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Dynamics of Teichmiiller modular groups and
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\S 0. PREFACE

This is an announcement of the author’s recent researches on dynamics of Te-
ichmiiller modular groups and general topology of moduli spaces. All theorems are
stated without proof. A complete paper is intended to be published elsewhere.

We emphasize how reasonably the study on the action of Teichmuller modular
groups can be generalized to purely topological consideration on the dynamics of
isometry groups for complete metric spaces. In this general situation, the com-
parison of countability versus uncountability works as a fundamental machinery
for our arguments. When we apply this principle to Teichmiiller modular groups,
countable compactness of Riemann surfaces can stand for the countable side. In
the first part of this note, we collect several consequences deduced from this topO-
logical structure of Riemann surfaces. Then we apply more specific results based
on the hyperbolic geometric structure on Riemann surfaces in order to focus on the
feature of the dynamics of Teichmiiller modular groups.

\S 1. TEICHM\"ULLER SPACES AND MODULAR GROUPS

The Teichmuller space $T(R)$ of a hyperbolic Riemann surface $R$ is the set of
all equivalence classes of the pair $(f, \sigma)$ , where $f$ : $Rarrow R_{\sigma}$ is a quasiconformal
homeomorphism of $R$ onto another Riemann surface $R_{\sigma}$ of a complex structure $\sigma$ .
Two pairs $(f_{1}, \sigma_{1})$ and $(f_{2}, \sigma_{-}’)$ are defined to be equivalent if $\sigma_{1}=\sigma_{2}$ and $f_{2}\circ f_{1}^{-1}$

is isotopic to a conformal automorphism of $R_{\sigma_{1}}=R_{\sigma_{2}}$ . Here and below the isotopy
is considered to be relative to the ideal boundary at infinity. The equivalence class
of ($f,$ $\sigma>$ is denoted by $[$/, $\sigma]$ or just by $[f]$ in brief.

A distance between equivalence classes $p_{1}=[f_{1}]$ and $n$ $=[f_{2}]$ in $T(R)$ is defined
by $d_{T}(p_{1},p_{\underline{9}})=$ $\mathrm{K}(\mathrm{f})$ , where $f$ is an extremal quasiconformal homeomorphism
in the sense that its maximal dilatation $K(f)$ is minimal in the isotopy class of
$f_{2}\mathrm{o}$ /i1. Then $d_{T}$ is a complete metric on $T(R)$ , which is called the Teichmiiller
distance.
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The Teichmiiller modular group Mod(jR) of $R$ (or the quasiconformal mapping
class group) is the group of all isotopy classes of quasiconformal automorphisms of
$R$ . An element $\gamma$ of Mod(R) acts on $T(R)$ from the left in such a way that 7*:
$[f, \sigma]\mapsto[f\circ\gamma^{-1}, \sigma]$ , where ) also means a representative of the isotopy class. It is
evident ffom definition that Mod(ff) acts on $T(R)$ isometrically with respect to the
Teichmiiller distance. Let $\theta$ : Mod(ff) $arrow \mathrm{I}\mathrm{s}\mathrm{o}\mathrm{m}(T(R))$ be a homomorphism defined
by $\mathrm{x}$ $\mapsto\gamma_{*}$ , where Isom(T(R)) denotes the group of all isometric automorphisms
of $\mathrm{T}(\mathrm{R})$ . Except for a few cases, $\theta$ is injective. In particular, if $R$ is analytically
infinite, then $\theta$ is injective. This was first proved by Earle, Gardiner and Lakic.
Another proof was given by Epstein [E]. Furthermore, Markovic [M] proved that $\theta$

is surjective. Hence, we may identify Mod(R) with Isom(X) (ff) $)$ and denote ) $*\in$

from 7 (ff) $)$ simply by $\gamma$ .
Hyperbolic geometric aspects of Riemann surfaces affect the structure of their

Teichmiiller spaces and modular groups. Certain moderate assumptions on the
geometry make their analysis easier.

Definition, We say that a hyperbolic Riemann surfaces $R$ satisfies the bounded
$.q$eometry condition if the following three properties are satisfied:

(a) The injectivity radius at any point of $R$ is uniformly bounded away ffom
zero except for cusp neighborhoods;

(b) There exists a subdomain $R^{*}$ of $R$ such that the injectivity radius at any
point of $R^{*}$ is uniformly bounded ffom above and that the simple closed
curves in $R^{*}$ carry the fundamental group of $\mathrm{R}$ ;

(c) $R$ has no ideal boundary at infinity.

This condition is quasiconformally invariant and hence we may regard it as an
assumption on the Teichmiiller space $\mathrm{T}(\mathrm{R})$ . For example, every normal cover of an
analytically finite Riemann surface satisfies the bounded geometry condition except
the universal cover.

\S 2. DYNAMICS ON COMPLETE METRIC SPACES

In general, let $X=(X, d)$ be a complete metric space with a distance $d$, and
Isom(X) the group of all isometric automorphisms of $X$ . For a subgroup $\Gamma\subset$

Isom(X), the orbit of $x\in X$ under $\Gamma$ is denoted by $\mathrm{T}(\mathrm{x})$

.
and the isotropy (stabilizer)

subgroup of $x\in X$ in $\Gamma$ is denoted by Stabr(x). For an element $7\in$ Isom(X), the
set of all fixed points of 7 is denoted by Fix(7).

For a subgroup $\Gamma\subset$ Isom(X) and for a point $x\in X,$ a point $y\in X$ is a limit
point of $x$ for $\Gamma$ if there exists a sequence $\{\gamma_{n}\}$ of distinct elements of $\Gamma$ such that
$7\mathrm{n}(\mathrm{x})$ converge to $y$ . The set of all limit points of $x$ for $\Gamma$ is denoted by $\Lambda(\Gamma,x)$

and the limit set for $\Gamma$ is defined by $\mathrm{A}(\mathrm{F})=\bigcup_{x\in X}\mathrm{A}(\mathrm{T},\mathrm{x})$ . It is said that $x\in X$

is a recurrent point for $\Gamma$ if $x\in$ A(F) $x)$ and the set of all recurrent points for $\Gamma$ is
denoted by Rec(I). It is evident that Rec(F) $)$ $\subset\Lambda(\mathrm{I})$ and these sets are $\Gamma$-invariant.

The following fact is proved in [F].
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Proposition 2.1. For a subgroup $\Gamma\subset$ Isom(X), the limit set $\Lambda(\mathrm{I})$ is coincident
with Rec(F) and it is a closed set. Moreover, $x\in X$ is a limit point of $\Gamma$ if and only

if either the orbit $\mathrm{F}(\mathrm{x})$ is not discrete or the isotropy subgroup $\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}_{\Gamma}(x)$ consists of
infinitely many elements.

A limit point $x\in\Lambda(\mathrm{I})$ is called a $.q$enernic limit point if $\mathrm{T}(\mathrm{x})$ is not discrete, and a
fixed limit point if Stabp (x) is infinite. The set of all generic limit points is denoted
by $\Lambda \mathrm{o}(\mathrm{I})$ and the set of all fixed limit points is denoted by $\Lambda_{\infty}(\Gamma)$ . By Proposition
2.1, we see that $\Lambda(\mathrm{I})$ $=$ Ao $(\mathrm{F})\cup\Lambda_{\infty}(\Gamma)$ , however the intersection can be non-empty.
Furthermore $\Lambda$ ,(I) is divided into two disjoint subsets X) $(\Gamma)$ and $\Lambda_{\infty}^{2}(\Gamma)$ , which
are also introduced in [F]. A limit point $x\in$ Aoo(F) belongs to $\Lambda_{\infty}^{1}(\Gamma)$ if there is
an element of infinite order in Stabp (x) and otherwise to $\Lambda_{\infty}^{2}(\Gamma)$ . In other words,
$\Lambda_{\infty}^{1}(\Gamma)=\cup \mathrm{F}\mathrm{i}\mathrm{x}(\gamma)$ , where the union is taken over all elements $\gamma\in\Gamma$ of infinite
order.

Here we introduce several criteria for discontinuity and stability of $\Gamma$ .
Definition. Let $\Gamma$ be a subgroup of Isom(X). We say that $\Gamma$ acts at $x\in X$

(a) discontinuously if $\mathrm{F}(\mathrm{x})$ is discrete and $\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}_{\Gamma}(x)$ is finite;
(b) weakly discontinuously if $\mathrm{T}(\mathrm{x})$ is discrete;
(c) stably if $\mathrm{T}(\mathrm{x})$ is closed and Stabp (x) is finite;
(d) weakly stably if $\mathrm{T}(\mathrm{x})$ is closed.

If $\Gamma$ acts at every point $x$ in $X$ discontinuously, stably and so on, then we say that
$\Gamma$ acts on $X$ discontinuously, stably and so on. The set of points $x\in X$ where $\Gamma$

acts discontinuously is denoted by $\mathrm{f}\mathrm{i}(\mathrm{F})$ and called the region of discontinu$ity$ for
$\Gamma$ . The set of points $x\in X$ where $\Gamma$ acts stably is denoted by $\Phi(\mathrm{r})$ and called the
region of stability for $\Gamma r$ There is an inclusion relation $\Omega(\Gamma)\subset$ $(F).

The discontinuity is usually defined in another way, however, as the following
proposition says, these definitions are all equivalent.

Proposition 2.2. For a subgroup $\Gamma\subset$ Isom(X) and a point $x\in X,$ the following
conditions are equivalent:

(1) $\Gamma$ acts at $x$ discontinuously,
(2) There exists an open ball $U$ centered at $x$ such that the number of elements

$\gamma$
$\in\Gamma$ satisfying $\mathrm{y}(\mathrm{U})\cap U\neq/)$ is finite;

(3) $x$ is not a limit point of $\Gamma \mathrm{r}$

Hence the region of discontinuity $\mathrm{f}\mathrm{i}(\mathrm{F})$ is coincident with $X-\Lambda(\Gamma)$ , which is an
open set.

Similar statements hold for weak discontinuity.

Proposition 2.3. For a subgroup $\Gamma\subset$ Isom(X) and a point $x\in X,$ the folloing
conditions are equivalent:

(1) $\Gamma$ acts at $x$ weakly discontinuously;
(2) There exists an open ball $U$ centered at $x$ such that $\gamma(U)=U$ for every

$\gamma\in$ Stabr(x) and $\mathrm{y}(\mathrm{U})\cap$ $U=/)$ for every $\gamma$
$\in\Gamma-\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}_{\Gamma}(x)j$
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(3) $x$ is not a generic limit point of $\Gamma$ .

Discontinuity and stability criteria mentioned above have obvious inclusion re-
lations immediately known kom their definitions. The following theorem says that
a converse assertion holds under a certain countability assumption. This fact is
based on the Baire category theorem and uncountability of perfect closed sets.

Theorem 2.4. Assume that $\Gamma\subset$ Isom(X) contains a subgroup $G$ of countable
index (that is, the cardinality of $\mathrm{T}/\mathrm{G}$ is countable) such that $G$ acts at $x\in X$

(weakly) discontinuously. If $\Gamma$ acts at $x$ (weakly) stably, then $\Gamma$ acts at $x$ (weakly)
discontinuously (respectively). In particular, this claim is always satisfied if $\Gamma$ itself
is countable.

While the region of discontinuity $\Omega(\Gamma)$ is always an open set, the region of sta-
bility $\Phi(\mathrm{r})$ becomes an open set under a certain condition upon $\Gamma$ . This is also
based on the Baire category theorem.

Theorem 2.5. If $\Gamma\subset$ Isom(X) contains a subgroup $G$ of countable index such that
$G$ acts on $X$ stably, then the region of stability $\Phi(\mathrm{r})$ is open. In particular, this
claim is always satisfied if $\Gamma$ itself is countable.

\S 3. CLOSURE EQUIVALENCE

We consider quotient spaces of a metric space $(X, d)$ by the group action of
lsom(X). For an arbitrary subgroup $\Gamma$ of Isom(X), we define two points $x$ and $y$

in $X$ to be equivalent $(x\sim y)$ if there exists a sequence of elements $\mathrm{y}_{n}$ of $\Gamma$ not
necessarily distinct such that $\gamma_{n}(x)$ converge to $y$ . In particular, all points in the
orbit of $\Gamma$ are mutually equivalent. It is easy to check that this satisfies the axiom of
equivalence relation, which we call closure equivalence. In particular, the conditions
$\overline{\Gamma(x_{1})}\cap\overline{\Gamma(x_{\sim^{)}}.)}\neq\emptyset$ and $\overline{\Gamma(x_{1})}=\overline{\Gamma(x_{2})}$ are both equivalent to $x_{1}\sim x_{2}$ .

The closure equivalence is stronger than the ordinary equivalence under the group
action of $\Gamma$ , The ordinary quotient space by $\Gamma$ is denoted by $\mathrm{X}/\mathrm{T}$ and the quotient
space by the closure equivalence is denoted by $\mathrm{X}//\mathrm{T}$ . The projections are denoted
by $\pi_{1}$ : $X arrow X\oint\Gamma$ and $\pi\underline{9}$ : $Xarrow X//\Gamma$ respectively. There is also a projection
$\overline{\pi}$ : $X/\Gamma$ ” $\mathrm{X}//\mathrm{T}$ defined by $\pi_{2}$

.
$\mathrm{o}(\pi_{1})^{-1}$ .

The pseudO-distance $d$ induces pseudO-distance$\mathrm{s}d_{1}$ on $X/\Gamma$ and $d_{2}$ on $X//\Gamma$ as

$d_{1}(\pi_{1}(x), \pi_{1}(y))$ $:= \inf\{d(x’,y’)|x’\in$ F(x), $y’\in$ F(x),;
$d_{2}(\pi_{2}(x), \pi_{2}(y))$ $:= \inf\{d(x’,y’)|x’\sim x, y’\sim y\}$ .

Here $d_{2}$ always becomes a distance in virtue of the way of defining the closure
equivalence. Hence $(\mathrm{X}//\mathrm{T}, d_{2})$ is a complete metric space.

A theorem on general topology says the following.

Theorem 3.1. For a subgroup $\Gamma\subset$ Isom(X) and a point $x\in X$ , the following
conditions are equivalent:

(a) $\Gamma$ acts at $x$ weakly stably;
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(b) There exists no different point $\pi_{1}(y)$ from $\pi_{1}(x)$ such that $d_{1}(\pi_{1}(x), \pi_{1}(y))=$

$0$ ,
(c) For every point $\pi_{1}(y)$ different from $\pi_{1}(x)$ , there eists a neighborhood of

$\pi_{1}(y)$ that separates $\pi_{1}(x)j$

(d) A point set $\{\pi_{1}(x)\}$ is closed in $X$/I.

Corollary 3.2. The quotient space $\mathrm{X}/\mathrm{T}$ satisfies the first separation axiom if and
only if the pseudO-distance $d_{1}$ on $X$/I is a distance. In this case, $i$ : $X/\Gamma$ $arrow X//\Gamma$

is a homeomorphism.

\S 4. DYNAMICS OF TEICHM\"ULLER MODULAR GROUPS AND MODULI SPACES

For an analytically finite Riemann surface $R$ , the Teichmuller modular group
Mod(R) acts on $T(R)$ discontinuously. Although Mod(ff) has fixed points on $T(R)$ ,
each orbit is discrete and each isotropy subgroup is finite. Hence an orbifold struc-
ture on the moduli space $M(R)$ is induced ffom $T(R)$ as the quotient space by
Mod(ff). However, this is not always satisfied for analytically infinite Riemann
surfaces.

Hereafter, we assume that $R$ is analytically infinite. We introduce the concepts
(limit set etc.) defined in the previous sections to the Teichmiiller space $X=T(R)$
with the Teichmiiller distance $d=d_{T}$ and the group of all isometries Isom(X) $=$

Mod(R). Then the results in the previous sections are all applicable to this case.
Moreover, the following property peculiar to Mod(JR) (partially proved in [FST])
enables us to conclude more interesting consequences from Theorems 2.4 and 2.5.

Theorem 4.1. For a free homotopy class $c$ of a simple closed geodesic on $R$ , set

$G=\{g\in \mathrm{M}\mathrm{o}\mathrm{d}(R)|g(c)=c\}$ .

Then $G$ is a subgroup Mod(R) of countable index and it acts on $T(R)$ stably. More-
over, if $T(R)$ satisfies the bounded $.q$eometry condition, then $G$ acts on $T(R)$ dis-
continuously.

Then Theorems 2.5 and 2.4 turn to be the following assertions respectively.

Theorem 4.2. The region of stability $\Phi(\Gamma)$ for a subgroup $\Gamma$ ofMod(ff) is an open
subset of $T(R)$ .
Theorem 4.3. If $T(R)$ satisfies the bounded geometry condition, then the (weak)
stability of a subgroup $\Gamma$ of Mod(R is equivalent to the (weak) discontinuity (re-
spectively). If $\Gamma$ is countable, then this is valid without any assumption on $T(R)$ .

Remark that one cannot remove the assumptions on $T(R)$ and $\Gamma$ in Theorem
4.3. Namely, there is an example of an uncountable subgroup $\Gamma\subset$ Mod(7?) which
acts on $T(R)$ stably but not discontinuously. For instance, let $R$ have a sequence of
mutually disjoint, simple closed geodesies $\{c_{n}\}_{n=1}^{\infty}$ with the geodesic lengths $\ell(c_{\mathrm{n}})$

tend to 0 and $\Gamma$ be a subgroup of Mod(R) represented by the composition of the
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Dehn twists along {en}. Then the orbit $\mathrm{T}(\mathrm{p})$ for every $p\in T(R)$ is closed but not
discrete.

If Mod(R) is countable, then the geometry of $R$ is much more restricted by this
assumption itself and we have a stronger result than Theorem 4.3. This is given in
$[$ $]$ .
Theorem 4.4. If $\Gamma=$ Mod(-R) is countable, then it acts discontinuously on $T(R)$ ,
namely, $\mathrm{A}(\mathrm{F})=\emptyset$ .

Next we consider the moduli space of a Riemann surface $R$ . No matter how the
action of Mod(R) is far from discontinuity, the moduli space $M(R)$ is a topological
space by the quotient topology induced by the projection $\pi_{1}=\pi_{M}$ : $T$(ff) $arrow$

$\mathrm{M}\{\mathrm{R}$) $=\mathrm{T}(\mathrm{R})$ Mod(R). We call $\mathrm{M}\{\mathrm{R}$) the topological moduli space. Moreover a
pseudO-distance $d_{1}=d_{M}$ on $M(R)$ is induced ffom the Teichmiiller distance $d=d_{T}$

on $T(R)$ .
We define two subregions in $M(R)$ : an open subregion Mq(R) $=$ $(F)/F is the

$.q$eometric moduli subspace and an open subregion M$(R) $=$ I $(\mathrm{I})/\mathrm{r}$ is the metric
moduli subspace. The $M_{\Phi}(R)$ is the maximal open subset of $M(R)$ where the
restriction of the pseudO-distance $d_{M}$ becomes a distance.

The contracted moduli space $M_{*}(R)$ is a complete metric space, which is the
quotient by the closure equivalence with the projection

$\pi_{2}=\pi_{M_{*}}$ : $\mathrm{T}(\mathrm{R})arrow$ $\mathrm{Z}(R)=$ T(R) Mod(7?).

The distance $d_{\underline{9}}=d_{M_{*}}$ is induced ffom $d=d\tau.$ Let $i$ : $M(R)arrow M_{*}(R)$ be
the canonical projection. The inverse image $\overline{\pi}^{-1}(s)$ for $s\in M_{*}(R)$ is the closure
$\overline{\{\sigma\}}\subset M(R)$ for any point a $\in\overline{\pi}^{-1}(s)$ .

If Mod(R) acts on $T(R)$ weakly stably, then the contracted moduli space $M_{*}(R)$

is nothing but the topological moduli space $\mathrm{M}\{\mathrm{R}$) and the pseudO-distance $d_{M}$ is
coincident with the distance $d_{M_{*}}$ under the homeomorphism $\overline{\pi}$ . However, if it does
not act weakly stably, the projection $i$ : $\mathrm{M}\{\mathrm{R}$) $arrow$ $\#_{\mathrm{r}}(7?)$ is non-trivial and $d_{M}$ is
not a distance on $\mathrm{U}(R)$ .

Finally, we give an example of a quotient space defined by a proper subgroup $\Gamma$

of Mod(R)?). Let $\Gamma$ be a subgroup of Mod(7?) consisting of all elements $\mathrm{y}$ that are
freely isotopic to the identity of $R$, where $R$ is assumed to have the ideal boundary
at infinity. It is clear that $\Gamma$ is normal in Mod(fi). Also $\Gamma$ acts on $T(R)$ weakly
stably. Then $\mathrm{T}(\mathrm{R})/\mathrm{T}=\mathrm{T}\{\mathrm{R}$) $//\mathrm{T}$ is the reduced Teichmiiller space $T^{\neq}(R)$ , $d_{1}=d_{2}$

is the reduced Teichmiiller distance $d^{\neq}$ , and Mod(ff) $/\Gamma$ is the reduced Teichmiiller
modular group Mod* (R), which acts on $(T^{\neq}(R), d\#)$ $\mathrm{i}$ ometrically.

\S 5. CLASSIFICATION OF THE MODULAR TRANSFORMATIONS

For an analytically finite Riemann surface $R$ , there are two kinds of classification
of the elements of Mod(R) related to each other: one is topological classification
due to Thurston and the other is analytical classification due to Bers [B], The latter
can be regarded as a generalization of the type of the isometric automorphisms of
the hyperbolic plane (space), and classifies the elements of Mod(i2) as follows.
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Definition. An element $\mathrm{y}$ of Mod(R) is called
(a) elliptic if ) has a fixed point on $T(R)$ ;
(b) parabolic if $\inf_{p\in T(R)}\mathrm{d}\mathrm{T}(\mathrm{j}\{\mathrm{p}),\mathrm{p})=0$ but $\gamma$ has no fixed point on $T(R)$ ;
(c) hyperbolic if $\inf_{p\in T(R)}\mathrm{d}\mathrm{T}(\mathrm{j}\{\mathrm{p}),\mathrm{p})>0$ .

When the Riemann surface $R$ is analytically infinite, the topological classification
of Mod(ff) is no more effective, whereas the analytical classification still works
reasonably. Hence, even in this case, we adopt the definition as above to classify
the elements of Mod(7?).

An elliptic element $\mathrm{y}$ of Mod(ff) is realized as a conformal automorphism of the
Riemann surface corresponding to the fixed point of $\mathrm{y}$ . In the case where $R$ is
analytically finite, an elliptic element of Mod(R) is of finite order because every
conformal automorphism of an analytically finite Riemann surface is of finite order.
However, in the case where $R$ is analytically infinite, an elliptic element of Mod(7?)
can be of infinite order.

In the analytically finite case, if $\gamma\in$ Mod(ff) is of finite order, then we conversely
know that $\mathrm{y}$ is elliptic from the Nielsen theorem. Furthermore, by the solution of the
Nielsen realization problem due to Kerchhoff [K], we have the following equivalent
conditions on a subgroup of Mod(R) not necessarily cyclic.

Proposition 5.1. Let $R$ be an analytically finite Riemann surface and $\Gamma$ a sub-
$.q$rovp of the Teichmuller modular group Mod(R). Then the following conditions
are equivalent.

(1) $\Gamma$ is a finite group.
(2) $\Gamma$ has a common fixed point on $T(R)$ .
(3) For $every/some$ point $p\in$ T(R), the orbit $\mathrm{F}(\mathrm{p})$ is a bounded set in $T(R)$ .

We consider generalization of this fact to the analytically infinite case. However,
we do not have to restrict ourselves to finite groups in this case. We propose the
following conjecture as the generalization of the Nielsen realization problem.

Conjecture 5.2. A subgroup $\Gamma$ of Mod(ff) has a common fixed point on $T(R)$ if
the orbit $\mathrm{T}(\mathrm{p})$ is bounded for $\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{y}/\mathrm{s}\mathrm{o}\mathrm{m}\mathrm{e}$ $p\in$ T(R). In particular, $\gamma\in$ Mod(ff) is
elliptic if the orbit $\langle\gamma\rangle(p)$ is bounded.

Let $\Deltaarrow R$ be the universal cover of a Riemann surface $R$ and $H_{R}$ the cor-
responding Fuchsian group acting on the unit disk A. Let $\Gamma$ be a subgroup of
Mod(R) and assume that the orbit $\mathrm{Y}(\mathrm{p})$ is bounded for sorne $p\in$ T(R). We lift a
representative of each $\gamma\in\Gamma$ to $\Delta$ as a quasiconformal automorphism and extend
it to a quasisymmetric homeomorphism of the boundary $\partial\Delta$ . In this way, we have
a group $H$ of quasisymmetric homeomorphisms that contains the Fuchsian group
$H_{R}$ as a normal subgroup. Since the orbit $\mathrm{T}(\mathrm{p})$ is bounded, we see that there exists
a uniform bound for the quasisymmetric constants of all elements of $H$ , namely, $H$

is a quasisymmetric group. Then the above conjecture follows ffom the next.
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Conjecture 5.3. For a quasisymmetric group $H$ acting on the unit circle $\partial\Delta$ ,
there exists a quasisy mmetric homeomorphism $f$ of $\partial\Delta$ such that $fHf^{-1}$ is the
restriction of a Fuchsian group to $\partial\Delta$ .

A partial solution to this problem is given by Hinkkanen [H]. If $H$ extends to A as
a quasiconfo rmal group $\tilde{H}$ , then by Tukia [T1], we can always find a quasiconformal
homeomorphism $\tilde{f}$ that conjugates $\tilde{H}$ to a Fuchsian group. However, the barycen-
tric extension $E$ does not have quasiconformal naturality $E(h_{1}h_{2})=E(h_{1})E(h_{2})$

for instance; it is difficult to find a quasiconformal extension of $H$ as a group.
A quasisymmetric group $H$ is a convergence group. By celebrated results due to

Tukia [T2] and Gabai [G], every convergence group acting on $\partial\Delta$ is homeomorphism
cally conjugate to a Fuchsian group by $f$ . In other words, one has an extension of $H$

to a group $\tilde{H}$ of homeomorphisms of A. The above conjecture actually asks whether
this homeomorphism $f$ can be taken to be quasisymmetric for the quasisymmetric
group $H$ . In case $R$ is analytically finite, $f$ automatically becomes quasisymmetric,
and hence the Nielsen realization problem has an affirmative answer as a special
case of this problem.

Next we look at the orbit of a cyclic group of Mod(iZ) and raise a problem to
characterize it in terms of the type of the modular transformation. For an elliptic
transformation $\gamma\in \mathrm{M}\mathrm{o}\mathrm{d}(R)$ of finite order, the orbit under $\Gamma=$ $\langle\gamma\rangle$ is finite.
However, For $\gamma\in \mathrm{M}\mathrm{o}\mathrm{d}(R)$ of infinite order, we can prove the following.

Theorem 5.4. Let $7\in$ Mod(ff) be an elliptic transformation of infinite order.
Then the cyclic group $\Gamma=(7$ } does not act weakly stably on $T(R)$ .

For a parabolic or hyperbolic modular transformation $\mathrm{y}$ , we do not know whether
the orbit is discrete or not. As a conjecture, we expect that $(7)(\mathrm{P})$ is discrete for
every $p\in$ T(R). In other words, comparing with the bounded orbit conjecture
above, we have the indiscrete orbit conjecture as follows.

Conjecture 5.5. A modular transformation $\mathrm{y}\in$ Mod(ff) is elliptic if { $\mathrm{y})(\mathrm{p})$ is not
discrete for some $p\in T(R)$ .

\S 6. ISOLATED POINTS OF THE LIMIT SETS

We begin investigating the dynamics of Teichmiiller modular groups by finding
an isolated point of the limit set. This problem itself is not affect the succeeding
arguments, however, it opens up an interesting group theoretical problem. We will
discuss this topic in the next section.

Here we give necessary conditions for a point $p\in T(R)$ to be an isolated limit
point of a subgroup $\Gamma$ of Mod(ff). Without loss of generality, we may assume that
$p$ is the origin $0$ $\in$ $7(7)$

Theorem 6.1. Assume that $0$ $\in T(R)$ is an isolated point of the limit set $\Lambda(\Gamma)$

of a subgroup $f$ $\subset$ Mod(ii). Then the isotropy subgroup Stabr(o), which is also
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regarded acting on $R$ as a group of conformal automorphisms, satisfies the following
conditions.

(1) Stabp(o) is an infinite $.q$roup but does not contain an element of infinite
order. In other words, $\mathit{0}\in\Lambda_{\infty}^{2}(\Gamma)$ .

(2) Every subgroup $G$ of $\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}_{\Gamma}(0)$ is of either finite order or finite index.
(3) For every infinite group $G$ of $\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}_{\Gamma}(0)$, the Teichm\"uller space $T$(R/G)

of the orbifold $R/G$ is a singleton.

We cannot tell whether an isolated limit point exists or not. In the next section,
we see that an abstract group having these properties actually exists and can be
realized as a group of conformal automorphisms of a Riemann surface. Then we
examine the dynamics of the isotropy subgroup. Via the Bers embedding of Te-
ichmiiller spaces, this is related to the study of isometric linear operators on Banach
spaces. See [FM].

\S 7. BURNSIDE GROUPS AND TARSKI MONSTERS

A finitely generated group $G$ is called a periodic $.q$roup if the order of each ele
ment of $G$ is finite, and bounded periodic group if the order is uniformly bounded.
For integers $m\geq 2$ and $n\geq 2,$ let $F_{m}$ be a free group of rank $m$ and $F_{m}^{(n)}$ the
characteristic subgroup of $F_{m}$ generated by all the elements of the form $f^{n}$ for
$f\in F_{m}$ . Then the quotient group $B(m, n)=F_{m}/F_{m}^{(n)}$ is an $m$-generator group
all of whose elements become the identity by $n$-times composition. This is called a
Burnside $.q$roup or a free periodic $.q$roup. It is easy to see that, for every bounded
periodic group $G$ , there exists a Burnside group $B(m, n)$ for some positive integers
$m$ and $n$ such that $G$ is the image of a homomorphism of $B(m, n)$ . For $m=2,$ it
had been known that $B(2,2)$ , $B(2,3)$ , $B(2,4)$ and $B(2,6)$ are finite groups. On the
other hand, Novikov and Adjan [NA] finally proved the following.

Proposition 7.1. For all sufficiently large odd $n\in$ N, the Burnside group $B(2, n)$

is an infinite $.q$roup.

As a problem to seek a stronger example, Smidt asked whether there is a finitely
generated, infinite group $G$ all of whose proper subgroups are finite. To this prob-
lem, the strongest example was given for which all of proper subgroups are contained
in a cyclic subgroup of order $n$ . This is obtained as a quotient group of $B(m, n)$ by
certain extra relations. See OPshanskii [O] and Adjan and Lysionpk [AL] among
other works. Such a group is sometimes called a Tarski monster.

Proposition 7.2. For all sufficiently large odd $n\in$ N, there eists a 2-generato$r$

Tarski monster of exponent $n$ .

The Burnside group $B$ (m, $n$) and its quotient can be realized as a group of
conformal automorphisms of a Riemann surface. Indeed, since the fundamental
group of an $(m+1)$-times punctured sphere is isomorphic to the free group $\mathrm{F}_{m}$ , a
covering Riema$\mathrm{n}\mathrm{n}$ surface $R$ corresponding to the subgroup $F_{m}^{(n)}$ $\mathrm{h}\mathrm{s}$ the covering
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transformation group $B(m,n)=F_{m}/F_{m}^{(n)}$ . This means that a subgroup of Aut(7?)
is isomorphic to $B(m, n)$ .

From this argument, we have a hopeful candidate for providing an isolated limit
point of Mod(7?), which satisfies all necessary conditions given in Theorem 6.1.

Lemma 7.3. Let $R$ be a Riemann surface that covers the three-times punctured
sphere with the cover .n.q transformation $.q$roup isomorphic to a Tarski monster of
2 $.q$enerators. Then the isotropy subgroup Stabp(o) for $\Gamma=$ Mod(ff), which is
identified with Aut(ff), satisfies the four conditions presented in Theorem 6.1

We conjecture that, in the circumstances of Lemma 7.3, $0$ $\in T(R)$ is an isolated
limit point of Mod(il). We look for conversely what happens if this conjecture is
not valid. Let $f$ be a quasiconformal automorphism of the unit disk $\Delta$ that is a lift
of a quasiconformal homeomorphism of $R$ corresponding to a limit point $p\neq 0$ of
Stabr (o). Then $fMf^{-1}$ is a quasiconformal group, where $M$ is the Fuchsian group
of the three-times punctured sphere. By the assumption that $p$ is a limit point
and other consideration, we can choose generators of $fMf^{-1}$ so that their maximal
dilatations are arbitrarily close to 1. One may think that this rarely happens, ffom
which we can seek a way of solving the conjecture. However, as is seen in Theorem
5.4, this can happen if Stabr (o) contains an infinite cyclic group. Hence a solution
of the conjecture seems heavily depending on the group structure of $\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}_{\Gamma}(0)$ .

\S 8. EXCEPTIONAL limit POINTS AND DENSITY OF GENERIC LIMIT POINTS

We wish to claim that the set Ao(F) of the generic limit points for $\Gamma\subset \mathrm{M}\mathrm{o}\mathrm{d}(R)$

is dense in $\Lambda(\Gamma)$ . However, since an isolated limit point is not in the closure of
$\Lambda_{0}(\mathrm{I})$ for instance, we have to make a certain modification to justify this density
problem.

We have seen in Theorem 6.1 that if $p\in\Lambda(\mathrm{I})$ is an isolated limit point of
$\Gamma\subset$ Mod(R), then the orbifold $R/$ Stabr(p) has no moduli. This property forces
the isotropy subgroup Stabp(p) to satisfy certain algebraic conditions. However,
even if the condition of no moduli is removed, an isotropy subgroup is still possible
to keep the same algebraic conditions. In this case, there appears a locus of limit
points in the Teichmiiller space. We define these points as exceptional.

Definition. A limit point $p\in$ A(F) is exceptional if $p\not\in$ Ao(F) and if there exists
a neighborhood $U$ of $p$ in $T(R)$ such that $U\cap$ A(F) $\subset$ A4 $(\Gamma)$ . The set of all
exceptional limit points is called the exceptional set and denoted by $E(\Gamma)$ .

By this definition and Theorem 6.1, it is clear that

{isolated points} $\subset$ A(F) $\subset\Lambda_{\infty}^{2}(\Gamma)$ .

However, we do not know yet the existence of exceptional limit points, not to
mention isolated limit points. Similarly to the case of an isolated limit point, the
isotropy subgroup for an exceptional limit point has a distinguished property.
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Proposition 8.1. For an exceptional limit point $p\in$ E(T), the isotropy subgroup
$\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}_{\Gamma}(p)$ contains a finitely generated infinite $.q$roup $G$ whose proper subgroups are
all finite.

The following theorem and its corollary provide an easier test for an exceptional
limit point.

Theorem 8.2. Let $\Gamma$ be a subgroup of Mod(ff). If $\mathrm{A}(\mathrm{F})=\Lambda_{\infty}(\Gamma)$ , then they
are coincident with $\Lambda_{\infty}\underline’(\Gamma)$ . More generally, for an open subset $U$ in $T(R)$ , if
$U\cap$ A(F) $=U\cap$ A(F), then they are coincident with $U\cap\Lambda_{\infty}^{2}(\Gamma)$ .

Corollary 8.3. Let $\Gamma$ be a subgroup of Nod(R). If $p\in$ A(F) $-\Lambda_{0}(\Gamma)$ has a neigh-
borhood $U$ such that $U\cap\Lambda(\mathrm{I})$ $\subset\Lambda_{\infty}(\Gamma)_{f}$ then $p$ belongs to $E(\Gamma)$ .

Now we can formulate the density of generic limit points in the following form.
This is the best possible assertion if we respect the existence of exceptional limit
points.

Theorem 8.4. Let $\Gamma$ be a subgroup of Mod(ff). Then $\Lambda_{0}(\mathrm{I})$ is dense in $\Lambda(\Gamma)-$

$E(\Gamma)$ .

Also we can add the following characterization in the general conditions for weak
discontinuity given in Proposition 2.3.

Proposition 8.5. Let $\Gamma$ be a subgroup of Mod(ff). Then $\Gamma$ acts weakly discontin-
uously on $T(R)$ if and only if $\Lambda(\mathrm{I})$ $=$ A(F).

We conjecture that the condition $\Lambda(\Gamma)=$ E(T) above is equivalent to the con-
dition $\Lambda(\mathrm{I})$ $=\Lambda_{\infty}$ $(\mathrm{I})$ , which is equivalent to $\Lambda(\mathrm{I})$ $=$ $\mathrm{x}4(\Gamma)$ by Theorem 8.2. We
extend this problem to Conjecture 9.2 in the next section.

\S 9. FIXED IJMIT POINTS ARE NOT DENSE

We prove that the set of the fixed limit points are not dense in the limit set.
This gives a contrast to the nature of familiar dynamics such as Kleinian groups
and iteration of rational maps. Strictly speaking, there may exist exceptional cases
where the above statement is not true, for example, the case where $\mathrm{A}(\mathrm{F})$ is coin-
cident with the exceptional set $E(\Gamma)$ . Hence certain restriction to the limit set is
necessary to justify the statement. We state it in the following form.

Theorem 9.1. The set $\mathrm{x}\mathrm{p}(\Gamma)$ is not dense in the limit set $\Lambda(\Gamma)$ .

Since the closure of $\Lambda_{\infty}^{1}(\Gamma)$ is invariant under $\Gamma$ , this result in particular implies
that $\mathrm{A}(\mathrm{r})$ contains a smaller $\Gamma$-invariant closed subset properly.

A stronger assertion than Theorem 9.1 is expected to be true, which will be a
best possible result. However, there still remain some technical problems to prove
it. A main concern is a fact that a fixed limit point can be a generic limit point at
the same time.
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Conjecture 9,2. If $\mathrm{A}(\mathrm{F})-\mathrm{E}(\mathrm{T})$ is not empty, then $\Lambda_{\infty}(\Gamma)$ is not dense in $\Lambda(\Gamma)$ .

We wish to choose a limit point $p\in\Lambda_{\infty}^{1}(\Gamma)$ such that Stabr (p) itself is cyclic, in
other words, there is no extra element that fixes $p$ . This is always possible by the
following lemma based on Epstein [E], where it was used to find a point $p\in$ T{R)
that is not fixed by any element of Mod(R). Since Mod(R) may be uncountable in
general, the number of the fixed point loci for elliptic elements of Mod(R) can be
uncountable. Then the Baire category theorem does not work, which is the reason
why we need an extra argument here. In this lemma, the countability of the loci
comes from the number of the simple closed geodesies on $R$ .

Lemma 9.3. For a subgroup $\Gamma$ ofMod(ff), there exist a countable number ofproper
subsets $\{V_{i}\}_{i=1}^{\infty}$ such that $\bigcup_{\gamma\in\Gamma}$ Fix(7) is contained in $\bigcup_{i=1}^{\infty}7$ . Moreover, for an
elliptic element $g\in\Gamma$ of infinite order,

$\mathrm{F}\mathrm{i}\mathrm{x}(g)\cap\cup\gamma\in\Gamma-\langle g\rangle$

Fix(\gamma )

is contained $in\cup$ Fix(7) $\cap$ $\mathrm{y},$ , where the union is taken over all $i’\in \mathrm{N}$ such that
$V_{i’}$ does not contain Fix(g).

Another argument for the proof of Theorem 9.1 involves finding a limit point of
a cyclic group (g) of infinite order that is not lie on the closure $\overline{\Lambda_{\infty}(g)}$. In [FM],
this is proved for a particular Riemann surface. Here we prove it more generally as
follows.

Lemma 9.4. Let $R$ be a Riemann surface that admits a confo rmal automorphism
$g\in$ Aut(i2) of infinite order. Assume that there is a simple closed $.q$eodesic $c$ such
that $\{g^{i}(c)\}_{i\in \mathbb{Z}}$ are mutually disjoint to each other. Then, for every neighborhood
$U$ of the origin $0$ $\in$ T{R), there eists $a$ .qeneric limit point $q\in$ Ao(g) $\cap U$ for the
cyclic group $\langle$ $g)\subset$ Mod(ff) that does not belong to the closure $\overline{\Lambda_{\infty}(g)}$.

The combination of Lemmata 9.3 and 9.4 yields Theorem 9.1.

\S 10. TOPOLOGY OF THE $\mathrm{M}\mathrm{O}\mathrm{D}\mathrm{U}\mathrm{L}\mathrm{I}\backslash$ SPACE

We investigate general topological structure of the moduli space of an analytically
infinite Riemann surface. First we have the following theorem concerning the orbit
of Mod(ff) in $\mathrm{T}\{\mathrm{R})$ .

Theorem 10.1. For every point $p\in T(R)$ and for every subgroup $\Gamma$ of Nod(R),
the orbit $\mathrm{F}(\mathrm{p})$ is nowhere dense in $T(R)$ .

Since the topological moduli space $M(R)$ may fail to satisfy the first separation
axiom, the closure of a point set may become larger. However, the above theorem
implies that the closure cannot be so large in the following sense.
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Corollary 10.2. For every point $\sigma\in M(R)$ , the closure $\{\sigma\}$ of the point set does
not have interior points.

Next we consider the metric completion $\overline{M_{\Phi}(R)}^{d}$ of the metric moduli subspace
M$(R) with a distance $d$ . Here $d$ is the path metric on $M_{\Phi}(R)$ induced by the
pseudO-distance $d_{M}$ on $M(R)$ . The restriction of the projection $\overline{\pi}$ : $M(R)arrow M_{*}(R)$

to $\mathrm{f}_{\Phi}(7?)$ extends to a continuous map $\phi$ : $\ovalbox{\tt\small REJECT} M_{\Phi}(R)arrow M_{*}(R)$ . We expect that 6
is a bijective isometry. In order to prove this claim, we formulate the following.

Conjecture 10.3. For every subgroup $\Gamma\subset$ Mod(R), the region of stability $\Phi(\mathrm{r})$

is dense in $T(R)$ and is connected in each open subset of $T(R)$ .
Hereafter, we assume that $T(R)$ satisfies the bounded geometry condition, under

which $\Phi(\mathrm{t})$ $=$ fi(F) by Theorem 4.3, and prove the above conjecture.
Fujikawa [F] proved that, if $R$ satisfies the bounded geometry condition, then

$\Lambda(\mathrm{I})$ is a proper subset of $T(R)$ for a subgroup $\Gamma\subset$ Mod(ff). Extending this result,
we have the following.

Theorem 10.4. If $T(R)$ satisfies the bounded $.q$ eometry condition, then, for a sub-
$.q$roup $\Gamma$ of Mod(R), the limit set $\mathrm{A}(\mathrm{F})$ is nowhere dense in $T(R)$ .

On the other hand, we can prove the connectivity of $\mathrm{O}(\mathrm{F})$ everywhere.

Theorem 10.5. If $T(R)$ satisfies the bounded geometry condition, then, for a sub-
$.q$roup $\Gamma$ of Mod(R), $(F)\cap U is connected for every open subset $U$ of $T(R)$ .

As immediate consequences ffom these theorems, we have desired results under
the bounded geometry assumption.

Corollary 10.6. If $T(R)$ satisfies the bounded $.q$eometr) condition, then $M_{\Phi}(R)=$

$M_{\Omega}(R)$ is a connected open dense subset of $M(R)$ .
Corollary 10.7. Assume that $T(R)$ satisfies the bounded $.q$eometry condition. In

this case, the map $\phi$ : $\mathrm{M}_{\Phi}(7?)arrow$ $\mathrm{Z}(R)$ is a bijective isometry.

REFERENCES
[AL] S. Adjan and I. Lysionok, On groups all of whose proper subgroups are finite cyclic, Izv.

Akad. Nauk SSSR Ser. Mat. 55 (1991), 933-990 (Russian); English translation in Math.
USSR. Izv. 39 (1992) 905-957.

[B] L. Bers, An extremal problem for quasiconformal mappings and a theorem by Thurston,
Acta Math. 141 (1978), 73-98.

[E] A. Epstein, Effectiveness of Teichmiiller modular groups, In the tradition of Ahlfors and
Bers, Contemporary $\mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}$ . 256, AMS, 2000, pp. 69-74.

[F] E. Fujikawa, Limit sets and regions of discontinuity of Teichmiiller modular groups, Proc.
Amer. Math. Soc. 132 (2004), 117-126.

[FM] E. Fujikawa and K. Matsuzaki, Recurrent and periodic points for isometries on $L^{\infty}$ spaces
(preprint).

[FST] E. Fujikawa, H. Shiga and M. Taniguchi, On the action of the mapping class group for
Riemann surfaces of infinite type, J. Math. Soc. Japan (to appear).



E14

[G]
[H]

[K]
[M]

$[]$

$[\mathrm{N}\mathrm{A}]$

$[\mathrm{O}]$

[T1]

[T2]

[K]
[M]

$[]$

D. Gabai, Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992), 447-510.
A. Hinkkanen, The structure of certain quasisymmetric groups, Mem. Amer. Math. Soc.
83 (1990), no 422.
S. Kerchhoff, The Nielsen realization problem, Ann. of Math. 117 (1983), 235-265.
V. Markovic, Biholomorphic maps between Teichmiller spaces, Duke Math. J. 120 (2004),
$405\triangleleft 31$ .
K. Matsuzaki, A countable Teichmiller modular group, iffans. Amer. Math. Soc. (to ap-
pear).
P. Novikov and S. Adjan, Infinite periodic groups $I$, $II$, $III$, Izv. Akad. Nauk SSSR Ser.
Mat. 32 (1968), 212-244, 251-524, 709-731 (Russian); English translation in Math. USSR.
Izv. 2 (1968) 209-236, 241-479, 665-685.
A. Ol’shanskii, Groups of bound$ed$ period with subgroups of prime order, Algebra $\mathrm{i}$ Logika
21 (1982), 553-618 (Russian); English translation in Algebra and logic 21 (1982) 369-418.
P. Tukia, On twO-dimensional quasiconformal groups, Ann. Acad. Sci. Fenn. Ser. A I Math.
5 (1980), 73-78.
P. Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391
(1988), 1-54.

$\mathrm{o}\mathrm{C}$
$\mathrm{H}$ A $\mathrm{N}\mathrm{O}\mathrm{M}$ $\mathrm{I}\mathrm{Z}\mathrm{U}$

$\mathrm{u}$
$\mathrm{N}$ I $\mathrm{V}\mathrm{E}\mathrm{R}\mathrm{S}$ I $\mathrm{T}\mathrm{Y}$ , $\mathrm{o}\mathrm{T}\mathrm{S}\mathrm{U}$ $\mathrm{X}\mathrm{X}$ $2-1-1$ , $\mathrm{B}\mathrm{U}\mathrm{N}\mathrm{K}\mathrm{Y}\mathrm{O}$ $-\kappa \mathrm{u}$ , $\mathrm{T}\mathrm{o}\mathrm{K}\mathrm{V}\mathrm{O}$ 112-8610, $\mathrm{J}$ A $\mathrm{P}$ A $\mathrm{N}$

$E$-rnail address: matsuzak(hath .ocha. $\mathrm{a}\mathrm{c}$ .jp


