mo$ , etc., are, respectively, the embedding maps
(of a $\mathrm{C}^{*}$-algebra into another) and the conditional expectations defined as
operator-valued weights to extract fixed points, such as

$m_{G/H}$ : $J^{H}\ni B\mapsto m_{G/H}(B):=I_{G}/H$ $d\dot{g}\tau_{\mathit{9}}(B)\in S^{G}$ . (16)

4) Combining $\hat{\iota}_{H\backslash G}$ with $\hat{\pi}$ , we obtain a covariant representation $(\overline{\pi}, U, \mathfrak{H})$ ,
$\overline{\pi}:=\hat{\pi}0\hat{i}_{H\backslash G}$ , of $\mathrm{J}$ $/_{-}G$ defined on $\hat{\mathfrak{H}}$ by

$(\overline{\pi}(F)\psi)(g):=\pi(\tau_{\mathit{9}^{-1}}(F))\psi(g)$ $(F\in \mathrm{i}, \psi\in fi)$ (17)

and satisfying $\overline{\pi}(\tau_{g}(F))$ $=\hat{U}(g)\mathrm{i}(\mathrm{F})\overline{U}(g)^{-1}$ .

5) The sector structure is determined by the following information on the
relevant centres:

Proposition 8 When the von Neumann algebra $\pi(S)’$ has a trivial centre, $3_{\pi}(S)=$

Cl, the centres of $\hat{\pi}(\hat{S})’$ and $\overline{\pi}C\mathit{7}\mathit{5}$ )” are given by

$3_{\overline{\pi}}(S)$ $=L^{\infty}$ $(H\backslash G;d\dot{g})=3_{\hat{\pi}}(\dot{\overline{\mathfrak{F}}})$ . (18)

This can be seen as follows:Rom the deffnition of $\mathit{8}\subset C(H\backslash G, J)$
$\cong$

$C(H\backslash G)-\otimes S$ it is clear that the commutative algebra $C(H\backslash G)$ is contained
in the centre of the $\mathrm{C}$’-algebra $\hat{S}$ . If this centre is bigger than $C(H\backslash G)$ , it
contains a function $\hat{F}$ on $H\backslash G$ whose image $\hat{F}(\dot{g})$ at some point $\dot{g}\in H\backslash G$

is not be a scalar multiple of the identity, which does not commute with
some element $F_{1}\in 5$ because of the triviality of the centre of $S$ due to
$3_{\pi}(S)=\mathbb{C}1:[\hat{F}(\dot{g}), F_{1}]\neq 0.$

In view of 3), $F_{1}$ can be embedded in $\hat{\mathrm{f}}S$ satisfying $\hat{l}_{H}\backslash G(F_{1})(\dot{e})=F_{1}$ , and

hence, we have $\hat{\tau}_{g}-1\hat{i}_{H\backslash ;(F_{1})(\dot{g})}$ $=F_{1}$ , which shows the relation $[\hat{p},\hat{\tau}_{g}-1’\hat{t}_{H\backslash G(F_{1})](\dot{g})}=$

$[\hat{F}(\dot{g}), F_{1}]\neq 0.$ Thus, we have 3(5) $=C(H\backslash G)$ . Using the similar ar-
guments for $\hat{\pi}$ (1 )” combined with $3_{\overline{\pi}}(S)\subset L^{\infty}(H\backslash G, d\dot{g})\otimes-\pi(\mathrm{f}S)’$, we see
$3_{\hat{\pi}}(\hat{S})=L^{\infty}(H\backslash G;d\dot{g})$. The equality $3_{\overline{\pi}}(S)$ $=L^{\infty}(H\backslash G;d\dot{g})$ comes from

the mutual disjointness $\pi\circ^{\mathfrak{l}}(\pi\circ\tau_{\mathit{9}})$ for $g\in G\backslash H$ and $3_{\pi}(\mathfrak{F})=$ Cl.
Since the homogeneous space $H\backslash G$ as the spectrum of the centre $3_{\overline{\pi}}(S)$

is transitive under the right action $G$ which is just the action induced on the
central spectrum from $\hat{\tau}$ , the representation $(\overline{\pi}, \mathrm{f}\mathrm{i})$ of the dynamical system
$\mathrm{J}$ $\wedge$ $G$ is centrally $G$-ergodic, to which the criterion for SSB can be applied.

$\mathrm{r}$

Adapting the above formulation to the GNS representation ($\pi\beta$ , fig) of a

KMS state $\omega_{\beta^{\mu}}$ with $H=\mathbb{R}^{4}\mathrm{x}$ $5\mathrm{O}(3)$ , $G=\mathbb{R}^{4}x$ $L_{+}^{\uparrow}$ , we can reproduce the

results on the SSB of Lorentz boosts: $3_{\overline{\pi}}(S)=L$ $”(\mathrm{S}O(3)3L_{+}^{\uparrow})$ $=L^{\infty}(\mathbb{R}^{3})$

through the identification $\beta^{\mu}/\sqrt{\beta}=u’=$
$( \frac{1}{\sqrt{1-\mathrm{v}^{2}/\mathrm{c}^{2}}}, \frac{\mathrm{v}}{\sqrt{1-\mathrm{v}^{2}/c^{2}}})$

$rightarrow \mathrm{v}\in \mathbb{R}^{3}$ .
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5 How to formulate broken scale invariance?
As noted at the beginning, the above discussion of symmetry breakdown was
concerning the spontaneous breakdown of a symmetry described by a group
$G$ acting on the field algebra & by automorphisms. In contrast, the notion
of the broken scale invariance is usually understood in a physical system
with such explicit breaking terms as non-vanishing mass, which seem to
cause difficulties in treating scale transformations as automorphisms acting
on the algebra describing the system. However, the results on the scaling
algebra in algebraic QFT due to Buchholz and Verch [5] shows that the
above negative anticipation can safely be avoided.

Their results can be summarized as follows. Let the following require-
ments be imposed on all the possible renormalization-group transformations
$R_{\lambda}$ :

(i) $R_{\lambda}$ should map the given net $Oarrow \mathfrak{U}(O)$ of local observables at
spacetime scale 1 onto the corresponding net $()$ $arrow \mathfrak{U}_{\lambda}(O):=\mathfrak{U}(\lambda O)$ at a
scale $\lambda$ , i.e.,

$R_{\lambda}$ : 21(O) $arrow \mathfrak{U}_{\lambda}(O)$ (19)

for every region $O\subset \mathbb{R}^{4}$ . Since both time and space are scaled by the same
$\lambda$ , the light velocity $c$ remains unchanged as their ratio.

(ii) In the Fourier-transformed picture, the subspace $\overline{\mathfrak{U}}\mathit{1}^{\overline{O}}$ ) of all (quasi-
local) observables carrying energy-momentum in the set $O\subset \mathbb{R}^{4}$ is trans-
formed as

$R_{\lambda}$ : $\mathfrak{U}(O)$ $arrow \mathfrak{U}_{\lambda}(O)$ , (20)

where 21(O) $:=\mathfrak{U}(\mathrm{X}-1\overline{O})$ . In view of the duality between spacetime coor-
dinates $x^{\mu}$ and ener$\mathrm{g}\mathrm{y}$-momenrxm $p_{\mu}$ involved in the Fourier tr ansformation,
this requirement implies the invariance of the quantity $p_{\mu}x^{\mu}=Et$ $-\vec{p}\cdot\vec{x}$

called “action” in physics, as a consequence of which the Planck constant $\hslash$

with the dimension of action also remains invariant.
(iii) $R_{\lambda}$ should be bounded continuous maps uniformly in A (even if they

may not be isomorphisms) : concerning the possibility of non-isomorphisms,
Buchholz and Verch in [5] remark “In the case of dilation invariant theories
the transformations $R_{\lambda}$ are expected to be isomorphisms, yet this will not
be true in general since the algebraic relations between observables may
depend on the scale.” In contrast to their focus on the high-energy limits
in the context of vacuum situations, our interest here is in the thermal
situations involving all the possible temperatures. But the similar point to
the scale dependence of the basic algebraic relations should be expected to
show up especially in the direction to the low temperature side, because of
the increasing complexity of phase structures arising from the bifurcating
processes of phase transitions. In view of the seemingly ad hoc choices
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of the starting dynamics and the algebras of relevant physical variables in
the standard approaches to phase transitions, it should be certainly one
of the non-trivial important questions whether all the $va7$ iety of different
ther modynamic phases can be totally attributed to that of the realized states
and representations of one and the same fixed dynamical system with a fixed
algebra of observables and a fixed dynamics acting on the former.

Then, the scaling net $Oarrow\hat{\mathfrak{U}}(\mathrm{c}\mathrm{y})$ corresponding to the original local net
$Oarrow$ 21(0) of observables is defined as the local net consisting of scale-
changed observables under the action of all the possible choice of $R_{\lambda}$ satisfy
ing $(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})$ . With the derivation process referred to [5], the obtained results
on the structure of $\hat{\mathfrak{U}}(O)$ can be reformulated into the identification of $\hat{\mathfrak{U}}(O)$

with the algebra $\mathrm{p}(\coprod_{\lambda\in \mathbb{R}^{+\mathfrak{U}}\lambda(O))}$ of sections $\mathbb{R}^{+}\ni$ A $\mapsto\hat{A}(\lambda)\in$ 21(0)

of algebra bundle $\coprod_{\lambda\in \mathbb{R}}+\mathfrak{U}_{\lambda}(O)arrow \mathbb{R}^{+}$ over the multiplicative group $\mathbb{R}^{+}$ of
scale changes:

$\hat{\mathfrak{U}}$[ $(0)=\Gamma(\coprod\lambda\in \mathbb{R}+\mathfrak{U}\lambda(O))\ni\hat{A}:=$ ($\mathbb{R}^{+}\ni$ A $\mapsto\hat{A}(\lambda)$ $\in \mathfrak{U}_{\lambda}(O)$ ). (21)

The scaling algebra 21 playing the role of the global algebra is defined by
the $\mathrm{C}$ ’-inductive limit of all local algebras $\hat{\mathfrak{U}}(O)$ on the basis of the isotony
$\hat{\mathfrak{U}}(O_{1})\subset\hat{\mathfrak{U}}(\mathrm{C}\mathrm{t}_{2})$ for $O_{1}\subset O_{2}$ .

The algebraic structures to make $\hat{\mathfrak{U}}(O)$ a unital $\mathrm{C}$ ’-algebra are defined
in a pointwise manner by

$(c_{1}A_{1}+c_{2}A_{2})(\lambda):=c_{1}A_{1}(\lambda)+c_{2}A_{2}(\lambda)$ ,
$(\hat{A}_{1}\hat{A}_{2})(\lambda):=\hat{A}_{1}(\lambda)\hat{A}_{2}(\lambda)$ ,
1(A) $:=1=1_{\mathfrak{U}}$ ,
$(\hat{A}^{*})(\lambda):=\hat{A}(\lambda)^{*}$, (22)

(for $\hat{A}_{1}$ , $\hat{A}_{2}$ , $\hat{A}\in\hat{\mathfrak{U}}(0)$) , $c_{1}$ , $c_{2}\in \mathbb{C})$ and the C’-norm by $||$ $A$ $||:= \sup_{\lambda\in \mathbb{R}}+||$ $A(\lambda)$ $||$ .

Fr$\mathrm{o}\mathrm{m}$ the scaled actions $\mathfrak{U}_{\lambda}\wedge$ $P_{+}^{\uparrow}$ of the Poincare group on $\mathfrak{U}_{\lambda}$ with
$\alpha^{(\lambda)}$

$\alpha_{a,1}^{(\lambda}=\alpha_{\lambda a,\Lambda}$ , an action of $P_{+}^{\mathrm{f}}$ is induced on $\hat{\mathfrak{U}}$[ by

(for $\hat{A}_{1},\hat{A}_{2},\hat{A}\in\hat{\mathfrak{U}}(O)$ , $c_{1}$ , $c_{2}\in \mathbb{C}$) and the $\mathrm{C}^{*}$-norm by $|| \hat{A}||:=\sup_{\lambda\in \mathbb{R}}+||\hat{A}(\lambda)||$ .

From the scaled actions $\mathfrak{U}_{\lambda}$ $\wedge$
$\mathrm{p}_{+}^{\uparrow}$ of the Poincare’ group on $\mathfrak{U}_{\lambda}$ with

$\alpha^{(\lambda)}$

$\alpha_{a,\Lambda}^{(\lambda)}=\alpha_{\lambda a,\Lambda}$ , an action of $\mathcal{P}_{+}^{\mathrm{f}}$ is induced on $\mathfrak{U}\wedge$ by$\iota$ $\cdot\wedge$ ’ $+\wedge\cdot \mathrm{I}\wedge \mathrm{I}\cdots\cdot\cdot.\wedge\wedge-\cdot J$

$(\hat{\alpha}_{a,\Lambda}(\hat{A}))(\lambda):=\alpha_{\lambda a,\Lambda}(\hat{A}(\lambda))$ , (23)

in terms of which the essence of the condition (iii) is expressed simply as the
continuity of the action of the Poincare’ group at its identity: $||\hat{\alpha}_{a}$ ,A $(\hat{A})-$

$\hat{A}||(a,\Lambda)arrow(0,1)arrow 0$ . The $\mathrm{s}\mathrm{e}\succ \mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{d}$ scaling net $Oarrow\hat{\mathfrak{U}}(O)$ is shown to satisfy

all the properties to characterize a relativisitc local net of observables if the
original one $Oarrow \mathfrak{U}(O)$ does.

Then, the scale transformation is defined by an automorphic action $\hat{\sigma}$ of
$\mathbb{R}^{+}$ on the scaling algebra $\hat{\mathfrak{U}}$ given for Vp $\in \mathbb{R}^{+}$ by

$(\hat{\sigma}_{\mu}(\hat{A}))(\lambda):=\hat{A}(\mu\lambda)$ , $\mathrm{X}$ $>0$ , (24)
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satisfying the properties:

$\hat{\sigma}_{\mu}(\acute{\grave{\mathfrak{U}}}(O))$ $=$ $\mathfrak{U}$

^

$(\mu O)$ , $O$ $\subset \mathbb{R}^{4}$ , (25)
$\hat{\sigma}_{\mu}0\hat{\alpha}_{a}$ ,A $=$ $\hat{\alpha}_{\mu a}$ .’75 $0\hat{\sigma}_{\mu}$ , $(a, \Lambda)\in P_{+}^{\uparrow}$ . (26)

In this formulation, the roles of renormalization-group transformations
to relate observables at different scales are played by the scaling transfor-
actions $\hat{\sigma}_{\mathbb{R}}$ } acting isomorphically on the scaling net a $arrow\hat{\mathfrak{U}}(O)$ . In view
of the algebra $C(\mathbb{R}^{+})$ of scalar-valued functions on $\mathbb{R}^{+}$ embedded in the
centre of the scaling algebra 21, $C(\mathbb{R}^{+})arrow 3$ $(\hat{\mathfrak{U}})\subset$ $2\mathrm{t}$ , it is no miracle for a
broken scale invariance caused by such explicit breaking terms as the mass
$m$ to be restored as an “exact” symmetry described by an automorphic ac-
tion $\hat{\sigma}$ of $\mathbb{R}^{+}$ when all the terms responsible for the explicit breaking can
be treated (as is common in practice) in terms of scale-dependent classical
variables like $\mathbb{R}^{+}\ni$ A $\mapsto m(\lambda)=\lambda^{d_{m}}m_{0}$ . It is also remarkable that the
final results obtained by Buchholz and Verch [5] through the complicated
analysis can naturally be seen just as a special case of the previous definition
of the augmented algebra IS $:=\Gamma(G\mathrm{x}_{H}\mathrm{i}7)$ for treating SSB with the choice
of $H:=P_{+}^{\uparrow}$ , $G=H\mathrm{x}$ $\mathbb{R}^{+}$ (semidirect product of groups) in combination
with a slight modification due to the spacetime dependence described by the
local net structure: $S$ $\Rightarrow(Oarrow \mathfrak{U}(O))$ (upon which the group $\mathbb{R}^{+}$ of scale
changes acts). While this is the case found in the vacuum situations which
show the invariance under the Poincare group $P_{+}^{\uparrow}=\mathbb{R}^{4}\mathrm{x}L_{+}^{\uparrow}$ by definition,
the typical thermal situations relevant to our present contexts require more
careful treatment because of the SSB of Lorentz boost symmetry caused
by temperatures. Here the Poincare group $P_{+}^{\uparrow}$ of relativisitc symmetry is
broken down to $il^{4}\aleph$ SO(3) and, in the opposite direction, it is extended
to a larger one $P_{+}^{\uparrow}\aleph$ $\mathbb{R}^{+}$ involving the broken scale invariance, which may
possibly be extended at the critical points further to the conformal group
SO$(2, 4)$ . If we start ffom the choice of $H:=P_{+}^{\mathrm{T}}$ , $G=Hn$ $\mathbb{R}^{+}$ even in the
thermal situation at $T\neq 0^{\mathrm{o}}$ K, the starting representation $(\pi, ft)$ with $H$ as
the group of unbroken symmetry should be understood to contain already
a non-trivial centre with $\mathit{5}O(3)\mathrm{s}L_{+}^{\uparrow}\cong \mathbb{R}^{3}$ as its spectrum due to the SSB of
$P_{+}^{\uparrow}$ down to $\mathbb{R}^{4}\mathrm{r}$ $5O(3)$ . In this context, the scaled actions $\alpha_{a,\Lambda}^{(\lambda)}=\alpha_{\lambda a,\Lambda}$ of
Poincare group on $\mathfrak{U}_{\lambda}$ can be naturally understood as the conjugacy change
of the stability group $Harrow gHg^{-1}$ $\mathrm{f}$ om the point He to $Hg^{-1}$ on the base
space $H^{\backslash }\backslash G=\mathbb{R}^{+}:$ $s_{\lambda}(a, \Lambda)s_{\lambda}^{-1}=$ (Aa, $\Lambda$ ), where $s_{\lambda}.(x^{\mu})=\lambda x^{\mu}$ .

6 Scale changes on states
In relation with the centre $3(\mathfrak{U})=3$ $21(0))=C(\mathbb{R}^{+})$ arising from the brO-
ken scale invariance, we have a canonical family of conditional expectations
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$\hat{\mu}$ fro$\mathrm{m}$

$\hat{\mathfrak{U}}$ to 2[ corresponding to probability measures $\mu$ on $C(\mathbb{R}^{+})$ :

$\hat{\mu}$ : $\hat{\mathfrak{U}}$[ $\ni\hat{A}\mapsto\int_{\mathbb{R}}+d\mu(\lambda)\hat{A}(\lambda)\in \mathfrak{U}$. (27)

By means of $\hat{\mu}$ , any state $\omega\in E_{\mathfrak{U}}$ can be lifted onto $2\mathrm{t}$ by

$E_{\mathfrak{U}}\ni\omega$ $\mapsto\hat{\mu}’(\omega)$ $=\omega$ $\circ\hat{\mu}=\omega$ $\otimes\mu\in E_{\hat{\mathfrak{U}}}$ , (28)

where we have used $\mathfrak{U}\overline\subset C(\mathbb{R}^{+}, \mathfrak{U})\cong \mathfrak{U}\otimes C(\mathbb{R}^{+})$ .
In [5] the case of $\mu=\delta_{\lambda=1}$ (: Dirac measure at the identity of $\mathbb{R}^{+}$ ) is

called a canonical lift $\hat{\omega}:=\omega$ $\circ\hat{\delta}_{1}$ . The scale transformed state defined
by $\omega\wedge\lambda:=\hat{\omega}0\hat{\sigma}$ ) $=$ cu $0\hat{\delta}_{\lambda}$ describes the situation at scale A due to the
renormalization-group transformation of scale change A.

Conversely, starting from a state $\hat{\omega}$ of $\hat{\mathfrak{U}}$ , we can obtain its central de-
composition as follows: first, we call two natural embedding maps $\iota$ : $\mathfrak{U}\cdot$ $2\mathrm{t}$

$[[\iota(A)](\lambda)\equiv A]$ and $\kappa$ : $C(\mathbb{R}^{+})\simeq 3(\hat{\mathfrak{U}})arrow\hat{\mathfrak{U}}$[. Pulling back $\hat{\omega}$ by $\kappa^{*}$ : $E_{\overline{\mathfrak{U}}}arrow$

$E_{C(\mathbb{R}+})$ , we can define a probability measure $\rho_{\overline{\omega}}:=\kappa^{*}(\hat{\omega})=\hat{\omega}\circ\kappa$ $=\hat{\omega}\mathrm{f}_{C(\mathbb{R}}+)$

on $\mathbb{R}^{+}$ , namely, $\hat{\omega}\mathrm{r}_{C(\mathbb{R})}+(f)=\int_{\mathbb{R}}+d\rho_{\hat{\omega}}(\lambda)f(\lambda)$ for $\forall f\in C(\mathbb{R}^{+})$ .

For any positive operator $\hat{A}=\int ad\hat{E}_{\hat{A}}(a)\in\hat{\mathfrak{U}}$, we can consider the
central supports $c(\hat{E}_{\tilde{A}}(\Delta))\in Proj(3\hat{\pi}_{\dot{\omega}}(\hat{\mathfrak{U}}))$ of $\hat{E}$, $(l\mathit{5}h|)\in Proj$ $(\hat{\pi}_{\hat{\omega}}(\hat{\mathfrak{U}})’)$ with
a Borel set A in Sp(\^A)\subset $[0, +\mathrm{o}\mathrm{o})$ satisfying $c(\hat{E}_{\hat{A}}(\triangle))\hat{E}_{\hat{A}}(\triangle)=\mathrm{E},\sim$ $(\Delta)$ ,
from which we see that $\rho_{\hat{\omega}}’(c(\hat{E}_{\hat{A}}(\Delta)))=0$ implies $\hat{\omega}’(\hat{E}_{\hat{A}}(\triangle))=0,$ where

$\hat{\omega}$

\prime\prime and $\rho_{\hat{\omega}}’$ are the extensions of $\hat{\omega}$ and $\rho_{\hat{\omega}}$ to $\hat{\pi}_{\omega}$-(!)” and $L^{\infty}(\mathbb{R}^{+}, d\rho_{\hat{\omega}})$ ,
respectively. Thus, we can define the Radon-Nikodym derivative $\omega_{\lambda}:=$

$\frac{d\hat{v}}{d\rho_{\overline{\omega}}}(\lambda)$ of $\hat{\omega}$ w.r.t. $”\hat{\omega}$ as a state on $\hat{\pi}_{\hat{\omega}}(\hat{\mathfrak{U}})’$ (in a similar way to [16]) so that

$\hat{\omega}(\hat{A})=\int$ $d \rho_{\hat{\omega}}(\lambda)\omega_{\lambda}(\hat{A}(\lambda))=\int d\rho_{\hat{\omega}}(\lambda)\omega_{\lambda}(\hat{\delta}_{\lambda}(\hat{A}))=\int d\rho_{\hat{\omega}}(\lambda)[\omega_{\lambda}\otimes\hat{\delta}_{\lambda}](\hat{A})$ .

(29)

Then, $\hat{\omega}\in E_{\hat{\mathfrak{U}}}$ is pulled back by $\iota^{*}:$
$E_{\hat{\mathfrak{U}}}arrow E_{\mathfrak{U}}$ into

$\iota^{*}(\hat{\omega})=\hat{\omega}\circ\iota$ $= \int d\rho_{\hat{\omega}}(\lambda)\omega_{\lambda}\in\cdot E_{\mathfrak{U}}$ , (30)

owing to the relation $\iota^{*}(\hat{\omega})(A)=\hat{\omega}(\mathrm{c}(A))$ $= \int d\rho_{\overline{\omega}}(\lambda)\omega_{\lambda}(A)=[\int d\rho_{\hat{\omega}}(\lambda)\omega_{\lambda}](A)$ .
Applying this relation to the scaled canonical lift, $\hat{\omega}_{\lambda}:=\hat{\omega}0\hat{\sigma}_{\lambda}=$ $(\omega 0\hat{\delta}_{1})$ $0$

$\hat{\sigma}_{\lambda}=\omega$
$0\tilde{\delta}_{\lambda}$ , of a state $\omega$ $\in E_{\mathfrak{U}}$ , we can easily see $\iota^{*}(\omega 0\hat{\delta}_{\lambda})=\iota^{*}(\hat{\omega}_{\lambda})=\omega_{\lambda}[=$

$\frac{\phi_{\hat{\beta}}\lambda}{d\delta_{\lambda}}(\lambda)]=\phi_{\lambda}(\omega)$, where $1\mathrm{x}$ is the isomorphism introduced in [5] between $\omega$

and the canonical lift $\hat{\omega}_{\lambda}\in E_{\overline{\mathfrak{U}}}$ projected onto $\hat{\mathfrak{U}}/\mathrm{k}\mathrm{e}\mathrm{r}(\hat{\pi}_{\hat{\omega}}0\hat{\sigma}_{)})$ .
Th us, we can lift canonically any state $\omega\in E_{\mathfrak{U}}$ from 2[ to $\hat{\omega}\in E_{\hat{\mathfrak{U}}}$ , and,

after the scale shfit ax on 21, return $\hat{\omega}\circ\hat{\sigma}$

) back onto $\mathfrak{U}:\mathrm{E}\mathrm{A}(\mathrm{A})=\omega_{\lambda}=$

$\iota^{*}(\omega\circ\hat{\delta}_{\lambda})$ , as result of which we obtain the scaled-shifted state $\omega_{\lambda}\in E_{\mathfrak{U}}$

from $\omega$ $\in E_{\mathfrak{U}}$ in spite of the absence of scale invariance on 2$[$ .
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Now applying this procedure to $\omega=\omega_{\beta}$ (: any state belonging to the
family of relativistic KMS states with the same $(\beta^{2})^{1/2})$ , we have a genuine
KMS state by going to their rest frames. Then we have $\hat{\omega}_{\lambda}=(\overline{\omega_{\beta}})_{\lambda}=\omega_{\beta}\circ\hat{\delta_{\lambda}}$

which is shown to be a KIVIS state at $\beta/\lambda$ :

$(\omega_{\beta}0\delta_{\lambda})(A\hat{\alpha}_{t}(B))$ $=$ $\omega_{\beta}(A(\lambda)\alpha_{\lambda t}(B(\lambda)))$

$=\omega_{\beta}(\alpha_{\lambda t-i\beta}(\hat{B}(\lambda))\hat{A}(\lambda))$ $=$ $\omega_{\beta}(\alpha_{\lambda(t-i\beta/\lambda)}(\hat{B}(\lambda))\hat{A}(\lambda))$

$=$ $(\omega_{\beta}0\hat{\delta_{\lambda}})(\hat{\alpha}_{t-i}672(\hat{B})\hat{A})$ , (31)

and hence, $(\overline{\omega_{\beta}})_{\lambda}\in K_{\beta/\lambda}$ , $\phi_{\lambda}(\omega_{\beta})\in K_{\beta/\lambda}$ .
As has been already remarked, the above discussion is seen to apply

equally to the spontaneous as well as explicitly broken scale invariance with
such explicit breaking parameters as mass terms. The actions of scale trans-
formations on such variables as $x^{\mu}$ , $\beta^{\mu}$ and also conserved charges are just
straightforward, which is justified by such facts that the first and the sec-
ond ones are of kinematical nature and that the second and the third ones
exhibit themselves in the state labels for specifying the relevant sectors in
the context of the superselection structures $[4, 15]$ . This gives an alterna-
tive verification to the sO-called non-ren or malization theorem of conserved
charges. In sharp contrast, other such variables as coupling constants (to
be read off from the data of correlation functions or Green’s functions) are
affected by the scaled dynamics, and hence, may show non-trivial scaling
behaviours with deviations from the canonical (or kinematical) dimensions,
in such forms as the running couplings or anoma dimensions. Thus, the
transformations $\hat{\sigma}_{\lambda}$ (as “exact” symmetry on the augmented algebra 21) are
understood to play the roles of the renormalization-gxoup transformations

$\acute{(}$as broken symmetry on the original algebra $\mathfrak{U}$).
As a result, we see that classical macroscopic observable $\beta$ naturally

emerging from a microscopic quantum system is verified to be an order
parameter of broken scale invariance involved in the renormalization group
in relativisitc QFT.

7 Summary and outlook

To equip such expressions as “broken scale invarianc\"e’’ and its “order pa-
rameter” with their precise formulations, we have adopted a scheme to in-
corporate spontaneously as well as explicitly broken symmetries with the
criterion for symmetry breakdown on the basis of an augmented algebra
with a non-trivial centre in such forms as $\mathrm{J}$ $=\Gamma(G\cross_{H}J)$ or $O\mapsto\hat{\mathfrak{U}}(O)$ ,
the latter of which is just a $\mathrm{r}\mathrm{e}$-interpretation of the Buchholz-Verch scaling
net of local observables adapted to the former. As an algebra of the com-
posite system of a genuine quantum one together with classical macroscopic
one, the augmented algebra $\hat{\mathrm{f}}S$ or $\hat{\mathfrak{U}}$ can play such important roles that
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a) it allows a symmetry broken explicitly by breaking terms (like a mass
term in the scale transformations) to be formulated in terms of the
symmetry transformations acting on 21 through automorphisms $\in A’ ut(\hat{\mathfrak{U}})$

which is realized by the simultaneous changes of the breaking terms
belonging to the centre $3(\hat{\mathfrak{U}})$ to cancel the breaking effects,

a7) for a spontaneously broken symmetry, this augmented algebra natu-
rally accommodates its covar iant unitary representation as an induced
representation from a subgroup of the unbroken symmetry (at the ex-
pense of the non-trivial centre characterizing the symmetry breaking) ,

b) the continuous behaviours of order parameters under the broken sym-
metry transformations is algebraically expressed at tlxe $\mathrm{C}^{*}$-level of tlxe
( $\mathrm{C}$ ’-algebraic) centre 3 $(\hat{\mathfrak{U}})$ in sharp contrast to the discontinuous ones
at the $\mathrm{W}^{*}$-level $3_{\pi}(\hat{\mathfrak{U}})$ of representations owing to the mutual disjoint-
ness among representations corresponding to different values of order
parameters (as points on $Spec(3_{\pi}(\mathfrak{U}))$ ). To this continuous order pa-
rameter some exter$mal$ field can further be coupled, like the coupling
between the magnetization and an external magnetic field in the dis-
cussion of a Heisenberg ferromagnet. Using this coupling, we can
examine, for instance, the mutual relations between the magnetiza-
tion caused by an external field and the spontaneous one, the latter
of which persists in the asymptotic removal of the former in combina-
tion with the hysteresis effects. Without introducing the augmented
algebra $\hat{\mathfrak{U}}$ , it seems difficult for this kind of discussions to be adapted
to the case of QFT.

Then, the mutual relation between states on 2 and 24 is clarified, on the
basi$\mathrm{s}$ of which the verification of the statement on the behaviour of the in-
verse temperatures is just reduced to a simple computation of checking the
parameter shift occurring in the KMS condition under the scale transforma-
tion. What is interesting in this observation about the roles of the (inverse)
temperature $\beta$ is that it exhibits the cross over be tween thermal and ge0-

metric aspects expressed in $\beta^{\mu}=\beta u^{\mu}$ and in the spacetime transformations
$P_{+}\aleph\uparrow \mathbb{R}^{+}$ including the scale one, respectively.
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