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On 2-D Euler equations with initial vorticity in bmo

fBMREEEE AW 9 (Yasushi TANIUCHI)

Department of Mathematical Sciences
Shinshu University, Matsumoto 390-8621

INTRODUCTION.

In this paper we consider a two-dimensional ideal incompressible fluid described
by the Euler equations:

(E) { —a-u—+u-Vu+Vp=0, divu=0 inzeR? te(0,7),
uart=0=u0

where u = (u!(z,t),u*(z,t)) and p = p(z,t) denote the unknown velocity vector
and the unknown pressure of the fluid at the point (z,t) € R? x (0, T'), respectively,
while a = (a(z), a*(x)) is the given initial velocity vector. In this paper we consider
a nondecaying initial data uo € L™ with initial vorticity wy = rot uy € bmo. (Here
bmo =BMON L . ).

Many researchers have investigated the 2 dimensional Euler equations when the
initial data has the decay property: |u(z)| — 0 as |z| — oo and |wy(z)| — 0 as
|z] — oo in some sense. For example, Di Perna-Majda[15] showed that if wy =
rot ug € L' N L? for 1 < p < oo, then there exist a weak solution u on [0, 00) with

u € L*(0, 00; W, .P(R?)), w = rot u € L®(0, co; LP(R?)).

It is notable that Giga-Miyakawa-Osada[19] proved the similar result to [15] without
the assumption wy € L! by using a different method. Chae[7] proved that if wy €
Llog L (C L*), then there exist a weak solution u on [0, c0) with

u € L*®(0, oo0; L*(R?)).
Concerning the uniqueness theorem, Yudovich[38] showed that a solution u satisfying
u € L*®(0,T; L?), w=rotue€ L®(0,T;L>)

is uniquely determined by the initial data u. Moreover, in [39], he proved the
uniqueness theorem for unbounded vorticity rot u. He showed that, for the Euler
equations in a bounded domain Q2 in R", a solution u satisfying

w=u€ L*(0,T;L*()), rotue L®(0,T;V®)

is uniquely determined by the initial data uy. Here V® was introduced by Yudovich,
is wider than L>(Q2) and includes log*log*(1/|z]). For the detail see [39]. Re-
cently, Vishik showed the new uniqueness theorem for the solutions to (E) in the
n-dimensional whole space R™. He proved that the uniqueness holds in the class

(0.1) w € L®(0,T; LP(R™) N Br(R™)) for some 1 < p < n,

where Br is a space of Besov type and wider than Bgom and bmo. Moreover, in
the case n = 2, he also proved that global existence of solutions to (E) in the class
(0.1). However, for his global existence theorem, he imposed the slightly strong
assumption on the initial vorticity wo: wo € Bp(R?), where By is strictly smaller
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than Br and can not include bmo. He also imposed the integrability condition on
wo: wo € LP(R?) for some 1 < p < 2. That is, he assumed that the initial vorticity
wp decays at infinity in some sense.

On the other hand, flows having nondecaying velocity at infinity are not only
physically but also mathematically interesting. In this case, it is known that there
exists a solution to the Euler equations which blows up in finite time. See e.g.
Constantin[12]. Concerning bounded initial data with bounded vorticity, Serfati[30]
proved the unique global existence of solution to (E) in R? with initial data (ug,wo) €
L* x L*™ without any integrability condition. ( In [29] he had proved it for the initial
data up € C*2.) In this paper, we improve his global existence theorem. We show
that there exists a global solution to (E) in R? with initial data (uo,wo) € L*® x bmo.
In [30], the well-known a-priori estimate ||w(t)||z < |lwollz plays important role.
However, it seems to be difficult to establish the corresponding estimate in bmo. To
overcome this difficulty, we introduce the uniformly localized version of Yudovich’s
space which is wider than bmo and we establish L? -estimate for solutions to the
2-D vorticity equation.

It is notable that, with respect to the Navier-Stokes equations, Cannon-Knightly{5],
Cannone[6] and Giga-Inui-Matsui[17] proved the local existence of solutions to the
Navier-Stokes equations with initial velocity uo € L*. Recently Giga-Matsui-
Sawada[18] proved the global existence of solutions to the 2-dimensional Navier-
Stokes equations with uy € L®(R?).

1. PRELIMINARIES AND MAIN RESULTS

Before presenting our results, we give some definitions. Let B(z,) denote the
ball centered at z of radius r and let

I£la = ( / 1) |pdy)l/p,

1/p
17153 = 509 (flbe) =sup ([ If@Pay)
z€R? x jJz—yl<A

Lzl Lﬂnif,loc = {f € Llloc; I f I p1 < 00}7

’ 1/p
1z, = 1 £ 11 = sup ( /| . lf(y)l"dy> .
z—y

z

I

Form=0,1,2,---, and 0 < & < 1, let C™** denote the uniform Holder space:
88 f(2)—68
{75 Ziotem 10 Flloa + 1o 80Pe e, LA < o]

We first introduce the definition of weak solution to (E) as follows:
DEFINITION 1. (WEAK SOLUTION)
u is called weak solution to (E) on [0,7] with initial data ug, if u satisfies the
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following conditions:

ue L (R*x [0,T]), V-u=0in D,

T
9 k10 g _

/0 R2{ u-ét-cp—uua—xlcp }dxdt—/Rzuo-go(O)dx

for all ¢ € C5°([0, 00) x R?) with V - ¢ = 0.

Now we recall the Littlewood-Paley decomposition %, $; €S8,j=0,1,--., such
that

supp  C {|¢] <1}, suppdC {1/2<|¢| <2}, é(z) = 2% ¢(29x)

(1) 1=3©+Y 46 R amd 1= 3 3 (£0)

j=0 j=—00

where f denotes the Fourier transform of f.

We state the Besov spaces.

DEFINITION 2 (Beso_v Space cf. [2]). The inhomogeneous and homogeneous
Besov spaces B;, and Bj , are defined as follows.

Bop =17 €S51fllg;, <o}, By, ={f €&l|fllg, < oo},
where _
1fllmg, = 0% flls + Q11285 % FIR)Y2 N£llgy, = (3 11270,  £l12) Ve,
Jj=0 J=—00

for s €R,1<p,p < co. While B , is a Banach space, B; , is a semi-normed space,
since
”f”é;q = 0 if and only if f is a polynomial.

It is notable that there holds

(13) {f€85 1fllgy, <oo, f= Y ¢;*finS} B2 /P,
J=-—00

if

(1.4) s<n/p, or s=n/pand p=1,

for the detail see [23]. Here P denotes the set of all polynomials. Hence when s, p, p
satisfy (1.4), we may modify the definition of Besov space as

(15) By, ={f€&; Ifllsy, <00, f= 3 é;%fin 8.

j=—c0
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From now on we use (1.5) as the definition of Bjy » When s, p, p satisfy (1.4). Then if
s, p, p satisfy (1.4), B; | is a Banach space and

il 55, = 0if and only if f =0in &'.

Next we state the Riesz operator Ry, = O (—A)"Y2 (k = 1,2) on Besov spaces.
Let s,p, p satisfy (1.4) and let f € By, Then Ry f can be defined by

(1.6) Ref= ) (Regs)*¢j*fin &

Jj=—00

where d;,- = @j-1+ ¢; + Pjt1. We note that c;jq?j = $j. Using this definition, we see
that Ry is a bounded operator in B;, as a subspace of &', if s, p, p satisfy (1.4). In
particular, Ry is bounded in Bgo,l.

We introduced the space of bmo. For the detail, see e.g. [34]

DEFINITION 3. bmo(R") is the space defined as a set for an L}, (R") function f
such that

1 —
= u —_— - z d
”f”bmo 0<1‘21£€R" [B(z, T)l Blzs) lf(y) fB( ,7‘)' Yy

(1.7)

+ sup |f(y)ldy < oo,

zerr | B(z,1)| Jp(z1)

where fp stands for the average of f over B: [B|™! / f(y)dy.
B

Yudovich introduced some function space to prove the uniqueness theorem for
the Euler equations. Here we introduce a slightly modified version of his space.

DEFINITION 4.(YUDOVICH)

Let ©(p) > 1 be a nondecaying function on [1, o).
Ye(Q) = {se ﬂ15p<oo L (Q2); ||f“YG(n) < oo}, where

IFllve = sup —-——“@gﬁ“’ ~

We note that log*(1/|z|) € Y®(R2), when ©(p) = p. Moreover, if  is a bounded
domain, then L>(2) C Y®(Q), since 6(p) > 1.

However, when 2 = R", L*(R") and bmo can not be included in Y®(R"). We
want to consider wider spaces than bmo and L®. So we introduce a uniformly
localized version of Y© as follows.

DEFINITION 5.

Let ©(p) > 1 be a nondecaying function on [1, oc).
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YZ(R™) = {f € Migpeoo Lu(R™); | fllyg(mny < 00}, where

£l 22, n)
ny = SUp —(F—,
/llg@e =502 =g

1/p
1122,y = sUD ( / If(y)l”dy) .
z€ ly—=zi<1

Rn

Then obviously there holds
L®(R™) C Y2 (R™).
Moreover, we observe that
(1.8) bmo(R"™) C Y (R"), when 6(p) = p.
Now we state our main theorems.

Theorem 1.1. Let O(p) = p. Assume ug € L® and wp = 1ot ug € Y.9(R?). Then
there ezists a weak solution to (E) on [0,00) in the class

u € C([0, 00); L)
(1.9) o
rot u € L5,([0,00); Yo7
with
[u)lloo < (lluolloo + 1) exp{C exp(Ct(|[uollco + 1)(llwollye +1)*)}  for allt > 0.
From (1.8), obviously we obtain

Corollary 1.2. Assume ug € L* and wy € bmo. Then there exists a weak solution
to (E) on [0,00) in the class

u € C([0,00); L™
10 0.0
rot u € Lloc [0’ OO); Yul) (e(p) = p)
with

[u(®)lleo < (llolloo + 1) exp{C exp(Ct([|uolloo + D{llwollpmo + 1)*)}  for all t > 0.

Remarks 1. (i) We can generalize Theorem 1.1 as follows. For
©(p) = p - log(e + p) - log(e + log(e + p)) - log(e + log(e + log(e + p))) - - -,
k times iterated
Theorem 1 holds with the estimate:
(111) @)l < Cliuollco exp CexpC - - exp{Ct(Jluollee + 1)(llwiollvg + 1)%}.
k + 2 times

We note that if O(p) = 1 (Y,§ = L™), then there holds the single exponential
estimate

(1'12) lu®)lo < ”'U'O“oo exP(t“wonoo),




which was already proved by Serfati[30]. We can show that these estimates (1.11)
and (1.12) hold for the solution to the Navier-Stokes equations, too. (See [32] and
[28)).

(iii) We should note what condition on wy guarantees ug € L™. If we assume that
wo € YEN B;l,l, then ug belongs to € L. For example, if wy(z) = sin(v/2z;) +
Yokez2(—1)F (1) log* (1/|z — k) + (1 + [[?) 78, then up € L™ and wp € bmo.

The following lemma plays crucial roll in proving Theorems 1.1.

Lemma 1.3 (Uniformly local L? estimate for the vorticity equation). Let
0<v<1,aeL®0,T;Wh*(R?)) with V-a =0 and let v € L®(0,T; L*(R?)) be
a solution to the 2 dimensional vorticity equation

(1.13) %v —vAv+a-Vo=0, inR>x(0,T), v|i=o=ve.

Then there holds for allt € [0,T] and allp > 2

2/p
(1.14)  Jo(t)llp, < eCYP {141+ sup lla(T)]l) | Ilvollzz, (2 < p < ),
o<t

where C is an absolute constant (independent of v,p,t,T,a and v).
Proposition 1.4. (i) Let ¢ € S. then there holds

(1.15) o * flloo <C | fli1 forall f €Ly,

where C is independent of f.
(1) If m > 1, then

17 lamr S (2mAD)YE) flon  forall f € LL(R?), A > 0.

Proposition 1.5. Let 1 < ¢< oo, j = 0,£1,£2,---, ¢ € S and let f € L% (R?).
Then there holds

C2%/9| flq1 forallj>0,

(1.16) 15 % flloo < { Clflgr forallj< -1,

where C is independent of ¢,j and f. Here ¢;(-) = 2% ¢(27.).

2. PROOF OF LY, ESTIMATE FOR THE 2-D VORTICITY EQUATION

In this section we sketch the proof of Lemma, 1.3. We first fix £ € R?, A > 1.
<1,
Let p € C°(R?) with p(y) = (1)’ {z: > g ' 1IVAlleo < 2]|Apllec < 4 and let
pz(y) = p(5E). We easily see that

0
(2.17) ét—-(p,,;\v)—VA(pm,,\v)—i-wV(pz,,\v) = —v2Vpz 2 Vo—v(Apgp)v+a-(Vpg a)v.

125
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Taking inner product in L?(R?) between (2.17) and |p, »v|P~2p, zv, we have

1d
Saileeslg+ vo=1) [ [9(0es0)Plosol 2y

<[V leoll V0102301272 ol 0172

+ (V| Apzalloo + lla - Voz,alloo) lv[Pdy
' SUpp Pz A
2.18
B9 <t [ [GoPloasolray
Rz
2v
+ (?”VP:c,A”go + ”'”Apz.r\“oo +lla- Vpozall) |v|Pdy
SUDP Pz, 2

<%ev / Volupdy + (24 + 4% ¢ 2ol
B(z,2))

32 3 ) [v 152, (for all € > 0).

Then we have

'
st (I + vp(p — 1) / / Vo oP-2dy
0 JB(zN)
t
<ol e a0y + 216 / / IVo(r) P o 2dydr
Bz2A

8v 4v  2sup a(1)
+p(67+‘)'\3+ 0<T<t" ( ”00 / |'U(T)Ip2)\d7'

Taking supremum of the above inequality over z € R?,

t
Lo(r) |2, + vp(p — 1) sup / / Vol olP-2dy
B(z,\)

z€R?

(2.19) { [ vo |55 + 2pev sup / / |Vu(7) |2 |lv]P~2dydr
z€R2 B(z,))

8 4v 2sup0<r<t lla(7) ”oo /
et 2R Jy 1 Ity

t t
sup (/ f |f|dyd7') < 8sup (/ / lfldyd'r) .
z€R? \JO0 JB(z,2)) ze€R? \Jo JB(z,))

Hence, letting € = 1/16, we obtain

132v QSup r<t la(T t
|v(T)|§,AS8{|vo| +p(=z o< j” ( )”°°)/0 o(7) ‘;,,\dfr},
which and Gronwall’s inequality yield

since

1321/ 2su a(r
lo(t) |2, <8|'vo|p'\exp{8pt( po<f<;l| ( )"oo)}.



By Proposition 1.4 (ii) we have

e T )

for all t € (0,T) and all A > 1. Now let A = 1+ 8t(132v + 2supger s ||a(T)]]oo)-
Then there holds

[ v(t) | p1 < €(16)"/P{1 + 84(132v + 2 sup [|a(7)]leo)}*/? | ¥o | p,1,
o<t

132 2
[o(®) 1o < 19() | o < (16ADY2 [ g | 1 exp {St( V4 259P0crqt ““‘”““)}

which is the desired estimate (1.14).

3. PrROOF OF THEOREM 1.1

Proof of Theorem 1.1. We show the existence of solution to (E) by establishing
an a-priori estimate for an approximate solution sequence generated by mollifying
initial data. In Step 1, we establish an a-priori estimate for regular solution. In Step
2, we discuss the limit of approximate solution sequence. (We can also show the
existence of solution to (E) by the zero diffusion limit of the Navier-Stokes equations,
i.e., the vanishing viscosity limit. See Remark 2 in this section.)

Step 1. Let m=1,2,---, and 0 < a < 1. Serfati[29] proved that there exist the
unique global solution (u, Vp) of (E) in C([0, 00); C™**) x C([0, 00); C™**) for the
initial data ug € C™** with p(z)/|z| — 0 as |z| — 0.

We first assume uy € C%**(R?) and construct an a—priori estimate for the global
solution with uy € C***(R?). Let (u,p) be the global regular solution to (E) with
ug € C?+*(R?) given by Serfati[29]. Then it satisfies

%u+u-Vu+Vp=Oonte[0,oo)

and hence
(3.20) u(t) — u(s) = — f (- Vu)(r) + Vp(r)]dr  in L.
Moreover Serfati[29] proved that p have the following representation:

Vp = %(V(plogl 1)) * 8;0;u*’ + 5-11-'_-(8.-63-V(1 —p)log| - |) * v

for p € C§° with p(z) = 1 near the origin z = 0. Now, using the Riesz operator Ry
on BY ), (see (1.6)) we define the Helmholtz operator

P = (Pyj)ij=12 = (6i5 + RiR;).
The boundedness of Ry in BY ; implies that P is also bounded in BY ;. Since
u-Vu=V-(u®u) € C([0,00); BY ,), we easily see that

(3.21) u(t) = u(s) - /t P(u-Vu)(r)dr in L*™.

1217
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The Littlewood-Paley decomposition (1.2) is easily generalized as follows:

(322) 1= Q&N(E) + Z é.‘l({) (5 € Rz; N= O, ila :*:2: Y )
j=N
Here ¥n(z) = 22N4p(27z). Then by (3.22) we have
(323)  lulloo S v *ullw + D g5 *tllo =L+ I (N =0,£1,%2,--,).
j=N

From (3.21) we see
o5 u) = v+ uls) + [V (P wow) e
where u ® u = (u't); j=12 and V - (u® v) = 3.2, 8;(v*u). Hence we obtain
1= [ un < o vl [ (7P » (5 00 s

(3.24) t :
< Collt(s)loo + C127 / lu(r)|2dr, (0< s <)

since ||VPyn|lr < [[VPYn|3e < [[Vnllse < C2V. Here Co = |9l (> ¢(0) =
1), Cy = ||V¥|la and H! denotes Hardy space. (The above estimate for I; is
essentially due to [30], although the Littlewood-Paley decomposition was not utilized

in [30]. See also [32].)
To estimate I = Y 7° v ||¢; * u(t)||oo, We use the Biot-Savart Law:

o}

0
(3_$2W, —aw) = —Au,

which yields
o 9 8
¢; *u (( A) 0x2¢’ *w, —(—A) B, @; * w)
l#; * ullos < Cz—j“‘bj * W|loo-

Let € > 0 and let p > 2 + . Then by the above inequality and Proposition 1.5 we

have
[o <] o0
D g * utloo < C Y 279 % w(t)loo
j=N _ j=N »
(3.25) L Jer TP w() ey, E N > 0
} {cz—ana)an, if N < -1

< 027N max{2*V?, 1}||w(®) |2,
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where the constant C' depends only on €. Hence by Lemma 1.3 we observe that
(3.26)

oo 2/p
> lopu®)le < OV max{22, 1} (14 (¢ = 91+ sup nu(s)nw)) lw(s)lez,
j=N s<r<t

forall0<s<tallp>2+¢candall N=0,%1,+2,-.-. Gathering the estimates
(3.24) and (3.26) with (3.23), we obtain

lu@®leo < Collu(s)lloo + Cr2¥ / lu(s)|%.ds

2/p
67 +0r N max2 1} (14 G- 90+ s [u)le)) ool

0<s<t, p>2+¢ N=0,£1,%2,--.).
Let g(t) =1+ sup ||u(s)|lco- Then (3.27) yields
0<s<t

(3.28)  g(t) < Cog(s) + Cr2Vg(t)*(t — 5) + C27" max{2*"/?, 1}g(t) || (s) .,

foral0<s<t<s+1.
Now we fix s € [0,00). Since g(¢) is a continuous function and since 2Cp > 1,
there holds g(t) < 2Cpg(s) for ¢t which is sufficiently close to s. Let

Ti(s) =sup{r 2 0; g(s +7) < 2Cog(s)}.
(Since g is a nondecreasing function, g(t) < 2Cog(s) for all s <t < s+T1(s).) Then
(3.28) yields
(3.29) g(t) < Cog(s)+4CEC12" g(s)*(t— ) +C2 ™~ max{2*V/?, 1}g(s)*?|w(s) Iz,

for all s <t < s+ min{1,Ti(s)} and all p > 2 + £. Here the constant C; = C3(¢)
depends only on €. Now we choose N suitably as follows.

When |lw(s)llzz, = 0, letting N — —oo, we have g(t) < Cog(s) for all t €
[8, s + min{1, Tl(sz)}]'

Cog(s)'"? —(-2/p)N . _Cog()~$
When;.ﬁ%&magl,wechooseNZOwc:has2( /9) N@ﬁ%,-(%“r&.

-2 -3
Cog(s -5 - -N Cog(s) P
When &3 Mz, > 1, we choose N < —1 such as 27" ~ —rﬁ—;sczlw(s)“%.

Then we have

o(t) < Cogle) + Os(e) max { (@57, (e)lzga(5)? } 9(9)6 - 9) + g(o)
for all s <t < s+ min{1,7i(s)} and hence
(3.30)

g(t) < 18§C‘og(8)

i Co Co |
forall 4t <s+min , 1, Tu(s) § .
] ’ {2031|w(s)n§{;<f—2) 2039(8)2/p|]w(s)ll::ﬁz 1( )}



130

P C min { 11 }> C ( 1 )&
T = 50)(lwollve + 1)? p /@87 pe ) = g(0)(lwollyg + )2 \k+4/

Here the constant Cs depends only on €. Obviously from the definition of T3(s) we
obtain

. Co OO
fil) >mm{2csllw(s)ll§é(,p_2’ ' 2Cag (8Pl (s) 2z, 1}

and hence

(3.31)

g(t) £ 2Cpg(s) for all s <t < s+min Co 5 CZ'O ' , 12,
2Cs(e)lw(s) 2572 " 2Ca(e)g(s)*/Pllw(s)le

We note that this estimate holds for all s > 0 and p > 2 + €.
Let £ = 2. Set p = k +4 and {;}2, be the increasing sequence defined by

toEO

t tx = min Co Co 1

k+1 — kb = ’ ) .
i 25 lw(t) 257 " 20ag(t6)*/P [l )l 2y
Then by (3.31) we have

(3.32) g(tk) < 2Cog(te—1) < -+ < (2Co)*9(0)
and hence
(3.33) g(tk)/P* < ((2Co)*g(0))Y*+9 < Cg(0)/*+d < Cg(0)Y/2.

Since #; < k, by Lemma 1.3 and (3.33) we see

IA

2/px
o(1+tk(1+ sup ||u(r)uw)) Jeoll 2
0<r<tx u

< Cl2kg(te)]*/|lwoll 2y
< Cg(0)*|lwoll e < Cg(0)*pellwollys-

Therefore we observe that

(i)l

k+4

k J+3

o Clogk
te=9Y (t; —ti_1) +1
RPICRLOALE g(o>(nwonye+1)2§(a+3) 2 50)(lwolyg + D2
and hence

Clogk ) a
I (9(0)(Hwo||y3 + 1)2> < g(te) < (2Co)"g(0) for all k = 1,2, -,

which implies |
(3.34) [u()]loo < (Iluolloo + 1) exp(C exp Ct(fjuolloo + 1) (llwollye + 1)%).
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Moreover from Lemma 1.3 we easily obtain
(3.35) lw(®)llys < C(L+¢(1+ Sup, lu(m)lloo) llwollye

for ug € C?*t*, Here C is an absolute constant.

Step 2. Next, we consider the case uo € C?**. That is, we assume only uy € L™®
and wy € Y§. Let p € CP(B(0,1)), p > 0, [rapdy = 1 and p. = € 2p(z/e).
Then we easily see that ||pe* f|p1 < 8| f|p1for 0 < e < 1. Let ufj = pe * uo,
wf = rot (u§) = pe * w§. Then u§ € C*** and
(3.36) [46lleo < lluolloo,  llwsllveg < 8llwlive-

Now we consider the solution u¢ to (E) with the initial data u§ € C*** and the
limit of u¢ as e — 0. From (3.34), (3.35) and (3.36) we see that there exists locally
bounded function M(t) € C([0, 00)) depending only on |uol|s and ||wol|ye such that

[wf()lloo + Nl (8) lyg < M(2)
for all t € [0,00). Here w® = rot (uf). Let 0 < § < 1. Since C* = B , for
0 < a < 1, (see [34],) in the same way as in (3.25) we have for all 0 <e < 1
[u@®)llcr-s <Cllu®)ll gz, < CUUlw Blloo + 1w () 1 2/5.)
<Ol (B)lloo + llw (B)llvg) < CM(2).

Let the vector (—wu?, wu') be denoted by w x u, for simplicity. Since ¢; * P(u® -
Vus) = ¢; x P(w® X uf), we have

|1 P(u(t) - Vs () 522, [PV * u(t) @ u()loo + sup 2795 % P(w(t) X u*($))lleo

< Ol @)% + llu@lloo [ w(®) L2s51) € 1PVl < 00)
< CM(t).

(3.37)

M

Since uf satisfies

(3.38) - ut(t) = u(s) — / t P(uf - Vu)(T)dr,
we obtain
(3.39) lu(®) - u()ll s, < Ot — 5] sup M (1)2.

Now we recall that

(3.40) lofll 820 < CWs NSz 0
for all y € R, v € C{° and f € BY, ,, see [34, p203, Theorem 4.2.2). Let r € Ry
and ¢ € CP(B(0,2r)) with ¢ =1 on B(0,r). Then by (3.37), (3.39) and (3.40) we
see that

{ou*(-)}e>0 is uniformly bounded in B, ¢ (= C*%) on [0,T]

{pu(-)}e>0 is equicontinuous in B;‘f‘oo on [0,T)



132

for all 0 < T < co. Hence we observe that there exist a subsequence {u¢'} of {u¢}
and u such that

(3.41) u® — u weak-* in L®(0, T; L)
(3.42) ouf — pu® strongly in C([0, T}; BZ,)
by using the Ascoli theorem. Moreover, since

1flleo < 1 lln2,, < PlFlssss, + COIfllps,  for all p>0,
in the same way as in [33, p271, Theorem 2.1}, we obtain that

@u — pu strongly in L(0, T; L*) and hence
u® — u strongly in L®(0, T; L*®(B(0,r))).

Then by usual argument we conclude that there exists a subsequence {u"} of {u'}
such that

u® — u strongly in L*(0,T; L°(B(0,7))) for all r > 0.

This strong convergence implies that u satisfies (ii) of Definition 2, which proves
Theorem 1.1. (]
Remark 2. Let u” be a solution to the Navier-Stokes equations with viscosity
v(0< v<1):
(N-5)
ou”

—vAu + v - Vu+Vp’=0, dive'=0 inzeR?te(0,7),
v |40 = up € L™.
Giga-Matsui-Sawada[18] proved the existence of the unique global-in-time solution
u¥ which satisfies
i
(3.43) u’(t) = e"Puy — / e/ t=Ap(y¥ . Vu¥)(s)ds
0

for initial data up € L*™ without any integrability condition. They gave a special
estimate for ||u’(s)|co. It, however, depends on v. On the other hand, we can
construct new estimate independent of v in the same way as in Step 1 of Section 3.
Indeed, since w” = rot u” satisfies the viscous vorticity equation: %w" — vAWY +
v’ - Vw” = 0, w’|s=o = rot ug, by Lemma 1.3 we have

2/p
o @l < e (14 (= 9) sup () I(o)laz, @5 p < 00),

where C is independent of v. Hence using the method in Step 1 of Section 3 with
(3.21) replaced by (3.43), we have

(344) [v*(®)lle < (lluolleo + 1) exp(C exp Ct(lluolloo + 1) (llwollye + 1)%),
(345) W @)llvg < C(1+8(1+ sup [lu”(7)]lee))llrot wollyg,

where C is an absolute constant.
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