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1 Motivation from knot theory - cusp shape -

Let $K\subset S^{3}$ b$\mathrm{e}$ a hyperbolic knot and $\rho:\pi_{1}(S^{3}-K)arrow$ PSL(2, C) the holonomy
representation. We may assume:

$\rho(m)=(\begin{array}{ll}1 10 1\end{array})$ , $\rho(l)=(\begin{array}{ll}\mathrm{l} \omega 0 1\end{array})$ ,

for some complex number $\omega$ , where $m$ and 1 are the longitude and the meridian
of $K$ , respectively. Then the quotient of the horoball $\{(z,t)\in \mathbb{H}^{3}|\mathrm{t}\geq t_{0}\}$ with
$t_{0}>1$ by the subgroup $\langle$p(yya), $\rho(l)\rangle$ is identified with $N(K)-K,$ where $N(K)$ is

for some complex number $\omega$ , where $m$ and $l$ are the longitude and the meridian
of $K$ , respectively. Then the quotient of the horoball $\{(z,t)\in \mathbb{H}^{3}|\mathrm{t}\geq t_{0}\}$ with
$t_{0}>1$ by the subgroup $\langle\rho(m), \rho(l)\rangle$ is identified with $N(K)-K,$ where $N(K)$ is
a regular neighborhood of $K$ . The torus $\partial N(K)$ has an Euclidean structure and
is called the cusp torus, and this Euclidean torus (modulo scale) is isomorphic
to $\mathbb{C}/\langle 1,\omega\rangle$ . We call the complex number $\omega$ the modulus of the cusp torus of
$K$ , or the cusp shape of $K$ , and denote it by Modulus(AC ). Since the complete
hyperbolic structure on $S^{3}-K$ is unique by Mostow’s rigidity theorem, the cusp
shape is a topological invariant of $K$ .
Example 1.1. For a sequence of integers $(a_{1}, a_{2},$\cdots ,$a_{n})$ , let S[$a_{1}$ , a2, \cdots , $a_{n}$ ]
be the 2-bridge knot of type

$\frac{q}{p}=a_{1}+$ 1
1

1
$a_{2}+\ldots+\underline{1}$

$a_{n}$

Then we have the following by using SnapPea $\mathrm{M}$ :

Modulus$(S[2, 2])=2\mathrm{J}i$ ,
Modulus(S[2, 2, 2, $2]$ ) $=$ 7.260774402783i,

Modulus(S[2, 2, $2,$ $-2]$ ) $=$ 5.5768014361792 $+$ 5.9133486946719i.

The fact that the cusp shapes of the first two knots in the above example are
pure imaginary reflects the amphicheirality of the knots. In fact, the following
observation had been given by R. Riley [R].

The fact that the cusp shapes of the first two knots in the above example are
pure imaginary reflects the amphicheirality of the knots. In fact, the following
observation had been given by R. Riley [R].
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Proposition 1.2. If a hyperbolic knot K is amphicheiral, then the cusp, shape

of K is pure imaginary.

It was proved by Nimershiem [N] that the cusp shapes of cusped hyperbolic
manifolds form a dense subset of the moduli space of the Euclidean tori.

The Main Theorem 4.2 in this paper gives a formula of the cusp shape of a
hyperbolic fibered knot in terms of the complex translation lengths of essential
simple loops on the fiber surface.

2 McShane’s identity
In this section we recall McShane’$\mathrm{s}$ identity proved in [McSl] and $[\mathrm{M}\mathrm{c}\mathrm{S}2]$ . Let
$F$ be $\mathrm{m}$ orientable surface of fifinite type with at least one puncture, $p$ . By $S$

we denote the set of the isotopy classes of essential (unoriented) simple loops in
the punctured surface $F$ . A simple arc $\delta$ in $F$ with both ends in a puncture $p$ is
said to be essential if it does not bound a monogon (i.e., a disk with one point

removed from its boundary). $\dot{\mathrm{B}}\mathrm{y}\Delta$ (resp. $\tilde{\Delta}$ ) we denote the set of the isotopy
classes of unoriented (resp. oriented) essential simple arcs in $F$ with both ends
in $p$ . We shall abuse notation to denote a simple loop or an arc and its isotopy
class by the same symbol. For each essential arc $\delta\in\Delta$ (or $\delta$

$\in\tilde{\Delta}$ ) there is $\mathrm{a}$

unique (up to isotopy) unordered pair of simple loops $\alpha(\delta)$ and $\beta(\delta)$ such that
$\alpha(\delta)\cup\beta(\delta)$ bounds a punctured annulus containing $\delta$ (cf. [$\mathrm{M}\mathrm{c}\mathrm{S}2,$ Proposition
1]). These loops determine a pair of elements of $\mathrm{S}$ $\cup P,$ where $\mathrm{F}$ is the set of
the isotopy classes of peripheral simple loops in $Fr$ We note the following facts.

1. If $F$ is a punctured torus, then $\alpha(\delta)=\beta(\delta)\in S.$ Otherwise, $\alpha(\delta)\neq\beta(\delta)$ .

2. One of $\alpha(\delta)$ and $\beta(\delta)$ belongs to $\mathrm{P}$ if and only if $\delta$ bounds a once-punctured
monogon.

Now assume that $F$ is endowed with a complete hyperbolic structure md let
$\rho_{0}$ : $\mathrm{T}_{1}(F)arrow$ PSL $(2, \mathbb{R})$ be the holonomy. For an element $\delta$ $\in\Delta$ (or $\delta\in\overline{\Delta}$ ), set

$h_{\rho 0}( \delta):=\frac{1}{1+e^{1}2(l_{\rho_{0}}(\alpha(\delta))+l_{\rho_{0}}(\beta(\delta)))}$,

where $l_{\rho 0}(\alpha)$ denotes the length of $\alpha$ with respect to the hyperbolic metric.
Then the following theorem was proved by McShane (see $[\mathrm{M}\mathrm{c}\mathrm{S}2,$ Theorem 2]).

Theorem 2.1 (McShane $[\mathrm{M}\mathrm{c}\mathrm{S}2]$ ). For a punctured hyperbolic surface $F$ with
holonomy $\mathrm{p}\mathrm{o}$ ,

$\sum h_{\rho 0}(\delta)=\frac{1}{2}$ .
$\delta\in\Delta$

Example 2.2. (1) Suppose $F$ is a three-times punctured sphere. Then $\Delta$ con-
sists of a single arc $\delta$ , and both $\alpha(\delta)$ and $\beta(\delta)$ are peripheral. Hence we have

$\sum h_{\rho_{\mathrm{O}}}(\delta)=h_{\rho_{\mathrm{O}}}(\delta)=\frac{1}{1+e^{1}2(0+0)}=\frac{1}{2}$ .
$\delta\in\Delta$
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(2) Suppose $F$ is a once-punctured torus. Then $\alpha(\delta)=\beta(\delta)$ for any $\delta$ and
McShane’s identity is equivalent to the following identity.

$\sum\frac{1}{1+e^{l_{\rho_{\mathrm{O}}}(\gamma)}}=\frac{1}{2}$ . (1)
$\gamma\in S$

The following interpretation of the above identity was brought to us from T.
Jorgensen. Suppose the hyperbolic once-punctured torus contains a very short
simple closed geodesic $\gamma_{0}$ . Then $F$ contains a very long tube with core $\gamma_{0}$ and
any simple closed geodesic ) different fiom 70 must pass through the long tube
and hence it is very long. Hence

$\sum\frac{1}{1+e^{l_{\rho_{\mathrm{O}}}(\gamma)}}=\frac{1}{1+e^{l_{\rho_{0}}(\gamma_{0})}}+$ $\sum$ $\frac{1}{1+e^{l,(\gamma)}0}$

$\gamma\in S$ $\gamma\in S_{-[\mathrm{y}\mathrm{o}\}}$

$\sim\frac{1}{1+e^{0}}+\frac{1}{1+e^{\infty}}+\frac{1}{1+e^{\infty}}+\cdot\cdot \mathrm{t}$

$= \frac{1}{2}+0$ $+0$ $+\cdot$ . . $= \frac{1}{2}$ .

In the remainder of this section, we explain an idea for the proofof McShane’s
identity. Let $\mathcal{G}$ be the set of the oriented complete simple geodesies in $F=$
$\mathbb{H}^{2}/\rho_{0}(\pi_{1}(F))$ emanating from the puncture $p$ . Then the set A is regarded as a
subset of $\mathcal{G}$ . Let $\tilde{\mathcal{G}}$ be the set of oriented complete geodesies in $\mathbb{H}^{2}$ emanating
from oo which projects to a simple geodesic in $F$ . Then $\tilde{\mathcal{G}}$ is identified with a
subset of $\mathbb{R}=\partial \mathbb{H}^{2}-\{\infty\}$ by associating each element $i$

$\in\tilde{\mathcal{G}}$ with its endpoint
$z_{\rho_{\mathrm{O}}}(\tilde{\mu})\in$ $fJl$ . This induces an identifification of $\mathcal{G}$ with a subset of the circle
$S_{p}^{1}:=\mathbb{R}/\langle\rho_{0}(m)\rangle=$ $\mathrm{M}/\mathrm{Z}$ . Here $S_{p}^{1}$ inherits the standard metric ffom that of R.
In particular, the total length of $S_{p}^{1}$ is 1. Then the following result has been
proved by McShane [$\mathrm{M}\mathrm{c}\mathrm{S}2$ , Theorem 4 and Proposition 3].

Proposition 2.3. (1) A consists of the isolated points of $\mathcal{G}$ , and $\mathcal{G}$

$-\tilde{\Delta}$ is $a$

Cantor set of measure 0.
(2) For $\delta\in\tilde{\Delta}$ , let $J(\delta)$ be the maximal open interval in $S_{p}^{1}$ such that $J(\delta)\cap$

($;=\{\delta\}$ . Then, genetically, the two boundary points of $J(\delta)$ correspond to the
elements $of\mathcal{G}$ which spiral to the oriented simple closed geodesies $\alpha(\delta)$ and $\beta(\delta)$ ,
respectively. Here $\alpha(\delta)$ and $\beta(\delta)$ are oriented so that they are homologous to 8 in
the annttltts obtained $fmm$ the punctured annulus bounded by $\alpha(\delta)\cup\beta(\delta)$ through
one point compactification. In the $spec\dot{\iota}al$ case when $\alpha(\delta)$ or $\beta(\delta)$ is a periphe$rnl$

circle around a puncture $q$ , then the corresponding boundary point of $J(\delta)$ is $a$

simple oriented geodesic joining $p$ to $q$ .
(S) The length of $J(\delta)$ is equal to $h_{\rho 0}(\delta)$ for every $\delta\in$ A.

McShane’s original identity [$\mathrm{M}\mathrm{c}\mathrm{S}2$ , Theorem 2] is obtained fiom the above
proposition as folows. Since the measure of $\mathcal{G}-\tilde{\Delta}$ is 0, the length of $S_{p}^{1}$ is equal
to the infinite sum of the lengths of $J(\delta)$ where $\delta$ runs over all elements of A.
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Hence

$1= \sum$ (length of $J(\delta)$ ) $=5$ $h_{\rho 0}( \delta)=2\sum h_{\rho 0}$ $(\delta)$ .
$\delta\in\tilde{\Delta}$ $\delta\epsilon\vec{\Delta}$

$\delta\in$ A

By a similar argument, we obtain the following corollary.

Corollary 2.4. Let $\mu_{1}$ and $\mu_{2}$ be elements of $\mathcal{G}-\tilde{\Delta}\subset S_{p}^{1}$ . Let $[\mu_{1}, \mu_{2}]$ be
the interval of $S_{p}^{1}$ such that $\partial[\mu_{1},\mu_{2}]=\mu_{2}-\mu_{1}$ with respect to the orientation
induced from the natural orientation of $S_{p}^{1}$ . Then the length of $[\mu_{1},\mu_{2}]$ is equal
to

$\sum$ $h_{\rho_{0}}(\delta)$ .
$\delta\in \mathrm{E}/1,/_{2}’ 1\cap\vec{\Delta}$

3 Quasifuchsian groups and complex translation
lengths

Quasifuchsian representations. Let $F$ be an orient complete hyper-
bolic surface of fifinite type with at least one puncture. Let $\rho 0$ : $\pi_{1}(F)arrow$

PSL(2, R) be the holonomy representation and $\Gamma_{0}:=\rho 0(\pi_{1}(F))$ the holonomy
group. A representation $\rho:\pi_{1}(F)$ $arrow$ PSL $(2, \mathbb{C})$ is said to be type-preserving if $\rho$

sends the peripheral elements to parabolic transformations and $\rho$ is irreducible.
Two representations $\rho$ and $\rho’$ are said to be equivalent if $\rho’$ is equal to the
composition of $\rho$ and an inner-automorphism of PSL $(2, \mathbb{C})$ . A type-preserving
representation $\rho$ is said to be fuchsian if it is equivalent to a discrete faithful
representation into PSL $(2, \mathbb{R})$ . If $\rho$ is fuchsian, the limit set of the image of $\rho$

is a round circle. A type-preserving representation $\rho$ is said to be quasifuchsian
if it is quasiconformally equivalent to a fuchsian representation. Let $Q\mathcal{F}$ (resp.
r) be the space of the equivalence classes of quasifuchsian (resp. fuchsian)
representations of $\pi_{1}(F)$ . Then the complex structure of PSL(2, C) descends
to the complex structure on $Q\mathcal{F}$ , and $\mathcal{F}$ is a totally real analytic submani-
fold of $Q\mathcal{F}$ with $\dim_{\mathrm{B}}7$ $=\dim \mathbb{C}Q\mathcal{F}$ . By Bers’ simultaneous uniformization,
the quasifuchsian space $QT$ is canonically identified with the product space
Teich(F) $\cross$ Teich(F) as complex manifold. In particular $Q\mathcal{F}$ is contractible.

Let $p$ be a puncture and $m$ be a meridian around $p$ , i.e., a peripheral simple
loop around $p$ . We choose a base point for $\pi_{1}(F)$ on the circle $m$ and denote
the element of $\mathrm{r}_{1}(F)$ represented by $m$ by the same symbol. Pick an element
$70$ $\in\pi_{1}$ $(F)$ represented by a non-peripheral loop. Then each element of $Q\mathcal{F}$ has
a unique representative $\rho\in \mathrm{H}\mathrm{o}\mathrm{m}$( $\pi_{1}(F)$ , PSL(2, $\mathbb{C})$ ) which satisfies the following
conditions :

$\rho(m)=(\begin{array}{ll}1 10 1\end{array})$ , $\mathrm{F}\mathrm{i}\mathrm{x}^{+}\rho(\gamma 0)=0,$ $\mathrm{F}\mathrm{i}\mathrm{x}^{+}\rho(m\gamma 0m^{-1})=1.$
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Here $\mathrm{F}\mathrm{i}\mathrm{x}^{+}$ denotes the attractive fixed point of a loxodromic transformation.
The correspondence

$Q\mathcal{F}\ni[\rho]\vdasharrow\rho\in$ Hom($\pi_{1}(F)$ , PSL(2, $\mathbb{C})$ )

gives a holomorphic cross section of $Q\mathcal{F}$ . Throughout this paper, we identify
the space $Q\mathcal{F}$ with its image by the holomorphic section.

Complex translation length. Recall that the complex translation length
$\lambda(A)$ of a loxodromic element $A\in$ PSL(2, C) is defined to be the unique element
of $\mathbb{C}/2\pi i\mathbb{Z}$ satisfying the following conditions:

1. The real part $\Re(\lambda(A))>0$ is the translation length along the axis of $A$ .
Thus $\Re(\lambda(A))=\min_{oe\in}\mathrm{B}^{3}$ $d(x, A(x))$ , where $d$ is the hyperbolic metric.

2. The imaginary part $9(\lambda(A))$ is the rotation angle of $A$ around the axis of
$A$ .

If $A$ is parabolic, then $\lambda(A)$ is defined to be $0\in \mathbb{C}/2\pi i\mathbb{Z}$ . Then $\lambda(A)\in \mathbb{C}/2\pi i\mathbb{Z}$

is characterized by

2 $\cosh\frac{\lambda(A)}{2}=\pm \mathrm{t}\mathrm{r}(4)$ , $\Re(\lambda(A))>0.$

Let cr be an essential simple loop in $F$ , i.e., a simple loop in $F$ which does not
bound a disk nor a once-punctured disk in $F\mathrm{r}$ We abuse notation to denote
an element of $\pi_{1}(F)$ represented by $\alpha$ by the same symbol. Then, for any
quasifuchsian representation $\rho$ of $\pi_{1}(F)$ , $\rho(\alpha)$ is a loxodromic transformation.
The correspondence $\rho\vdash+\lambda(\rho(\alpha))$ determines a holomorphic function $Q\mathcal{F}arrow$

$\mathbb{C}/2\pi i\mathbb{Z}$ . Since $Q\mathcal{F}$ is contractible, this map lifts to a holomorphic function
$Q\mathcal{F}$ $arrow \mathbb{C}$ which sends 7 into R. We denote by $\lambda_{\rho}(\alpha)$ the complex number
obtained as the image of $\rho\in Q\mathcal{F}$ by the holomorphic function, and continue to
call it the complex translation length of $\rho(\alpha)$ . If a is a peripheral simple loop,
i.e., $\alpha$ bounds a once-punctured disk in $F$ , then we define $\lambda_{\rho}(\alpha)=0\in$ C.

Then the following theorem generalizes McShane ’s identity for $\mathrm{f}\mathrm{u}\mathrm{c}\mathrm{h}\mathrm{s}\mathrm{i}_{\mathfrak{W}}$ punc-
tured surface groups (see Theorem 2.1) and Bowditch’s generalization [B3, The-
orem 3] of (1) for quasifuchsian punctured torus groups.

Theorem 3.1. For any $\rho\in Q\mathcal{F}$, we have

$\sum h_{\rho}(\delta)=\frac{1}{2}$ .
$\delta\in\Delta$

4 Hyperbolic punctured surface bundles
In this section, we present a generalization of Bowditch’s result [B2] on hy-
perbolic once-punctured torus bundles. Let $\varphi$ : $Farrow F$ be a pseud0-Anosov
homeomorphism preserving a puncture $p$ , and let $B_{\varphi}$

.
be the $F$-bundle over $S^{1}$
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with monodromy $\varphi$ . Then $B_{\varphi}$ admits a unique complete hyperbolic structure
of finite volume, and each cusp torus carries a Euclidean structure. Let $\partial_{p}B_{\varphi}$

be the cusp torus around the suspension of $p$ . A meridian $m$ of $\partial_{p}B_{\varphi}$ is defined
as the meridian around $p$ of a fifiber. We shall specify a longitude $l$ of $\partial_{p}B_{\varphi}$

in Definition 4.4. Then, as in Section 1, the modulus $\mathrm{M}\mathrm{o}\mathrm{d}\mathrm{u}1\mathrm{u}\mathrm{s}(\partial_{p}B_{\varphi})$ of the
cusp torus $\partial_{p}B_{\varphi}$ , with respect to the meridian-longitude pair $(m,l)$ , is defined
as follows: Let $\rho$ : $\pi_{1}(B_{\varphi})arrow$ PSL(2, C) be the holonomy representation of the
hyperbolic manifold $B_{\varphi}$ such that $\rho(m)$ is the parallel translation $z\vdash+$ $z+1.$

Then $\rho(l)$ is the parallel translation $z\succ\succ z+\mathrm{M}\mathrm{o}\mathrm{d}\mathrm{u}1\mathrm{u}\mathrm{s}(\partial_{p}B_{\varphi})$ .
To recall Bowditch’$\mathrm{s}$ theorem, suppose for a while that $F$ is a once-punctured

torus $T$ . Then the monodromy $\varphi$ induces a self-homeomorphism of the projec-
tive measured lamination space $\mathcal{P}\mathcal{M}\mathcal{L}(T)\cong S^{1}$ preserving the subset S. This
homeomorphism has two fixed points in $\mathcal{P}\mathcal{M}\mathcal{L}(T)$ , namely the stable and unsta-
ble laminations, $\nu^{+}$ and $\nu^{-}$ , of the monodromy. Since $\nu^{+}$ and $\nu^{-}$ are irrational,
they determine a natural partition of $S$ into two subsets $S_{L}$ and $S_{R}$ . This in
turn gives a partition of the quotient set $S/\langle\varphi\rangle$ (which is identified with the set
of essential simple loops on a fiber $F$ modulo isotopy in the ambient 3-manif0ld
$B_{\varphi})$ into two subsets $S_{L}/\langle\varphi\rangle$ and $S_{R}/\langle\varphi\rangle$ . For two elements $\alpha$ and $\alpha’$ of $S$ rep-
resenting the same element in $S/\langle\varphi\rangle$ , the complex translation lengths of $\rho(\alpha)$

and $\rho(\alpha’)$ coincide. So, the complex translation length $\lambda_{\rho}(\alpha)$ $\in \mathbb{C}/2\pi i\mathbb{Z}$ is well-
defined for $\alpha\in S/\langle\varphi\rangle$ . It should be noted that $e^{\lambda_{\rho}(\alpha)}$ is a well-defifined complex
number. Then the following theorem was proved by Bowditch [B2].

Theorem 4.1 (Bowditch [B2]). Let $B_{\varphi}$ be a complete hyperbolic 3-manif0ld
which fiber over the circle with fiber a once-punctured torus T with monodromy
7, Then the modulus $\mathrm{M}\mathrm{o}\mathrm{d}\mathrm{u}1\mathrm{u}\mathrm{s}(\partial_{p}B_{\varphi})$ of the cusp torus $\partial_{p}B_{\varphi}$ , with respect to $a$

suitable choice of a longitude l, is given by the following formula.

$\pm \mathrm{M}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{l}\mathrm{u}\mathrm{s}(\partial_{p}B_{\varphi})=\sum_{\alpha\in S_{L/\langle\varphi\}}}\frac{1}{1+e^{\lambda_{\rho}(\alpha)}}=-\sum_{\alpha\in S_{R/\{\varphi\rangle}}\frac{1}{1+e^{\lambda_{\rho}(\alpha)}}$
.

In the general punctured surface bundle case, we study the action of the
monodromy $\varphi$ on the sets $\mathcal{G}$ and $\tilde{\Delta}$ , and specify a certain subset, $\vec{\Delta}_{\varphi}$ , of $\vec{\Delta}$ in
Definition 4.6 (cf. Remark 4.7). Then our generalization of Bowditch’s result
can be stated as follows.

Theorem 4.2. Let $B_{\varphi}$ be a complete hyperbolic 3-manifold which fiber over
the circle with fiber $F$ with monodromy $\varphi$ that preserves the puncture $p$ . Then
the modulus $\mathrm{M}\mathrm{o}\mathrm{d}\mathrm{u}1\mathrm{u}\mathrm{s}(\partial_{p}B_{\varphi})$ of the cusp torus $\partial_{p}B_{\varphi}$ , with respect to a suitable
choice of a longitude $l$ , is given by the following formula.

Modulus
$( \partial_{p}M_{p})=\pm\sum_{\delta\epsilon\vec{\Delta}_{\varphi}}h_{\rho}(\delta)$

.

In the above theorem, $h_{\rho}(\delta)$ is defined by

$h_{\rho}( \delta):=\frac{1}{1+e^{1}2(\lambda_{\rho}(\alpha(\delta))+\lambda_{\rho}(\beta(\delta)))}$ ,
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where $\lambda_{\rho}(\alpha)$ with $\alpha\in S\cup F$ denotes a lift to $\mathbb{C}$ of the complex translation length
of $\rho(\alpha)$ specified by Definition 4.9 below. In the remainder of this section, we
give explicit definitions of the longitude 1 the subset $\tilde{\Delta}_{\varphi}\subset$ A and the complex
translation length $\lambda_{\rho}(\alpha)\in$ C.

Behavior of $\varphi$ on the boundary. Since $\varphi$ is a pseudo-Anosov homeomor-
phism, there are measured foliations $\mathcal{F}^{+}$ and $\mathrm{r}^{-}$ satisfying the following con-
ditions (cf. e.g. $[\mathrm{K}$ , Section 11.4]).

1. $7^{+}$ and $\mathcal{F}^{-}$ are transversal, that is, their singular sets are equal, and $\mathcal{F}^{+}$

is transversal to $\mathcal{F}^{-}$ away from the singular set.

2. $\varphi(\mathcal{F}^{+})=k\mathcal{F}^{+}$ and $\varphi(\mathcal{F}^{-})=k^{-1}\mathcal{F}^{-}$ for some $k$ $>1$ . Namely, / preserves
the singular foliations $\mathcal{F}^{+}$ and $\mathcal{F}^{-}$ , and multiplies the measures by $k$ and
$k^{-1}$ respectively.

For each puncture $q$ of $F$ , there is a neighborhood of $q$ that is identified with a
neighborhood of 0 of a complex plane, such that the $\mathcal{F}^{+}$ and $\mathcal{F}^{-}$ are given by
$|\mathrm{G}(z^{\mathrm{d}/2}dz1$ and $|\mathrm{K}$( $z^{d/}2$dz) $|$ , respectively, for some integer $d\geq-1$ (cf. e.g. $[\mathrm{G}$ ,
Section 11.1], [$\mathrm{K}$ , Section 11.3] $)$ . In particular, each of $\mathcal{F}^{+}$ and $\mathrm{r}^{-}$ has $d+2$
$(\geq 1)$ singular leaves landing at the puncture $q$ . The number $d+2$ is called the
degree of $\mathcal{F}^{\pm}$ at $q$ .

Let $\overline{F}$ be the compact surface with boundary obtained by adding the circle
of rays ffom $q$ for each puncture $q$ . We denote this boundary circle by $\partial_{q}F$ .
Then the measured foliations $\mathcal{F}^{\pm}$ extend to measured foliations $\overline{\mathcal{F}}^{\pm}$ of $\overline{F}$ . Each
of $\overline{\mathcal{F}}^{\pm}$

$\mathrm{h}\mathrm{s}$ $b(\geq 1)$ singular leaves landing in $\partial_{q}F$ , where $b$ is the degree of $\mathcal{F}^{\pm}$ at
$q$ . Moreover $\varphi$ extends to a homeomorphism of $\overline{F}$ , which we continue to denote
by $\varphi$ .

Since $\varphi$ preserves the puncture $p$ , $\varphi$ : $\overline{F}arrow\overline{F}$ induces a homeomorphism of
the boundary circle $\partial_{p}F$ . Let $b$ be the degree of $\mathcal{F}^{\pm}$ at the puncture $p$ , and
let $\{x_{1}^{\pm}, x_{2}^{\pm}, \cdots, x_{b}^{\pm}\}$ be the endpoints of the singular leaves of $\mathcal{F}^{\pm}$ in $\partial_{p}$ F. We
assume that they are arranged on $\partial_{p}F$ in this cyclic order. Since $\varphi$ preserves
the singular leaves, there is a unique integer $c$ with $0\leq c<b$ such that $\varphi$ acts
on the sets $\{x_{1}^{\pm}, x_{2}^{\pm}, \cdot\cdot’, x_{b}^{\pm}\}$ as the shift of indices by $c$ . Set $n_{0}=b/\mathrm{g}\mathrm{c}\mathrm{d}(b,c)$ .
Since $\varphi$ is affine with respect to the singular Euclidean metric determined by the
mutually transversal measured laminations $\mathcal{F}^{+}$ and $\mathrm{V}^{-}$ , we have the following
lemma.

Lemma 4.3. The sets $\{x_{1}^{+}, x_{2}^{+}, \cdot\cdot 1, x_{b}^{+}\}$ and $\{x_{1}^{-}, x_{2}^{-}, \cdot\cdot. , x_{b}^{-}\}$ , respectively,
are equal to the attractive and the repulsive fixed point sets of $\varphi^{n_{\mathrm{Q}}}$ : $\partial_{p}Farrow\partial_{p}$ F,
and they are arranged on $\partial_{p}F$ alternatively.

Specifying the longitude. Let $\overline{B}_{\varphi}=\overline{F}\cross[0,1]/(x, \mathrm{O})\sim(\varphi(x), 1)$ be the $\overline{F}-$

bundle over $5^{1}$ with monodromy $\varphi$ , and let $\partial_{p}\overline{B}_{\varphi}$ be the boundary component of
$\overline{B}_{\varphi}$ corresponding to the puncture $p$ of $F$ . Namely, $\partial_{p}\overline{B}_{\varphi}=\partial_{p}F\mathrm{x}[0,1]/(x, 0)\sim$

$(\varphi(x), 1)$ . Then $B_{\varphi}$ is identified with the interior of $\overline{B}_{\varphi}$ , a $\mathrm{d}$ the cusp torus
$\partial_{p}B_{\varphi}$ is identified with $\partial_{p}\overline{B}_{\varphi}$ .
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Definition 4.4. $By-$ the longitude $l$ of $\partial_{p}B_{\varphi}$ , we mean the isotopy class of the
simple loop in $\partial_{p}B_{\varphi}$ obtained as the image $of\cup \mathit{7}_{=0\Psi^{?(x)}}^{\mathrm{o}-1}.\cross$ $[0, 1]$ , where $n_{0}$ is
the natural number in Lemma $\mathit{4}\cdot \mathit{3}$ and $x$ is a fixed point of $\varphi"$ .

Note that the meridian-longitude pair $(m, l)$ defined in the above forms $\mathrm{a}$

basis of $H_{1}(\partial_{p}B_{\varphi}; \mathbb{Z})$ if and only if $n_{0}=1.$ However, it always forms a basis
of $H_{1}(\partial_{p}B_{\varphi};\mathrm{Q})$ and hence the modulus of $\partial_{p}B_{\varphi}$ with respect to any basis of
$H_{1}(\partial_{p}B_{\varphi} ; \mathbb{Z})$ can be calculated from $\mathrm{M}\mathrm{o}\mathrm{d}\mathrm{u}1\mathrm{u}\mathrm{s}(\partial_{p}B_{\varphi})$ .

The action of $\varphi$ on $\tilde{\Delta}$ and $\mathcal{G}$ . We may assume $\varphi$ is the Teichmiiller map
and the conformed structure on $F=\mathbb{H}^{2}/\Gamma_{0}$ is absolutely $\varphi$-minimal in the
sense of Bers, that is, it lies in the axis of the invariant axis of the action of
? on the Teichm\"uller space (see e.g. [IT, Section 5.2]). Then $\varphi$ : $Farrow F$

is quasiconformal, and hence its lift to $\mathbb{H}^{2}$ extends to a homeomorphism of
$\mathbb{H}^{2}\cup\partial \mathbb{H}^{2}$ . Let $\tilde{\varphi}$ be such a homeomorphism of $\mathbb{H}^{2}\cup\partial \mathbb{H}^{2}$ which stabilizes
oo $=\mathrm{F}\mathrm{i}\mathrm{x}(\rho_{0}(m))$ . We denote by $\varphi_{p}$ the homeomorphism of $S_{p}^{1}=\mathbb{R}/\langle$po(771) $\rangle$

induced by the restriction of $\tilde{\varphi}$ to $\mathbb{R}$ $=\partial \mathbb{H}^{2}-\{\infty\}$ .
For each $\tilde{\mu}\in(j$ , consider the geodesic in $\mathbb{H}^{2}$ emanating from $\infty$ and ending

at $\tilde{\varphi}(z\rho_{\mathrm{O}}(\tilde{\mu}))$ , the image by $\tilde{\varphi}$ of the endpoint $z_{\rho_{\mathrm{O}}}(\tilde{\mu})$ of $\tilde{\mu}$ . Then it also belongs
to $\tilde{\mathcal{G}}$. This determines a bijection $\tilde{\mathcal{G}}arrow\tilde{\mathcal{G}}$, which in tern induces a bijection
($;arrow Ci$ . After identifying $\mathcal{G}$ with a subset of $S_{p}^{1}$ , the bijection is identified
with the restriction of $\varphi_{p}$ : $S_{p}^{1}arrow S_{p}^{1}$ to $\mathcal{G}$ . The follo wing lemma describes the
dynamics of $\varphi_{p}$ .

Lemma 4.5. Let $n_{0}$ be as in Lemma 4.3. Then $\varphi_{p}^{\mathrm{n}_{0}}$ has finitely many attractive
fixed points and repulsive fixed points, which are arranged on $S_{p}^{1}$ alternatively.
Moreover, for any component $J$ of $S_{p}^{1}-$ $(\mathrm{F}\mathrm{i}\mathrm{x}^{+}(\varphi_{p}^{n_{0}})\cup \mathrm{F}\mathrm{i}\mathrm{x}^{-}(\varphi_{p}^{n_{0}}))$ bounded by an
attractive fixed point $4^{+}$ and a repulsive fixed point $A^{-}$ , $\varphi_{p}^{n\mathrm{o}}$ maps every point
$X\in J$ to a point strictly closer to $4^{+}$ , and we have $\mathrm{l}\mathrm{i}\mathrm{m}j(\varphi_{p}^{n_{0}})^{\mathrm{j}}(X)=A^{+}$ and
$\lim_{j}(\varphi_{p}^{n_{\mathrm{O}}})^{-j}(X)=A^{-}$

Now the subset $\vec{\Delta}_{\varphi}$ of A in Theorem 4,2 is defined as follows.

Definition 4.6. Let $n_{0}$ be the natural number in Lemma 4.5. Pick a connected
component, $J$ , of $S_{p}^{1}-\mathrm{F}\mathrm{i}\mathrm{x}(\varphi_{p}^{n_{0}})$ and an element $\mu\in J\cap \mathit{1}$ $(\mathcal{G}-\vec{\Delta})$ , and let
$)\mathrm{t}$ , $\varphi_{p}^{n_{\mathrm{O}}}(\mu)]$ be the closed sub-interval of $J$ bounded by $\mu$ and $\varphi_{p}^{n_{0}}(\mu)$ . Then we
define $\tilde{\Delta}_{\varphi}:=[l, \varphi_{p}^{n_{\mathrm{O}}}(\mu)]\cap\tilde{\Delta}$ .

Remark 4.7. (1) There is $a$ one-to-one correspondence between $\tilde{\Delta}_{\varphi}$ and the
quotient set $(J\cap\vec{\Delta})/\langle\varphi_{p}^{n_{0}}\rangle$ , which in tern is a subset of $\Delta/\langle$ $\varphi_{p}^{n_{\mathrm{O}}}\}$ . Moreover
$h_{\rho}(\varphi_{p}^{n_{\mathrm{O}}}(\delta))=h_{\rho}(\delta)$ for every $\delta\in\tilde{\Delta}$ . Thus we may identify $\tilde{\Delta}_{\varphi}$ with the subset
$(J\cap\tilde{\Delta})/\langle\varphi_{p}^{n_{0}}\rangle$ of $\vec{\Delta}/\langle\varphi_{p}^{n_{0}}\rangle$ . So the choice of $\mu$ in the definition of $\vec{\Delta}_{\varphi}$ is not
essential

(2) Throughout the remainder of this section and Section 5, we assume that
$\mu$ and $/_{p^{0}}’(n\mu)$ lie in this order with respect to the orientation of $J$ induced by
that of fit.
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Complex translation length in the fiber group. Let $\rho$ be the holon-
omy representation of the fifiber group $\pi_{1}(F)$ in the hyperbolic manifold $B_{\varphi}$ .
Pick a point $\sigma\in$ Teich(F), and let $2_{n}$ be the element of $Q\mathcal{F}$ uniformizing
$(\varphi_{*}^{-n}(\sigma), \varphi_{*}^{n}(\sigma))$ for each natural number $n$ . Here $\mathrm{f}*\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}$ the automor-
phism of Pick(F) induced by 54. Then $\rho_{n}$ converges to $\rho$ strongly, because we
know from the proof of Theorem 0.1 in [Th] (see [Th, \S 5]) that any subsequence
of $\{\rho_{n}\}$ contains a subsequence converging to $\rho$ strongly.

Lemma 4.8. Under the above situation, the sequence of the complex translation
lengths $\lambda_{\rho_{n}}(\alpha)$ in $\mathbb{C}$ converges for each $\alpha\in S$ . Moreover the limit $\lim\lambda_{\rho_{n}}(\alpha)$

does not depend on the choice of $\sigma$ .

Definition 4.9. Let $\rho$ be the holonomy representation of the fiber group $\pi_{1}(F)$

in the hyperbolic manifold $B_{\varphi}$ . Then for an essential simple loop $\alpha\in$ S, $\lambda_{\rho}(\alpha)$

denotes $\lim\lambda_{\rho_{n}}(\alpha)\in \mathbb{C}$ in Lemma 4.8.

5 Outline of the proof

Step 1. Let $\rho_{\infty}$ : $\pi_{1}(B_{\varphi},x\mathrm{o})arrow$ PSL(2, C) be the holonomy representation of
the complete hyperbolic structure of $B_{\varphi}$ . Then we may assume that the restric-
tion of $\rho_{\infty}$ to $\pi_{1}(F, x\mathrm{o})$ , which we continue to denote by the same symbol, lies in
the closure ofthe image of the holomorphic section $Q\mathcal{F}" t$ Hom($\pi_{1}(F)$ , PSL (2, $\mathbb{C})$ )
(which we fixed in Section 3) and that the following identities hold.

$\rho_{\infty}(m)=(\begin{array}{ll}1 10 1\end{array})$ , $\rho_{\infty}(l)=(_{0}^{1}$ $\mathrm{M}\mathrm{o}\mathrm{d}\mathrm{u}1\mathrm{u}\mathrm{s}(\partial_{p}B_{\varphi})1)$

Now pick a non-peripheral element $\gamma\in\pi_{1}(F, x\mathrm{o})$ . Then we have:

Modulus $(\partial_{p}B_{\varphi})=\mathrm{F}\mathrm{i}\mathrm{x}^{+}(\rho_{\infty}(\varphi*(\gamma)))-\mathrm{F}\mathrm{i}\mathrm{x}^{+}(/2\infty(\gamma))$ .

Because

$\mathrm{F}\mathrm{i}\mathrm{x}^{+}(\rho_{\infty}(\varphi_{*}(\gamma)))=\mathrm{F}\mathrm{i}\mathrm{x}^{+}(\rho_{\infty}(l\gamma l^{-1}))$

$=\rho_{\infty}(l)(\mathrm{F}\mathrm{i}\mathrm{x}^{+}(\rho_{\infty}(\gamma)))$

$=\mathrm{F}\mathrm{i}\mathrm{x}^{+}(\rho_{\infty}(\gamma))+$ Modulus $(\partial_{p}B_{\varphi})$ .

Step 2. Let $\{\rho_{n}\}$ be a sequence in $Q\mathcal{F}$ which converges strongly to $\rho_{\infty}$ . Then,
by Step 1, we have:

Modulus$(\partial_{p}B_{\varphi})=$ Jim $(\mathrm{F}\mathrm{i}\mathrm{x}^{+}(\rho_{n}(\varphi_{*}(\gamma)))-\mathrm{F}\mathrm{i}\mathrm{x}^{+}(\rho_{n}(\gamma)))$

Step 3. Recall that the set $\vec{\Delta}_{\varphi}$ is defined to be $p$ , $\varphi_{p}(\mu)]\cap\tilde{\Delta}$ , where $\beta_{l}$ , $\varphi_{p}(\mu)]$

is the closed sub-interval of a component, $J$ , of $S_{p}^{1}-\mathrm{F}\mathrm{i}\mathrm{x}(\varphi_{p})$ bounded by $\mu$ and
$\varphi_{p}(\mu)$ (see Definition 4.6). Here $\mu$ is an arbitrary element of $J\cap(\mathcal{G}-\vec{\Delta})$ . So
we may assume that $\mu$ spirals to an oriented simple closed geodesic $\gamma$ . Let $\tilde{\mu}$
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be a lift of the oriented geodesic $\mu\subseteq F=\mathbb{H}^{2}/\Gamma 0$ to $\mathbb{H}^{2}$ emanating from $\infty$ .
Then there is an element of $\pi_{1}$ $(F, x0)$ , denoted by the same symbol $\mathrm{y}$ , which
represents the closed geodesic ) such that $z_{\rho 0}(\tilde{\mu})=\mathrm{F}\mathrm{i}\mathrm{x}^{+}(\rho_{0}(\gamma))$ , where $z_{\beta \mathrm{O}}(\tilde{\mu})$

is the endpoint of $\tilde{\mu}$ in $\mathbb{R}=\partial \mathbb{H}^{2}-\{\infty\}$ . Then, by Corollary 2.4, for any
$\rho\in)\subset$ Hom($\pi_{1}(F)$ , PSL(2, $\mathbb{C})$ ), we have:

$\mathrm{F}\mathrm{i}\mathrm{x}^{+}(\rho(\varphi_{*}(\gamma)))-\mathrm{F}\mathrm{i}\mathrm{x}^{+}(\rho(\gamma))=\sum h_{\rho}(\delta)$ .
$\delta\in\tilde{\Delta}_{\varphi}$

Step 4. For any $\rho\in Q\mathcal{F}$ , we have:

$\mathrm{F}\mathrm{i}\mathrm{x}^{+}(\rho(\varphi_{*}(\gamma)))-\mathrm{F}\mathrm{i}\mathrm{x}^{+}(\rho(\gamma))=\sum_{\delta\epsilon\tilde{\Delta}_{\varphi}}h_{\rho}(\delta)$

.

This is a consequence of Step 3 and the following lemma, which implies that the
correspondence $Q \mathcal{F}\ni\rhoarrow\neq\sum_{\delta\epsilon\vec{\Delta}}h_{\rho}(\delta)$ is a well-defined holomorphic mapping.

Lemma 5.1. For each $\rho\in QF,$ the infinite sum $\sum\delta\epsilon\Delta\prec h_{\rho}(\delta)$ converges abso-
lutely and uniformly on every compact subset of $Q\mathcal{F}$ .

This lemma is proved by using the facts

1. The number of simple closed geodesies with length $\leq L$ in a given hy-
perbolic surface is bounded by a polynomial function of $L$ (see [BS] or
[Miz2] $)$ .

2. For any compact subset $C$ of $Q\mathcal{F}$ , there is a constant $k=k(C)>1$ such
that

$\frac{1}{k}l_{\rho 0}(\gamma)\leq l_{\rho}(\gamma)\leq kl_{\rho 0}(\gamma)$ ,

for any $\gamma\in$ S and $\rho\in C.$ Here $\rho 0$ is a fixed element of $\mathrm{r}$ . (See $[\mathrm{J}\mathrm{M}$ ,
Lemma 3] or [$\mathrm{K}$ , Theorem 8.57].)

Step 5. The infinite sum $\sum_{\delta\in\tilde{\Delta}_{\varphi}}h_{\rho_{\infty}}(\delta)$ converges absolutely, a $\mathrm{d}$

$\sum h_{\rho_{\infty}}(\delta)=\lim\sum h_{\rho_{\mathrm{n}}}(\delta)$ .
$\delta\epsilon\vec{\Delta}_{\varphi}$ $\delta\epsilon\tilde{\Delta}_{\varphi}$

The above key fact is proved as follows:

1. We show that there is a compact submanifold $K_{\infty}$ of $M_{\infty}$ which contains
the closed geodesic $Y\rho_{\infty}$ for every $\gamma\in S(\vec{\Delta}_{\varphi})$ .
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2. Since $\rho_{n}(\pi_{1}(F))$ converges to $\rho_{\infty}(\pi_{1}(F))$ geometrically, there are smooth
embeddings $f_{n}$ : $K_{\infty}arrow M_{n}$ , defifined for all $n$ sufficiently large, such that
$f_{n}$ sends $\omega_{\infty}$ to un and $f_{n}$ tends to an isometry in the $C^{\infty}$ -topology.
Namely, the lift $\tilde{f_{n}}$ : $\tilde{K}_{\infty}arrow \mathbb{H}^{3}$ of $f_{n}$ to the inverse image $\tilde{K}_{\infty}$ of $K_{\infty}$ in
$\mathbb{H}^{3}$ , sending the standard frame at the origin to itself, tends to the identity
map in the compact-0pen $C^{\infty}$ -topology (see [$\mathrm{B}\mathrm{P}$ , Theorem E.I.13], $[\mathrm{M}\mathrm{c}\mathrm{M}$ ,
Section 2.2]). Since $\rho_{n}$ converges to $2_{\infty}$ algebraically, we may assume that
the following diagram is commutative, where the vertical arrows represent
homomorphisms induced by the inclusion maps and $\mathit{0}_{n}$ denotes the origin
of the frame $\omega_{n}$ for $n\in \mathrm{N}\cup\{\infty\}$ :

$\rho_{n}0\rho_{\infty}^{-1}$

$\pi_{1}(M_{n}, \mathit{0}_{n})$ $-\pi_{1}(M_{\infty}, \mathit{0}_{\infty})$

$\uparrow$
$\mathrm{r}$

$(f_{n})_{*}(\pi_{1}(K_{\infty}, \mathit{0}_{\infty}))\underline{(f_{n}).}\pi_{1}(K_{\infty}, \mathit{0}_{\infty})$

3. Fix a positive real number $r>0$ . Then there is a natural number $N_{1}$

which satisfies the following condition. For any $n\geq N_{1}$ and for any
closed geodesic $\gamma$

’ in $M_{\infty}$ which lies in $K_{\infty}$ , the $r$-neighborhood of $f_{n}(\gamma^{*})$

contains its geodesic representative in $M_{n}$ . This is proved by using the fol-
lowing fact: If a loop in a hyperbolic manifold is faraway from its geodesic
representative, then the “geodesic curvature” of the loop at the point
where the distance attains the maximum should be large.

4. By the above assertion, we see that the real lengths $l_{\rho}(\gamma)$ , where $\rho$ runs
over all elements in $\{\rho_{n}|n\geq 1\}\cup\{\rho_{\infty}\}$ , are comparable. Namely, there
exists $k\geq 1$ such that

$\frac{1}{k}l_{\rho_{0}}(\gamma)\leq l_{\rho}(\gamma)\leq kl_{\rho_{0}}(\gamma)$

for every $\rho\in$ $\{\rho_{n}| \mathrm{r}\mathrm{z} \geq 1\}$ $\cup\{\rho_{\infty}\}$ and $\gamma\in S(\Delta_{\varphi}^{\prec})$ . By using this estimate,
we can prove the desired result.

We can now complete the proof of Theorem 4.2 as follows.

Modulus $(\partial_{p}B\varphi)$ $=\mathrm{F}\mathrm{i}\mathrm{x}^{+}(\rho_{\infty}(\varphi_{*}(\gamma)))-$ Fix$+(\rho_{\infty}(\gamma))$ by Step 1
$= \lim(\mathrm{F}\mathrm{i}\mathrm{x}^{+}(\rho_{n}(\varphi*(\gamma)))-\mathrm{F}\mathrm{i}\mathrm{x}^{+}(\rho_{n}(\gamma)))$ by Step 2
$= \lim\sum h_{\rho_{n}}(\delta)$ by Step 4

$\delta\epsilon\tilde{\Delta}_{\varphi}$

$= \sum h_{p_{\infty}}(\delta)$

$\delta\epsilon\tilde{\Delta}_{\varphi}$

by Step 5.
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6 Further variations and questions.
In [AMSI] the authors refined the identity in [B3] to a “width” formula of the
limit set of a geometrically finite punctured torus group. The refinement was
generalized to an identity for every quasifuchsian punctured torus groups in
[AMS2]. The full proof of The Main Theorem 4.2 of this note is also contained
in [AMS2]. Another possible 3-dimensional variation of MacShane’s identity for
punctured torus groups was announced by the third author [S]: a conjecture
was proposed that the modulus of the cusp torus of a 2-bridge knot is expressed
by the complex translation lengths of geodesies which are homotopic to essential
simple loops on the 4-times punctured bridge sphere. The conjecture is equiv-
alent to a conjecture concerning certain conjugacy problem for 2-bridge knot
groups, which in tern is valid for the figure-eight knot and 52 knot. Therefore,
we would like to propose the following question.
Question 6.1. Is there a variation of McShane’s identity for minimal bridge
decompositions for hyperbolic knots?

In [Mizl], M. Mirzakhani has generalzed the identity for bordered hyperbolic
surfaces and found beautiful applications of the identity.

Theorem 6,1 (Mirzakhani [Mizl]). For any hyperbolic surface X with $n$

boundary components $\beta_{1}$ , \cdots , $\beta_{n}$ of lengths $L_{1}$ , . .. , $L_{n}$ ,

$\sum_{(\alpha_{1},a_{2})}D(L_{1},l_{X}(\alpha_{1}),l_{X}(\alpha_{2}))+\sum_{i=2}^{n}\sum_{\gamma}R(L_{1}, L_{2}, l_{X}(\gamma))=L_{1}$.

Here

$D(x, y, z)=2 \log(\frac{e^{\mathrm{g}}2+e^{u\pm}2^{\ }}{e^{\frac{-ae}{2}}+e^{x_{2}}\pm\underline{*}})’$.

$R$(x, $y,$ $z$ ) $=x$ $- \log(\frac{\cosh(_{2}^{\mathrm{A}})+\cosh(_{\overline{\overline{2}}}^{\varpi+z})}{\cosh(_{2}^{\mu})+\cosh(\frac{\varpi-z}{2})})$ ,

the first sum is over all $or\cdot ented$ pairs of simple closed geodesies $(\alpha_{1}, \alpha_{2})$ found
$ing$ a pair of pants with ’1, and the second sum is over simple closed geodesies

$)$ bounding a pair of pants with $\beta_{1}$ and $\beta_{}$ .
She used the above identity to obtain a recursive formula for the Weil-

Petersson volume of moduli spaces. The starting point is to regard the identity
as a constant function on the modulie space and use the fact that the integral
over the moduli space gives (the constant times) the volume of the moduli space.
She gives an ingenious way to calculate the integral, and proves that the Weil-
Petersson volume of the moduli space $\mathcal{M}_{q}$ , $n$

$(L_{1}, \cdots, L_{n})$ , of hyperbolic Riemann
surfaces of genus $g$ with $n$ geodesic boundary components of length $L_{1}$ , $\cdot\cdot$ $($ , $L_{n}$ ,
is a polynomial in $L_{1}$ , $\cdot$ . , $L_{n}$ of total degree 3$g-3+n$, such that the coefficient
of a term of degree $d$ lies in $\pi^{69-6+2n-2d}\mathbb{Q}$ . For exampie)

$\mathrm{V}\mathrm{o}\mathrm{l}(\mathcal{M}_{1,1}(L))=\frac{L^{2}}{24}+\frac{\pi^{2}}{6}$ .
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Moreover, in [Miz2], she studied the asymptotic behavior of $sx(L)$ , the num-
ber of simple closed geodesies of hyperbolic length less than $L$ in a hyperbolic
bordered Riemann surface $X$ , and proved the following theorem.

Theorem 6.2 (Mirzakhani [Miz2]). For any hyperbolic bordered Riemann
surface $X$ , there exists a constant $n_{X}>0,$ such that

$s_{X}(L)\sim n_{X}$ . $L^{6g-6+2n}$

as $Larrow\infty$ . Namel$y$,

$\lim_{Larrow\infty}\frac{n_{X\}}L^{6g-6+2n}}{sx(L)}=1.$

We would like to propose the following question:

Question 6.2. (1) Let $B_{\varphi}$ be a hyperbolic 3-manifold of finite volume which
fibers over the circle, and let $s_{\varphi}(L)$ be the number of closed geodesies in $B_{\varphi}$ of
length less than $L$ which are isotopic to simple loops on the fiber surface. Then
how does $s_{\varphi}(L)$ behave asymptotically as $Larrow\infty$?

(2) Let $F$ be a Heegaard surface of a hyperbolic 3-manifold $M$ , and let
$.s(M,F)(L)$ be the number of closed geodesies in $M$ of length less than $L$ which are
isotopic to simple loops on the Heegaard surface $F$ . Then how does $s(M,F)(L)$

behave asymptotically as $Larrow\infty$?
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