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Abstract
Some results on existence of enhanced binding in a class of quantum field models

are presented.

1 Introduction
In a quantum system whose Hamiltonian is described by a self-adjoint operator $H$ bounded
from below, a ground state is defined to be an eigenvector of $H$ with eigenvalue equal to
the infimum of the spectrum of $H$ , the lowest energy of the quantum system. Physically
the existence of a ground state ensures a stability or the persistency of the quantum
system under consideration. But, generally speaking, it is not trivial if a quantum system
has a ground state. It turns out that it is one of the most fundamental problems in
mathematical analysis of quantum systems to prove or disprove the existence of a ground
state.

The Hamiltonian $H$ may be divided into two parts $H_{0}$ , the unperturbed part, and
$H_{I}$ , the perturbation part: $H=H_{0}+H_{I}$ . In quantum field theory, one usually assumes
that $H_{0}$ has a ground state and tries to prove the existence of a ground state of $H$ . But,
without that assumption, $H$ may have a ground state. If such a structure exists, then we
say that enhanced binding (with respect to ground state) exists or occurs in the quantum
field system under consideration.

The phenomenon of enhanced binding, if it occurs, may be regarded as one of the
evidences suppporting the view point that quantum fields are more fundamental objects
underlying the material world. Prom this point of view as well as a purely mathematical
one it is interesting to clarify whether or not enhanced binding indeed occurs in models
of a quantum system –typically a system of nonrelativistic quantum particles– coupled
to a quantum field.

The problem of enhanced binding was first discussed by Hiroshima and Spohn [11].
They discussed the Pauli-Fierz model in nonrelativistic quantum electrodynamics in the
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dipole approximation and proved that, under suitable hypotheses, enhanced binding oc-
curs for large coupling constants. Hainzl, Vougalter and Vugalter [10] considered the
Pauli-Fierz model without the dipole approximation showing that it has enhanced bind-
ing for small coupling constants. The results and the methods in [10] have been extended
to the Pauli-Fierz model with spin $[7, 8]$ (cf. also [9]).

In a previous paper [6] the enhanced binding problem was considered for a general class
of quantum field models, called the generalized spin-boson (GSB) model which describes
an abstract quantum system coupled linearly to a Bose field [3, 4, 5], and proved, under
suitable hypotheses, the existence of enhanced binding for a region of coupling constants.
The GSB model was extended to a more general one in [2], whose Hamiltonian is obtained
by adding quadratic self-interaction terms of the Bose field to the Hamiltonian of the GSB
model, and it was shown that results similar to those in [2] hold also in the extended GSB
model.

In this paper we consider a slightly more general model than the GSB model and show
that, under suitable hypotheses, enhanced binding occurs in this model too.

The present paper is organized as follows. Section 2 is a preliminary section which
recalls basic objects and elementary facts in the theory of the abstract boson Fock space.
In Section 3 we describe the model considered in the present paper. The main theorems
are stated in Section 4. The last section is devoted to sketches of proofs of them.

2 Bose fields
We denote the inner product and the norm of a Hilbert space $\mathcal{X}$ by $\langle$ ., $\cdot\rangle$ a and $||$ $||_{X}$

respectively, where we use the convention that the inner product is antilinear (resp. linear)
in the first (resp. second) variable. We sometimes omit the subscript $\mathcal{X}$ in $\langle$ ., $\cdot\rangle x$ and
$||$ $||_{\mathcal{X}}$ if there is no danger of confusion.

For a linear operator $T$ on a Hilbert space, we denote its domain by $D(T)$ . For a
subspace $D\subset D(T)$ , $T|D$ denotes the restriction of $T$ to $D$ . If $T$ is densely defined,
then the adjoint of $T$ is denoted $T^{*}$ . For linear operators $S$ and $T$ on a Hilbert space,
$D(S+T)$ $:=D(S)\cap D(T)$ unless otherwise stated.

For each complex Hilbert space 1, the boson Fock space $\mathcal{F}_{\mathrm{b}}(\mathcal{X})$ over $\mathcal{X}$ is defined by

$\mathrm{y}_{\mathrm{b}}(\mathrm{a})$ $:=\oplus_{n=0}^{\infty}\otimes_{8}^{n}\mathcal{X}$,

where $\otimes:$ )( denotes the $n$-fold symmetric tensor product of $\mathcal{X}$ with $\otimes_{8}^{0}\mathcal{X}:=\mathrm{C}$ (the set
of complex numbers).

The annihilation operator $a(f)$ $(f\in \mathcal{X})$ on $\mathrm{F}\mathrm{b}(\mathrm{f})$ is defined to be a densely defined
closed linear operator such that, for all $\psi$ $=\{\psi^{(n)}\}_{n=0}^{\infty}\in D(a(f)^{*})$ , $(a(f)^{*}\psi)^{(0)}=0$ and

$(a(f)^{*}\psi)^{(n)}=\sqrt{n}S_{n}(f\otimes$ $7^{(n-1)})$ , $n\geq 1,$

where $S_{n}$ is the symmetrization operator on $\otimes^{n}\mathcal{X}$ . The adjoint $a(f)^{*}$ , called the creation
operator, and the annihilation operator $a(g)(g\in \mathcal{X})$ obey the canonical commutation
relations

$[a(f), a(g)^{*}]=\langle f, g\rangle_{\mathcal{X}}$, $[a(f), a(g)]=0,$ $[a(f)^{*}, a(g)^{*}]=0$
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for all f, g $\in \mathcal{X}$ on the dense subspace

$*\mathrm{Q}(/1)$ $:=$ { $\psi\in \mathcal{F}_{\mathrm{b}}(\mathcal{X})|$ there exists a number $n_{0}$ such $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\psi^{(n)}=0$ for all n $\geq n_{0}$ },

where $[X, \mathrm{Y}]:=X\mathrm{Y}-$ YX.
Let

$\phi(f):=\frac{a(f)+a(f)^{*}}{\sqrt{2}}$ , $f\in \mathcal{X}$ ,

which is called the Segal field operator. It is shown that $\phi(f)$ is essentially self-adjoint
on $\mathrm{f}\mathrm{i}(1)$ [12, \S X.7]. We denote its closure by the same $s$ ymbol $\phi(f)$ . The “conjugate
momentum” of $\phi(f)$ is defined by

$\pi(f):=\phi(if)$ , $f\in \mathcal{X}$ .

We have
$[\phi(f), \pi(g)]=i{\rm Im}(i\langle f, g\rangle_{\mathcal{X}})$ .

For every symmetric operator $S$ on 1, one can define a closed symmetric operator
$d\Gamma(S)$ , called the second quantization of $S$ , by

$d\Gamma(S):=\oplus_{n=0}^{\infty}S^{(n)}$ ,

with $S^{(0)}=0$ and $S^{(n)}$ is the closure of

($\sum_{j=1}^{n}I\otimes\cdots\otimes\dot{S}\otimes j\mathrm{t}\mathrm{h}$ $\ldots\otimes I$) $|$ $CSJ$;
$\mathrm{g}$

$D(S)$ ,

where I denotes identity and $\otimes_{\mathrm{a}}^{n}$ algebraic tensor product. If $S$ is self-adjoint, then so is
$d\Gamma(S)$ .

3 Definition of the model
We consider a model of an abstract quantum system $\mathrm{S}$ coupled to an $N$-component Bose
field over $\mathrm{R}^{d}(d, N\in \mathrm{N})$ . We denote the Hilbert space of the system $\mathrm{S}$ by ??, which is
taken to be an arbitrary separable complex Hilbert space. In concrete realizations, $\mathrm{S}$ may
be a system of nonrelativistic quantum particles or a quantum field system.

The one-particle Hilbert space of the Bose field is taken to be

$\mathrm{A}/[$ $:=\oplus^{N}L^{2}(\mathrm{R}^{d})$ ,

the $N$ direct sum of $L^{2}(\mathrm{R}^{d})$ . Then the Hilbert space for the Bose field is given by the
Fock space $\mathrm{F}\mathrm{b}$ ( M) over U.

Let cv be a Borel measurable function on $\mathrm{R}^{d}$ such that $0<\omega(k)<$ oo for almost
everywhere $(\mathrm{a}.\mathrm{e}.)k\in \mathrm{R}^{d}$ with respect to the Lebesgue measure on $\mathrm{R}^{d}$ . Physically $\omega$

denotes a dispersion relation of a boson. The function $\omega$ defines a multiplication operator
on $L^{2}(\mathrm{R}^{d})$ , which is nonnegative, injective and self-adjoint. We denote it by the same
symbol.
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We define an operator
$\hat{\omega}:=\oplus^{N}\omega$

acting in $\mathrm{A}4$ .
The Hilbert space of the coupled system of $\mathrm{S}$ and the Bose field is given by the tensor

product
$\mathcal{F}:=$ $\mathrm{H}$ $\otimes$ $F_{\mathrm{b}}(\mathcal{M})$ .

Let $A$ be a self-adjoint operator on ??, which denotes physically the Hamiltonian of
the quantum system S.

The Hamiltonian of the model we consider in the present paper is defined by

$H:=A \otimes I+I\otimes d\Gamma(\hat{\omega})+\sum_{j=1}^{J}B_{\mathrm{j}}\otimes$ ’ $(g_{j})+ \sum_{j=1}^{J}K_{j}\otimes\pi(h_{j})$ ,

where $B_{j}$ $(j=1, \cdots, J;J\in \mathrm{N})$ is a symmetric operator on $7${ such that $\bigcap_{j=1}^{J}D(B_{j})$

is dense in $lt$ , $K_{j}$ $(j=1, \cdots, J)$ is a bounded self-adjoint operator on $\mathcal{H}$ and $gj$ , $h_{j}\in$

$\mathcal{M}$ , $j=1$ , $\cdot$ . . , $J$ .

Remark 1 The case where $h_{j}=0$ or $K_{j}=0$ $(j=1, \cdots, J)$ is the original GSB model
[3]:

$J$

$H_{\mathrm{G}\mathrm{S}\mathrm{B}}:=A\otimes I+I\otimes d\Gamma(\hat{\omega})+$ $1$ $B_{j}\otimes\phi(g_{j})$ .
$j=1$

The existence of ground states of $H_{\mathrm{G}\mathrm{S}\mathrm{B}}$ with $N=1$ was discussed in [3] under the
assumption that $A$ has a ground state (cf. also [4] for further extensions). The problem
of enhanced binding in $H_{\mathrm{G}\mathrm{S}\mathrm{B}}$ was considered in [6], For the absence of ground states of
$H_{\mathrm{G}\mathrm{S}\mathrm{B}}$ , see [5].

4 Main results
For a self-adjoint operator L on a Hilbert space, we denote its spectrum (resp. essential
spectrum) by $\sigma(L)$ (resp. $\sigma_{\mathrm{e}\mathrm{s}\mathrm{s}}1_{\backslash }L$)).

Definition 1 Let $L$ be a self-adjoint operator on a Hilbert space bounded from below
and set

$E_{0}(L):=$ inf $\sigma(L)$ ,

which is called the lowest energy of $L$ . We say that $L$ has a ground state if $E_{0}(L)$ is an
eigenvalue of $L$ . In that case, each non-zero vector in $\mathrm{k}\mathrm{e}\mathrm{r}(L-E_{0}(L))$ is called a ground
state of $L$ .

To state the main results of this paper, we formulate additional hypotheses. For this
purpose, we first recall an important notion on commutativity of self-adjoint operators:

Definition 2 We say that two self-adjoint operators $S_{1}$ and $S_{2}$ on a Hilbert space strongly
commute (or $S_{1}$ strongly commutes with S2) if their spectral measures commute.

A family of self-adjoint operators $\{Sj\}_{j=1}^{n}$ on a Hilbert space is said to be strongly
commuting if $S_{j}$ strongly commutes with $S_{l}$ for all $j$ , $l=1$ , $\cdots$ , $n$ with $j\neq l.$
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In what follows, we assume that $A$ is of the form

$A=A_{0}+A_{1}$

with $A_{0}$ a nonnegative self-adjoint operator and $A_{1}$ a symmetric operator on ??.

Hypothesis (I) gj9 $g_{j}/\omega^{3/2}$ , $h_{j}$ , $h_{\mathrm{j}}/\omega\in \mathcal{M}$ (j $=1,$\cdots , J) and

\langle gj (k), $g_{l}(k)\rangle_{\mathrm{C}^{N}}$ , \langle gj (c), $h_{l}(k)\rangle_{\mathrm{C}^{N}}\in \mathrm{R}$ , a.e.A; $\in \mathrm{R}^{d}(j,$l $=1,$\cdots , J).

Remark 2 Hypothesis (I) implies the following (i) and (ii):

(i) the set $\{\phi(ig_{j}/\omega)\}_{j=1}^{J}$ is a family of strongly commuting self-adjoint operators and
each $\phi(ig_{j}/\omega)$ strongly commutes with each $\pi(h_{l})(j,$l $=1,$\cdots , J).

(ii)
$[\phi(g_{j}), \pi(h_{l})]=i\langle g_{j}, h_{l}\rangle_{\lambda 4}$

on $\mathrm{F}*(\mathrm{M})$ .

Hypothesis (II) The operator $A_{1}$ is $A_{0}$-bounded, i.e., $D(A_{0})\subset D(A_{1})$ and there exist
constants $a$ , $b\geq 0$ such that, for all $u\in D(A_{0})$ ,

$||A_{1}u||_{\mathcal{H}}\leq a||A_{0}u||_{\mathcal{H}}+b||u||_{\mathcal{H}}$.

Hypothesis (III) The operator $A_{0}$ strongly commutes with each $B_{j}(j=1, \cdots, J)$ and

$D(A_{0})\subset$ ”,,$\iota=1D(B_{j}B_{l})$ .

Moreover, there exist constants Cj, $d_{j}\geq 0$ such that, for all $et\in D(A_{0}^{1/2})$ ,

$||B_{j}u||_{\mathcal{H}}\leq \mathrm{c}_{j}||A_{0}^{1/2}u||_{\mathcal{H}}+d_{j}||u||_{\mathcal{H}}$ $(j=1, \cdots, J)$ .

Hypothesis (IV) The set $\{B_{j}\}_{j=1}^{J}$ is a family of strongly commuting self-adjoint oper-
ators.

Hypothesis (V) $D(A_{0}) \subset\bigcap_{j=1}^{J}D(B_{j}A1)\cap D(A_{\mathrm{t}}B_{\mathrm{j}})$ and $[B_{j}, A_{1}]|D(A_{0})$ is bounded $(j=$
$1$ , $\cdots$ , $J$). We denote the operator norm of $[B_{j}, A_{1}]$ by $||$ [Bj, $A_{1}$ ] $||$ .

We introduce an operator

$R_{B}:= \frac{1}{2}\sum_{j,l=1}^{J}\{\frac{g_{j}}{\sqrt{\omega}}$ , $\frac{g_{l}}{\sqrt{\omega}}\}_{A4}B_{j}B_{l}$ .

and define
$A_{\mathrm{r}\mathrm{e}\mathrm{n}}:=A-R_{B}$ .

Under Hypotheses (I)-(III), we have $D(A_{\mathrm{r}\mathrm{e}\mathrm{n}})=D(A_{0})$ .
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Hypothesis (VI) The operator $A_{\mathrm{r}\mathrm{e}\mathrm{n}}$ is self-adjoint and bounded from below.

One can prove the following fact:

Theorem 3 Assume Hypotheses $(I)-(VI)$ . Then $H$ is self-adjoint and bounded from be-
low.

We set
$\omega_{0}:=\mathrm{e}\mathrm{s}\mathrm{s}.\inf_{k\in \mathrm{R}^{d}}\omega(k)$,

where $\mathrm{e}\mathrm{s}\mathrm{s}$ . inf means essential infimum.

Theorem 4 Assume Hypotheses $(I)-(VI)$ . Suppose that
$\{\omega(k)|k\in \mathrm{R}^{d}\}=[\omega_{0}, \infty)$ (4.1)

Then the folloing (i) and (ii) hold,

(i) If $\omega_{0}>0,$ then
$[E_{0}(H)+\omega_{0}$ , $\infty)\subset\sigma_{\mathrm{e}\mathrm{s}\mathrm{s}}(H)$ .

(ii) If $\omega_{0}=0,$ then
$\sigma(H)=[E_{0}(H),$ $\infty)$ .

To establish an existence theorem of a ground state of $H$ without the assumption that
$A$ has a ground state, we need additional conditions.

Hypothesis (VII) The function $\omega$ is continuous on $\mathrm{R}^{d}$ with

$\lim_{|k|arrow\infty}\omega(k)=\infty$

and there exist constants $\gamma>0$ and $c_{0}>0$ such that

$|\omega(k)-\omega(k’ 1$ $\leq c_{0}|k-k’|^{\gamma}(1+\omega(k)+\omega(k’))$ , $k$ , $k’\in \mathrm{R}^{d}$ .

For $s\geq 0,$ we introduce constants $C_{s}(g)$ , $D_{s}(h)(g:=(g_{1}, \cdots, g_{J}), h:=(h_{1}, \cdot\cdot\cdot, h_{J}))$

by

$C_{g}(g)$ $:=$ $\sqrt{2}\sum_{j=1}^{J}||$ $[B_{j}, A_{1}]$ $|||| \frac{g_{j}}{\omega^{s}}||_{\mathcal{M}}$ ,

$D_{s}(h)$ $:=$ $\sqrt{2}\sum_{j=1}^{J}||$ A$j|||| \frac{h_{j}}{\omega^{s}}||_{\lambda 4}$

provided that $g_{j}/\omega^{s}\in \mathcal{M}$ and $h_{j}/\omega^{s}\in$ $\mathrm{M}$ $(j=1, \cdots, J)$ respectively. We define constants
$F_{\alpha}(\alpha=1,2,3)$ by

$F_{1}:=C_{1}(g)+D_{0}(h)$ , $F_{2}:=C_{2}(g)+ \frac{1}{2}D_{1}(h)$ , $F_{3}:=C_{3/2}(g)+D_{1/2}(h)$ .

We set
$\Sigma(A_{\mathrm{r}\mathrm{e}\mathrm{n}})$ $:= \inf\sigma_{\infty \mathrm{s}}(A_{\mathrm{r}\mathrm{e}\mathrm{n}})$ .

Generally speaking, the existence of a ground state of $H$ may depend on whether $\omega_{0}$

is positive or zero [5]. We first state a result on the existence of enhanced binding in the
case $\omega_{0}>0.$
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Theorem 5 (Enhanced binding in the case $\omega_{0}>0$). Consider the case $\omega_{0}>0.$ Assume
Hypotheses $(I)-(VII)$ and that

$\Sigma(A_{\mathrm{r}\mathrm{e}\mathrm{n}})-E_{0}(A_{\mathrm{r}\mathrm{e}\mathrm{n}})>\omega_{0}+\frac{1}{2}F_{3}^{2}+F_{1}$ . (4.2)

Then $H$ has purely discrete spectrum in the interval [$E_{0}(H)$ , $E_{0}(H)+\omega_{0})$ . In particular,
$H$ has has a ground state.

Remark 3 Condition (4.2) implies that $E_{0}(A_{\mathrm{r}\mathrm{e}\mathrm{n}})$ is a discrete eigenvalue of $A_{\mathrm{r}\mathrm{e}\mathrm{n}}$ and
hence $A_{\mathrm{r}\mathrm{e}\mathrm{n}}$ has a finite number of ground states. But $A$ does not necessarily have $a$

ground state.

Corollary 6 Under the assumption of Theorem 5 and condition (4.1),
$\sigma_{\mathrm{e}\mathrm{s}\mathrm{s}}(H)=[E_{0}(H)+\omega_{0},$ $\infty)$ .

Theorem 7 (Enhanced binding in the case $\omega_{0}=0$). Consider the case $\omega_{0}=0.$ Assume
Hypotheses $(I)-(VII)$ with

$g_{j}/\omega^{2}\in \mathcal{M}$ , $j=1$ , $\cdots$ , $J$

in addition. Suppose that

$\Sigma(A_{\mathrm{r}\mathrm{e}\mathrm{n}})-E_{0}(A_{\mathrm{r}\mathrm{e}\mathrm{n}})>\frac{1}{2}F_{3}^{2}+F_{1}$ . (4.3)

and
$\frac{F_{1}^{2}}{[\Sigma(A_{\mathrm{r}\mathrm{e}\mathrm{n}})-E_{0}(H)]^{2}}+\{\frac{2F_{1}^{2}}{[\Sigma(A_{\mathrm{r}\mathrm{e}\mathrm{n}})-E_{0}(H)]^{2}}+1\}\frac{1}{2}F_{2}^{2}<1.$ (4.4)

Then $H$ has a ground state.

Remark 4 In Theorems 5 and 7, the eistence of a ground state of A is not assumed.

5 Proofs of the main theorems
We give only sketches of proofs of the main theorems stated in the preceding section.

5.1 Proof of Theorem 3
We introduce a unitary operator

$U:= \prod_{j=1}^{J}e^{-iB_{\mathrm{j}}\otimes\phi(\dot{*}g_{\mathrm{j}}/\omega)}$ .

Let
$H_{0}:=A_{\mathrm{r}\mathrm{e}\mathrm{n}}\otimes I+I\otimes d\Gamma(\hat{\omega})$ ,

$V_{1}:=U(A_{1}\otimes I)U^{-1}-A_{1}\otimes I$, $V_{2}:= \sum_{j=1}^{J}(U$ ($K_{j}$ &I) $U^{-1})$ I $Sl$ $\pi(h_{j})$ .

and
$\overline{H}:=H_{0}+V_{1}+V_{2}$ .
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Lemma 8 Assume Hypotheses $(I)-(VI)$ . Then $UD(H_{0})=D(H_{0})$ and, for all $\Psi\in$

$D(H_{0})$ ,
$UHU^{-1}\Psi=\overline{H}\Psi$ .

Proof. Similar to the proof of [6, Lemma 3.7]. 1

Using [6, Lemma 3.10] and the well known estimates

$||a(f) \Psi||\leq||\frac{f}{\sqrt{\omega}}||_{\mathcal{M}}||\mathrm{t}\mathrm{f}$ $(\hat{\omega})^{1/2}$ I $\mathrm{H}$ ,

$||a(f)^{*} \Psi||\leq||\frac{f}{\sqrt{\omega}}||_{\mathrm{A}1}||d\Gamma(\hat{\omega})[]/$”$||+||f||$ $\mathrm{M}||$’ $||$

holding for all $\Psi\in D(d\Gamma(\hat{\omega})^{1/2})$ and $f$ , $f/\sqrt{\omega}\in \mathcal{M}$ , one can easily see that $V_{1}$ and $V_{2}$

are infinitesimally small with respect to $H_{0}$ . Hence, by the KatO-Rellich theorem, $\overline{H}$ is
self-adjoint with $D(\overline{H})=D(H_{0})$ and bounded from below. By this fact and Lemma 8,
$H$ is self-adjoint with $D(H)=D(H_{0})$ and bounded from below.

5.2 Proof of Theorem 4

This follows from an application of [1, Theorem 3.3].

5.3 Proofs of Theorems 5 and 7
By Theorem 3 and Lemma 8, it is sufficient to prove that $\overline{H}$ has a ground state. One sees
that the methods developed in [6] work in the present case too (in [6], $\overline{H}$ with $V_{2}=0$

is considered). This is due to the fact that the new perturbation term $V_{2}$ has properties
similar to those of $V_{1}$ , e.g.,

$||\mathrm{I}2$
$\mathrm{I}||\leq D_{1/2}||I\otimes d\Gamma(\hat{\omega})^{1/2}\Psi||+\frac{1}{2}D_{0}||\Psi||$ , $\Psi\in D(I\otimes d\Gamma(\hat{\omega})^{1/2})$ .,

$[V_{2}, I \otimes a(f)]\Phi=-\frac{i}{\sqrt{2}}\sum_{j=1}^{J}U(K_{j}\otimes I)U^{-1}\langle f, h_{j}\rangle_{\lambda 4}!$ , $\Phi\in D(I\otimes N_{\mathrm{b}})$ ,

where $N_{\mathrm{b}}:=d\Gamma(I)$ is the number operator on $\mathrm{y}_{\mathrm{b}}(\mathcal{M})$ . It turns out that we need only to
shift the constants $c_{s}(g)(s =1,3/2,2)$ used in Theorems 2.2 and 2.3 in [6], which yields
conditions (4.2) $-(4.4)$ in the present context.

References
[1] Arai A., Essential spectrum of a self-adjoint operator on an abstract Hilbert space

of Fock type and applications to quantum field Hamiltonians, J. Math. Anal. Appl.
246 (2000), 189-216. $\cdot$

[2] Arai A., Enhanced binding in models of nonrelativistic quantum field theory, in “A
Garden of Quant\"a, Editors J. Arafune, A. Arai et al, World Scientific, 2003, 197-207.



88

[3] Arai A. and Hirokawa M., On the existence and uniqueness of ground states of a
generalized spin-boson model, J. Fund. Anal. 151 (1997), 455-503.

[4] Arai A. and Hirokawa M., Ground states of a general class of quantum field Hamil-
tonians, Rev. Math. Phys. 8 (2000), 1085-1135.

[5] Arai A., Hirokawa M. and Hiroshima F., On the absence of eigenvectors of HamiltO-
nians in a class of massless quantum field models without infrared cutoff, J. Fund.
Anal 168 (1999), 470-497.

[6] Arai A. and Kawano H., Enhanced binding in a general class of quantum field models,
Rev. Math. Phys. 15 (2003), 387-423.

[7] Catto I. and Hainzl C, Self-energy of one electron in non-relativistic QED, math-
$\mathrm{p}\mathrm{h}/0207036$ .

[8] Chen T., Vougalter V. and Vugalter S.A., The increase of binding energy and en-
hanced binding in non-relativistic QED, J. Math. Phys. 44 (2003), 1961-1970.

[9] Hainzl C, One non-relativistic particle coupled to a photon field, Ann. Henri
Poincar\’e 4 (2003), 217-237.

[10] Hainzl C, Vougalter V.and Vugalter S.A., Enhanced binding in non-relativistic QED,
Commun. Math. Phys. 233 (2003), 13-26.

[11] Hiroshima F. and Spohn H., Enhanced binding through coupling to a quantum field,
Ann. Henri POincare42 (2001), 1159-1187.

[12] Reed M. and Simon B., Methods of Modern Mathematical Physics Vol. II, Academic
Press, New York, 1975.

[7] Catto I. and Hainzl C, Self-energy of one electron in non-relativistic QED, math-
$\mathrm{p}\mathrm{h}/0207036$ .

[8] Chen T., Vougalter V. and Vugalter S.A., The increase of binding energy and en-
hanced binding in non-relativistic QED, J. Math. Phys. 44 (2003), 1961-1970.

[9] Hainzl C, One non-relativistic particle coupled to aphoton field, Ann. Henrl
Poincar\’e 4 (2003), 217-237.

[10] Hainzl C, Vougalter V.and Vugalter S.A., Enhanced binding in non-relativistic QED,
Commun. Math. Phys. 233 (2003), 13-26.

[11] Hiroshima F. and Spohn H., Enhanced binding through coupling to aquantum field,
Ann. Henri Poincar\’e 2 (2001), 1159-1187.

[12] Reed M. and Simon B., Methods of Modern Mathematical Physics Vol. II, Academic
Press, New York, 1975.


