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Abstract
Through the construction of the free scalar quantum field mod-

els, the relationships among quantized equations, Euclidean quantum
field models and corresponding stochastic partial differential equa-
tions (SPDE) are reviewed. Then, a new non-linear quantized equa-
tion and an Euclidean field model are introduced.
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In this section we review the relationships among the scalar quantum field
models, quantized equations, Euclidean quantum field models and corre-
sponding stochastic partial differential equations (SPDE).

The relativistic scalar quantum fields with the space time dimensions
$d$ $+1$ are the quadruple $<\mathit{1}t$ , $U$ , $\phi$ , $D$ $>$ that satisfy the following Garding-
Wightman axioms (cf. [SW], [WG], [Si], [RS]):
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(GW.1) (Hilbert space) $\mathcal{H}$ is a separable Hilbert space having a
distinguished unit vector $<lo$ .
(GW.2) (Fields and Temperedness) 7) is a dense subset of $\mathcal{H}$ and for
each $f\in S(R^{d+1}arrow C)$ the linear operator $/(f)$ with the domain $D$

satisfies
(a) For any /b 12 $\mathrm{E}$ $D$ , the map $f$ }$arrow(\psi_{1}, \phi(f)\psi_{2})$ is a tempered
distribution, also for fixed $\psi$ $\in$ a the map $f-*\phi(f)\psi$ is linear;
(b) For real 7, the operator $6(f)$ is symmetric;
(c) $\phi(f)$ leaves $V$ invariant;
(d) 7) is spanned by the finite linear combinations of vectors of the form
$\phi(f_{1})3$ $\cdot\cdot\phi(f_{n})\psi 0$ .

(GW.3) (Poincar\’e invariance of the field) $U(\cdot, \cdot)$ is a strongly
continuous unitary representation on ?? of the restricted Poincare group,
and for each $<a,$ A $>\in$ $P_{+}^{\uparrow}$ , $U(a, \Lambda)D\subset D,$

$\mathrm{U}(\mathrm{a}, \Lambda)\phi(f)U(a, \Lambda)^{-1}\mathrm{q}$ $=\mathrm{x}(<a, \Lambda>f)\psi$ , $f\in S$ ( $R^{d+1}arrow$ C), $\psi$ $\in D,$

where $<a$ , $\Lambda>f=f(\mathrm{A}^{-1}(x-a))$ .
(GW.4) (Spectrum) The projection valued measure on $R^{d+1}$

corresponding to $U(a, I)$ has support in the closed forward light cone.
(GW.5) (Locality) If $f$ and $g$ in $S(R^{d+1}arrow C)$ have supports which are
spacelike separated, then

$[\phi(f)\phi(g)-\phi(g)\phi(f)]\psi=0,$ $\psi$ $\in D$ .

(GW.6) (Uniqueness of vacuum) The only vectors in $\mathcal{H}$ left invariant by
all the $U(a, 1)$ , $a\in R^{d+1}$ are the multiples of $\psi_{0}$ .

Suppose that we are given a QF satisfying above Garding-Wightman
axioms, then for each $n\geq 0,$ the Wightman distribution $\mathcal{W}$n for given QF
is defined by

$\mathcal{W}_{n}(f_{1}, . . 1 , f_{n})\equiv(\psi_{0}, \phi(f_{1}))$ $\cdot\cdot\phi(f_{n})\psi_{0})$ , $f_{i}\in S(R^{d+1}arrow C)$ , $i=1$ , . $||$ . ’ $n$ .
(1.1)

The sequence of Wightman distributions $\{\mathcal{W}_{n}\}_{n=0,1},\ldots$ corresponding to a
QF satisfying the Garding- Wightman axioms satisfies the Wightman axioms
for the Wightman distributions (cf. section II.1 of [Si]). Conversely, by the
Wightman reconstruction theorem (cf. section II.2 of [Si]), a sequence of
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Wightman distributions satisfying the Wightman axioms for the Wightman
distributions defines a QF obeying the Garding- Wightman axioms.

Any sequence of Wightman distributions that satisfies the Garding-
Wightman axioms admits an analytic continuation to the domain with
purely imaginary time components. Such analytic continuation is called
as a sequence of Schwinger functions and is denoted by $\{S_{n}\}_{n=0,1},\ldots\cdot$ Then
[$S_{n}\}_{n=0,1},\ldots$ satisfies the Osterwalder-Schrader (0 S) axioms (cf. section
II-3 of [Si] $)$ .

The most well known QF with the space time dimension $d+1$ is the
ffee scalar quantum field with mass $m>0$ defind through the sequence of
Wightman distributions $\{\mathcal{W}_{n}\}_{n=0,1},\ldots$ given as follows:
Let

$H_{m} \equiv\{(\tau,\overline{\xi})\in R^{d+1}|\tau^{2}-\sum_{j=1}^{d}(\vec{\xi_{j}})^{2}=m^{2}, \tau>0\}$ ,

and define a measure $.\Omega_{m}$ on $H_{m}$ such that

$\Omega_{m}(E)=\int_{I_{m}(E)}\frac{1}{\sqrt{|\vec{\xi|}^{2}+m^{2}}}d\vec{\xi,}$
$E\subset H_{m}$ , (1.2)

where $I_{m}$ : $(\mathrm{r}$ , $\xi \mathrm{J}$ $\mapsto*\tilde{\xi}\in R^{d}$ .
Let

$\Delta_{+}(t,\vec{x},\cdot m^{2})\equiv(F\Omega_{m})(t,\vec{x})$ ,

where $F$ denotes the $d+1$-dimensional Fourier transform. Finally for each
$n=0.$ I. ( ” letラフ

$\mathcal{W}_{n}((t_{1},\vec{x}_{1})$ , . . $\cap,$
($t_{n},\vec{x}$J) $\equiv[(t_{1},\vec{x}_{1})$ , . $|$ . , $(t_{n},\vec{x}_{n})$], (1.3)

with

[( $t_{1},\vec{x}_{1}$ ), .. $($ , $(t_{n},\vec{x}$J] $=0,$ for an odd $n$ ; (1.4)

[($t_{1},$ $x\vec{1}$ ), . . . ’
$(t_{2n},$ $x$2n)] $\equiv$ $\sum\Delta_{+}$ $((t_{:_{1}}, x\vec{i}1)-$ ( $t_{j}1$ , $x$-,j1); $m^{2}$ ) $\mathrm{x}\circ\cdot \mathrm{c}$

pair
$\mathrm{x}$ $\Delta_{+}$ $((t_{\dot{\iota}_{n}},\vec{x}_{\dot{\iota}_{n}})$ $-(t_{j_{n}},\tilde{x}_{j_{n}});m^{2})$ , (1.3)

where the sum is over all $\mu 2n!2^{\mathrm{n}}n!$ ways of writing $\{\mathrm{I}, ..| , 2n\}$ as $\mathrm{m}_{1,.\circ}$ . ’
$\mathrm{m}_{n},j=$

$1$ , .. , $:.n$ with $i1$ $<i_{2}<$ } $\cdot|$ $<i_{n};i_{1}<j1;\cdots$ ; $i_{n}<jn.$
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The sequence of Schwinger functions $\{S_{n}\}_{n=0,1},\ldots$ corresponding to the
above sequence of Wightman functions is defined through (1.3), (1.4) and
(1.5) with the replacement of $\Delta_{+}((t_{i_{k}},\vec{x}_{i_{k}})$ $-(t_{j_{k}},\tilde{x}_{j_{k}});m^{2})$ by $J^{1}2$i $((t_{i_{k}},\vec{x}_{i_{k}})$ -

$(t_{j_{k}}, x_{j_{k}})\prec)$ , where

$J^{\alpha}(t,\vec{x})\equiv(F(|(\tau,\overline{\xi}]|^{2}+m^{2})^{-}$ ’) $(t,\tilde{x})$ , $\alpha>0,$

where $T$ denotes the $d+1$-dimensional Fourier transform. Namely,

$5_{n}$ $((t_{1},\vec{x}_{1})$ , . . $\mathrm{f}$ , $(t_{n},\vec{x}_{n}))$ $\equiv[(t_{1},\vec{x}_{1}), . . (’(t_{n},\vec{x}_{n})]s$ , (1.6)

where $[\cdot]_{S}$ is defined through (1.4) and (1.5) by replacing $6_{+}$ by $J^{\frac{1}{2}}$ .
By the Nelson reconstruction theorem (cf. [Nel], section IV.2 of [Si]),

if a random field indexed by $S(R^{d+1}arrow R)$ (equivalently, a random field
defined through $5’(R^{d+1}arrow R)$ -valued random variables) satisfies Nelson’s
axioms, then the moment functions of the $S’(R^{d+1}arrow R)$ -valued random
variables correspond to a sequence of Schwinger functions that satisfies the
$OS$ axioms.

As an example, the sequence of Schwinger functions $\{S_{n}\}_{n=0,1},\ldots$ cor-
responding to the ffee QF defined by (1.6) is the moment function of the
$S’$ ( $R^{d+1}arrow$r –Revalued random variable $\phi_{N}$ known as the Nelson’s Euclidean
free field such that

$E[\phi_{N}(f_{1})\mathrm{r}\mathrm{o} . \phi_{N}(f_{n})]=S_{n}(f_{1}$ , . $($ . ’
$f_{n})$ , $f_{i}\in$ S$(R^{d+1}arrow R)$ , $i=1$ , . . $|$ ” $n_{\dagger}$

where

$\phi_{N}(f)\equiv\int_{R^{d+1}}( (-\Delta_{d+1}+ 7\mathrm{r}\mathrm{z}^{2})^{-\frac{1}{2}}f)$ $(t,\vec{x})dW_{d+1}(t,\vec{x})$ . (1.7)

Where $\Delta_{d+1}$ is the $d+1$ -dimensional Laplace operator, and $W_{d+1}$ is a
$d+1$-dimensional isonormal Gaussian process such that

$E$ [$W_{d+1}(h)$with $(g)$ ] $= \int_{R^{d+1}}h(x)g$(x)dx, $h$ , $g\in L^{2}(R^{d+1}arrow R)$ ,

(1.8)

( $W_{d+1}$ is known as the $d+\mathrm{I}$-dimensional Gaussian white noise, cf. [HKPS].
for the stochastic integral representation of $\phi_{N}$ , cf. [AY1], [AY2], [AFY],
[Y] $)$ .

For the free QF defined through the sequence of Wightman functions
given by (1.3), we also have an expression of the field operator $\phi$ (cf.
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(GW1) $)$ by means of a composition of an $S^{l}(R^{d}arrow R)$ -valuedrandom vari-
able with unitary operators:

$\phi(\delta_{t_{0}}(t)\otimes\varphi(\vec{x}))=e^{id\Gamma((-\Delta_{d})^{\tau})t_{0}}\phi+m^{2^{1}}0$$(\varphi)e^{-id\Gamma((-\Delta_{d}+m^{2})^{1})t_{0}}2$ , (1.9)

$\varphi\in S(R^{d}arrow C)$ ,

where $\Delta_{d}$ is the $d$-dimensional Laplace operator,

$\phi_{0}(\varphi)\equiv\int_{R^{d}}((-\Delta_{d}+m^{2})^{-\frac{1}{4}}\varphi)$ $(\vec{x})dW_{d}(\vec{x})$ , (1.10)

with $W_{d}$ being the $d$-dimensional isonormal Gaussian process satisfying
(1.8) with $d+1$ replaced by $d$, and $d\Gamma((-\Delta_{d}+ \mathrm{y}\mathrm{y}\mathrm{g}^{2})2)$ is the second quan-
tization of the pseudO-differential operator $(-\mathrm{I}\mathrm{S}_{1} +m^{2})^{\frac{1}{2}}1$

By (1.7) and (1.9), $\phi_{N}$ and $\phi$ satisfy the following stochastic partial
differential equation (SPDE) and quantized equation respectively:

$(-\Delta_{d+1}+m^{2})^{\mathrm{i}}\phi_{N}=W_{d+1;}$ (1.11)

$\frac{\partial^{2}}{\partial t^{2}}-\Delta_{d}+m^{2})\phi=0.$ (1.12)

This is a brief observation of the relationships among the ffee QF defined
through $\{\mathcal{W}_{n}\}_{n=}0,1,\ldots$ (I.3), quantized equation (1.12) which is satisfied by
the free field operator $\phi(1.9)$ , the Euclidean free field defined through
$\{S_{n}\}_{n=0,1},\ldots(1.6)$ , the Euclidean random field (1.7) and the SPDE (1.11)
which is satisfied by the Nelson’s Euclidean free field operator $\phi_{N}$ .

More definite correspondence of (1.7) and (1.9) to the ffee quantum
field will be mentioned in Remarks 1 and 2 in the next section.

There axe various interesting SPDE’s that have correspondences to Eu-
clidean quantum field theory (cf. , $\mathrm{e}\mathrm{g}$ . [AR\"o], $[\mathrm{A}\cdot \mathrm{G}]$ , [AGW], [AGY], [AY1]
and [Ne2] $)$ .

For the quantum field operator 6 given by (1.9) and its modifications,
there are several considerations on their interesting properties, in particular
on their essential self-adjointness property (cf., for $\mathrm{e}\mathrm{g}$ . [AFY], [K], [Se]). In
[AFY] the essential self-adjointness of the Wick powers of the field operator
$\phi$ is discussed, and a new result is derived by making use of the stochastic
expression of $\phi$ (cf. (1.9)), where the dense domain of these field operators
are taken as $\mathrm{Z})_{\frac{1}{4}}$ (cf. Remark 1 in the next section) that is a space of finite

linear combination of $\phi_{0}(f_{1})$ $\mathrm{x}\mathrm{r}$ $\cdot( \mathrm{x}\phi_{0}(f_{n}), f_{i}\in S(R^{d}arrow C)$ , $n\in N.$
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However, it should be remarked that it still be very interesting to con-
sider the essentially self-adjointness problem on the more general class of
the field operators that are more singular than the Wick powers of $\phi$ , in-
cluding the Wick exponential opetators etc., by setting their definitions
domain as a domain of hyper functions (cf. [NM1], [NM2]).

In section X7 of [RS] , there is a discussion concerning a quantized equa-
thon with non-linear pertervation term that is a modification of (1.12) such
that

$\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}+m^{2})\phi=-4\mathrm{A}\phi^{3}$, (1.13)

where $\mathrm{A}>0$ is some fixed positive number and the space time dimension is
taken as $d+1=2.$ As was mentioned in X7 of [RS] and it is well known that
(1.13) is a heuristic equation. However it is a Schrodinger type equation
that is expected to give a dynamics on the so called $(\phi^{4})_{2}$ QF (for a brief
definition of $\phi^{4}\mathrm{Q}\mathrm{F}$ , cf. Remark 2 in the next section, and for its exact
definition cf. , $\mathrm{e}\mathrm{g}$ . [RS], [Si], [GJ] $)$ . equation

In [Os], the quantized equation (1.13) for $d+$ $1$ $=4$ is considered by not
taking $\phi$ to be an operator but taking it to be a form on a Hilbert space.

In the next section, we shall consider a modification of the quantized
non-linear equations (1.13) with $d+1=4$ and a modified model of $(\phi^{4})_{4}$

Euclidean quantum field.

2 Modified quantized equation and an Euclidean
field model having correspondences with $(\phi^{4})_{4}$

QF

A modif ication of (1. 13)

Let $(\Omega, \mathrm{r}, P)$ be a complete probability space. Suppose that on $(\Omega, 2 , P)$

we are given a 3-dimensional Gaussian white noize $W_{3}$ defined by (1.8). Let
$\epsilon$ be a fixed number such that $0< \epsilon\leq\frac{1}{16}$ . Define the $S’(R^{3}. arrow R)$-valued
random variables $\varphi^{0}(\vec{x})$ and $\varphi^{I}(\tilde{x})$ as follows:

$\varphi^{0}(f)\equiv\int_{R^{3}}((-\Delta_{3}+m^{2})^{-\epsilon+\frac{1}{4}}f)(\vec{x})dW_{3}(\vec{x})$ , $f\in S(R^{3}arrow R)$ ,

$?^{I}(f) \equiv\int_{R^{3}}((-\Delta_{3}+m^{2})^{-1+\epsilon+\frac{1}{4}}f)$ $(\vec{x})dW_{3}(\tilde{x})$ , $f\in S(R^{3}arrow R)$



ee
Let $\mathit{1}t_{\epsilon-\frac{1}{4}}$ be the Hilbert space that is the complexification of the real $L^{2}$

space spanned by the linear combinations of the random variables

$\varphi^{0}(f_{1})\cross\supset\cdot|$ $\mathrm{x}\varphi^{0}(f_{n})$ , $f_{i}\in S(R^{3}arrow R)$ , $i=1$ , $\ldots$ , $n$ , $n\in Nc$

(2.1)

For fixed numbers $\mathrm{A}\geq 0$ , $r\geq 0$ and a given bounded region

$\Lambda_{3,\mathrm{r}}\equiv\{_{X}^{\prec}\in R^{3}||\tilde{x}|<r\}$ ,

define a linear operator $\Phi(\vec{x},t)$ on $\mathcal{H}_{\epsilon-\frac{1}{4}}$ as follows:

$\Phi(\overline{x},t)$
$\equiv e^{(d\Gamma(\mu)+V_{\mathrm{A}})t}\varphi^{0}(:\tilde{x})e^{-i(d\Gamma(\mu)+V_{\Lambda})t}$ ,

where as in the previous section $d\Gamma(\mu)$ is the second quantization of the
pseudo differential operator $\mu$ such that

$\mu\equiv$
$(-\Delta_{3}+m^{2})^{\frac{1}{2}}$ ,

where as in the previous section $d\Gamma(\mu)$ is the second quantization of the
pseudo differential operator $\mu$ such that

$\mu\equiv(-\Delta_{3}+m^{2})^{\frac{1}{2}}$ ,

and
$V_{\Lambda}\equiv$ A $\int_{\Lambda}$ : $(\varphi^{I}(\tilde{x}))^{4}$ : $d\vec{x}$,

with

: $($ pI $( \overline{x}))^{4}:=\int_{(R^{\mathrm{a}})^{4}}\prod_{j=1}^{4}J((\tilde{x})-(\vec{x}_{j}))dW_{3}(\vec{x}_{1})($ $\cdot\cdot dW_{3}(\vec{x}_{4})$ ,

(the 4-th Wick power of $\varphi^{I}$ defined by the multiple stochastic integral cf.
[AY], [Y] $)$ , with the integral kernel $J$ of the pseudo differential operator

$(-\Delta_{3}+m^{2})^{-\frac{3}{4}+\epsilon}$

(i.e. $J$ is the Fourier transform of the symbol $(|\xi|^{2}\neg+m^{2})^{-\frac{3}{4}+\epsilon}$ ).
We have the following Theorem ( in this paper we state the main part

of our results only, and of which proofs and detailed discussions will be
given in a forthcoming paper).

Theorem 2.1 Let $IG,- \frac{1}{4}$ be the linear subspace of $\mathcal{H}_{\epsilon-\frac{1}{4}}$ such that

$2)_{\epsilon-\frac{1}{4}}\equiv$ the complexification of
the finite linear combinations of the vectors given by (2.1).
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Then the operator valued distribution $\Phi(i, t)$ on $S(R^{3}arrow C)$

(precisely, $D$ $(\cdot$ , $t)$ : $S(R^{3}arrow C)\ni f$ $\vdasharrow D$ $(f,$ $t)$ )
satisfies the following quantized nonlinear equation:

$( \frac{\partial^{2}}{\partial t^{2}}-\Delta_{3}+m^{2})\Phi(x, t\prec)=-4\mathrm{A}$ : $(\Phi(L_{\epsilon}\delta_{\vec{x}}, t))^{3}$
$:$ , (2.2)

white

$L_{\epsilon}\equiv$ $(-\Delta_{3}+m^{2})^{-1+2\epsilon}$ , $\delta_{\overline{x}}\equiv the$ Dirac poirai measure on $\vec{x}$,

and: $(\Phi(L_{\epsilon}\delta_{\vec{x}},t))^{3}$ : is the Wick power of the operator $\Phi(i\epsilon\delta_{i;}, t)$ such that

$\Phi(\tilde{x}, t)\equiv e^{:(d\Gamma(\mu)+V_{\mathrm{A}})t}$ : $(\varphi^{0}(L_{\epsilon}\delta_{B}))^{3}$ : $e^{-:(d\Gamma(\mu)+V_{\mathrm{A}})t}$ ,

rryith

: $( \varphi^{0}(L_{\epsilon}\delta_{\vec{x}}))^{3}:=:\varphi^{I}(\vec{x})^{3}:=\int_{(R^{3})^{3}}\prod_{j=1}^{3}J((\vec{x})-(\vec{x}_{j}))dW_{3}(\vec{x}_{1})|$ $\cdot\cdot$ $dW_{3}(\vec{x}_{3})$ ,

(the 3rd Wick power of $\varphi^{0}$ ). 口

Remark 1.
In the above formulation if we replace $\varphi^{0}$ by the usual time zero ffee field
$\phi_{0}$ defined by (1.10) setting $d=3,$ and define $\mathcal{H}_{\frac{1}{4}}$ and $2)_{1}$ as the Hilbert

space and its subspace by replacing $(-\mathrm{A}_{3}+m^{2})^{-\epsilon+\frac{1}{4}}$ by $(-\Delta_{3}+m^{2})^{-\frac{1}{4}}$ in
the definition of $\mathcal{H}_{\epsilon-\frac{1}{4}}$ and $D_{\epsilon-\frac{1}{4}}$ , then the operator $\phi$ defined by (1.9), the
Hilbert space $?/\mathrm{x}$ and the dense domain $\mathrm{Z})_{1}$ define the $d+1=4$ dimensional
free scalar QF satisfying the Garding-Wightman axioms. $\square$

A modification of the Euclidean $(\Phi^{4})_{4}$ random field model.

Let $(\Omega,F,P)$ be a complete probability space. Suppose that on $(\Omega,F, P)$

we are given a 4-dimensional Gaussian white noize $W_{4}$ defined by (1.8). Let
$l$ s $(t,\vec{x})$ be the Euclidean free field (Nelson field) with $d+1=4$ that is an
$5’(R^{4}arrow R)$-valuedrandom variable defined by (1.7):

17 $N(f)\equiv[_{R^{4}}((-\Delta_{4}+m^{2})^{-\frac{1}{2}}f)(\vec{x})dW_{4}(\tilde{x}),$ $f\in$
.

$S(R^{4}arrow R)$ . (2.3)
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Also define an $S’(R^{4}arrow R)$ -valued random variable $\phi_{I}(t,\vec{x})$ as follows:

$\phi_{I}(f)\equiv\int_{R^{4}}((-\frac{\partial^{z}}{\partial t^{2}}+(-\Delta_{3}+m^{2})^{3})^{-\frac{1}{2}}f)(\vec{x})dW_{4}(\vec{x})$, $f\in S(R^{4}arrow R)$ .
(2.4)

For fixed numbers $\mathrm{A}\geq 0$ , $r\geq 0$ and a given bounded region

$\Lambda_{4,r}\equiv$ $\{(t,\tilde{x})\in R^{4}||(t,\vec{x})|<r\}$ ,

we define a probability measure $\nu$ on $S^{l}(R^{4}arrow R)$ such that

$\int_{\mathrm{S}’(R^{4}arrow R)}<\phi$, $f_{1}>(‘\cdot\cdot<\phi, f_{n}>\nu(d\phi)$

$= \frac{1}{Z_{\Lambda}}E^{P}[c/s(f_{1})\cap\cdot\cdot\phi_{N}(f_{n})e^{-\lambda<::,I_{\Lambda_{4,r}}>}"]$ , (2.5)

$f_{1}$ , $|$ .. , $f_{n}\in S(R^{4}arrow R)$ , $n\in N,$

we define a probability measure $\nu$ on $S^{l}(R^{4}arrow R)$ such’ that

$\int_{\mathrm{S}’(R^{4}arrow R)}<\phi$, $f_{1}>(‘\cdot\cdot<\phi, f_{n}>\nu(d\phi)$

$= \frac{1}{Z_{\Lambda}}E^{P}[\phi_{N}(f_{1})\cap\cdot\cdot\phi_{N}(f_{n})e^{-\lambda<:\phi_{J}^{4}:,I_{\Lambda_{4,r}}>}]$ , (2.5)

$f_{1}$ , $|$ $\cdot \mathrm{t}$ , $f_{n}\in S(R^{4}arrow R)$ , $n\in N,$

where
$Z_{\Lambda}\equiv E^{P}[e^{-\lambda<:\phi_{I}^{4}:,I_{\Lambda_{4,f}}>}]$ ,

$E^{P}[\cdot]$ is the expectation with respect to the measure $P$ , $I_{\Lambda_{4,r}}$ is the indicator
function of the measurable set $\Lambda_{4,r}$ , and

: $\phi_{I}^{4}$ : $(t,\vec{x})\equiv$
$/R^{4})_{\mathrm{g}}^{4\mathrm{I}\mathrm{I}}$

$K((t,\vec{x})-(t_{j},\vec{x}_{j}))dW_{4}$ $(t_{1},\vec{x}_{1})\cdot|$ . $dW_{4}(t_{4},\vec{x}_{4})$ ,

(the 4-th Wick power of $\phi_{I}$ defined by the multiple stochastic integral cf.
[AY1], [AY2], [Y] $)$ with the integral kernel $K$ of the pseudo differential
operator $(- \frac{\partial}{\partial t}\tau 2+(-\Delta_{3}+m^{2})^{3})^{-\frac{1}{2}}$ (i.e. $K$ is the Fourier transform of the

symbol $(\tau^{2}+(|\vec{\xi|}^{2}+m^{2})^{3})^{-}\mathrm{i})$ .

Theorem 2.2 For each $n=0,1$ , $..\cap f$ let

$S_{n}$ $(f_{1}, . \mathrm{r} . , f_{n})=\int_{\mathrm{S}’(R^{4}arrow R)}<\phi$ , $f_{1}>(\urcorner$ . $\mathbb{C}$ $<\phi$, $f_{n}>\nu(d\phi)$ . (2.6)

Then $\{S_{n}\}_{n=0,1},\ldots$ satisfies all the $OS$ axioms except the Euclidean invari-
ance.

In particular, it satisfies the reflection positivity property (positive
$defi-\square$

niteness).
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The reflection positivity of this model follows from its Markovian prop-

erty, more definitely, $\nu$ does not define a Markov field, but defines an
$S’(R^{4}arrow R)$ -valued Markov process (cf. [AH-K], [AR\"o]).
Remark 2.

$\mathrm{i}\mathrm{i})$ The two dimensional $(\phi^{4})_{2}$ Euclidean field with the truncation to the
self interaction term such that $\Lambda_{2,r}\equiv\{(t, x)\in R^{2}||(t,x)|<r\}$ , is defined
by changing the formulas (2.3), (2.4) and (2.5) as follows:
replacing the space time dimension 4 by 2 in (2.3), (2.4) and (2.5);
and replacing the interaction term $e^{-\lambda<:}$?7:,jA4,r $>\mathrm{i}\mathrm{n}$ $(2.5)$ by $e^{-\lambda<:\phi_{N}^{4}:}$ ’ $I_{\mathrm{A}_{2}}$ , $f>$

where $\phi_{N}$ is the Nelson field defined by (2.3) for $d+1=2.$
In particular if A $=0,$ then the Schwinger function defined by (2.5) and

(2.6) is the Schwinger function of the free Euclidean field.
$\mathrm{i}\mathrm{i})$ If it is possible to take this model as a simple analogy with the

$(\phi^{4},)_{4}$ QF that has a correspondence with the quantized nonlinear equation
(1.13), then the Eucldean field defined by $\nu$ is expected to have some cor-
respondence with a QF operator $\Phi$ satisfying the quantized equation such
that

$( \frac{\partial^{2}}{\partial t^{2}}+(-\Delta_{3}+m^{2})^{3})\Phi=-4\mathrm{A}\Phi^{3}$.

口
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