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ABSTRACT. We prove non-finite axiomatizability of some rank-l cj-categorical
structures.

Fix an $\omega$-categorical infinite structure $M$ having a simple theory $T$ such that the
universe itself is a solution set of (unique) rank-l Lascar strong 1-type $p^{1}(x)$ . Without
loss of generality, we can assume the language $\mathcal{L}$ has only relational symbols. For
$A\subseteq M$ , $acl(A)$ is an algebraic closure of $A$ in $M$ , and $ad^{eq}(A)$ is that in $M^{eq}$ .

Now given $n>1,$ there are $i_{n}$ many $n$-(independent) complete types $p_{1}^{n}(x_{1}\ldots x_{n})$ , . . . ,
$p_{i_{n}}^{n}(x_{1}\ldots x_{n})$ , such that each $p_{j}^{n}(x_{1}\ldots x_{n})$ implies $\{x_{1}$ , ..., $x_{n}\}$ independent.

Obviously in $M$ , given $p_{j}^{n}(x_{1}$ , ..., $x_{n})$ , there is non-empty finite set $F(n,j)$ $\subseteq\{1$ , ...,
$i_{n+1}\}$ such that $\exists x_{n+1}p_{l}^{n+1}(x_{1}$ , . . . , $x_{n+1})$ is equivalent to $p_{j}^{n}(x_{1}$ , ..., $x_{n})$ iff $l\in F(n,j)$ .

Moreover for each $n>0,$ there is a formula $\psi_{n}(x_{1}\ldots x_{n})$ such that $M\models$ $\mathrm{A}_{n}(a_{1}$ , ..., $a_{n})$

i[ $\{a_{1}, \ldots, a_{n}\}$ is independent.

Definition 0.1. Let $N$ be a subset of M. We say that $N$ is $k$ -generic substructure
of $M$ for $k\geq 1$ if $N$ is an algebraically closed subset of $M$ such $that_{f}$ for any $m<k,$
and any tuple $(a_{1}, \ldots, a_{m})$ from $N$ with $M\models p_{j}^{m}(a_{1}, \ldots, a_{m})$ , and $l\in F(m,j)$ , there is
$b\in N$ such that $M\models p_{l}^{m+1}(a_{1}, \ldots, a_{m}, b)$ .
Lemma 0.2. There is a function $bd$ : $\omega$ $arrow$ $i$) (depending on $T$) satisfying the fol-
lowing: Let a be a sentence in $T$ having $k$ quantifiers (in its Prenex norrmal for$7m$).
Suppose that $N$ is $bd(k)$ -generic substructure of M. Then $N\models\sigma$ .

Proof. Let the function $pbd$ be defined in such a way that for any $j\leq m<k,$ and any
tuple $\overline{e}=$ ( $e_{1}$ ...e$m$ ) from $M$ , if $\overline{e}’=\{\mathrm{z}\mathrm{i}$ , ..., $e_{i_{j}}$ ) is the maximal independent subtuple,
then there are at most $pbd(k)$ many conjugate of $\overline{e}$ over $\overline{e}’$ . (As $T$ is cj-categorical,
this is possible.) Define $bd(k)=$ A $pbd(k)$ .

Now, to prove the lemma, it obviously suffices to prove the following.

Claim) For $m<k,$ and $(a_{1}, \ldots, a_{m})\in N$ and $(b_{1}, \ldots, b_{m}, c_{1})\in M,$ if $tp_{M}(a_{1}\ldots a_{m})$ $=$

$tpM$ (b\"i-bm), then there is $d\in N$ so that $tp_{M}(a_{1}\ldots a_{m}d)$ $=tp_{M}(b_{1}\ldots b_{m}c_{1})$ :

Suppose that such $\overline{a}=\{\mathrm{z}\mathrm{i}$ , $\ldots$ , $a_{m}$ ) $\in N$ and $\overline{b}=(b_{1}$ , ..., $6m)$ are chosen. If $c_{1}\in$

$acl(\overline{b})$ , then as $N$ itself is algebraically closed in $M$ , we can find the desired $d$ in $N$ .
Hence ye can assume that $c_{1}$ ( $acl(\overline{b})$ . Now, there is maximal independent subtu-

ple, say $b-’=$ $($/1, ..., $b_{j})$ of $\overline{b}=(b_{1}, \ldots, b_{m})$ , and $\overline{b}$ has $s(\leq pbd(k))$ conjugates over
$\overline{b}’$ , say $\overline{b}_{1}(=\overline{b})$ , $\ldots$ , $\overline{b}_{\mathit{8}}$ . Then there is $\overline{c}=(c_{1}\ldots c_{s})$ independent over $\overline{b}’$ such that
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$tp(\overline{b}c_{1})=tp(\overline{b}_{l}c_{l})(l=1, \ldots, s)$ . Note that the independent tuple $b’\overline{c}$ has length less
than $bd(k)$ . Hence by $bd(k)$-genericity of $N$ , there is $\overline{d}=(d_{1}\ldots d_{s})\in N$ such that
$tp(\overline{a}’\overline{d})=tp(\overline{b}’\overline{c})(\overline{a}, =(a_{1}\ldots a_{j}))$ . Then clearly, for some $di$ } $tp(\overline{b}c_{1})=tp(\overline{a}d_{i})$ . Hence
the claim and the lemma are proved. $\square$

As $M$ has rank 1, $M$ forms a pregeometry. We first consider the case when $M$

forms a geometry such as a random graph, i.e. for $a\in M$ , $acl(a)=\{a\}$ .
Lemma 0.3. Suppose that $M$ is trivial and forms a geometry. Let $N$ be a finite
substructure of M. Then for $\mathrm{h}$ , there is $M_{k}$ such that $N\subseteq M_{k}\subseteq M$ and $M_{k}$ is
$k$ -generic while not $m$-generic for some $m>k.$ (Hence from 0.2, $T$ is not finitely
axiomatizable.)

Proof If $T$ is stable, any $acl(N\cup S)$ where $S$ is some set of $k$-independent points
serves the example of finite one (even for non-trivial pregeometry case !).

So, we freely assume that $T$ is unstable. Then there must exist an integer $e$ such
that, say $p_{1}^{\mathrm{e}}(x_{1}\ldots x_{e})$ has at least 2 independent extensions, say $p_{1}^{e+1}(x_{1}\ldots x_{e};x_{\mathrm{e}+1})$ and
$p_{2}^{e+1}(x_{1}\ldots x_{e};x_{e+1})$ . Now pick up independent tuples $\overline{a}_{i}$ of $M(i=1, \ldots, k)$ , such that
each $\overline{a}_{i}\models p_{1}^{e}$ , and $\overline{a}=\overline{a}1\cdots a-7$ is also independent. We can clearly assume that
$N$

”

$\overline{a}=\emptyset$ , and set $\overline{a}_{0}=N.$ Denote $S= \bigcup_{i\leq k}\overline{a}i(\supseteq N)$ .

Step 1.

Choose a $y_{0}\in S.$ Then $y_{0}\in\overline{a}\mathrm{i}_{0}$ $(i_{0}\leq k)$ . Now find independent elements { $x_{j}$ : $j\in$

$\mathrm{F}(1,1)\}$ which is also independent from $S$ such that $y_{0}x_{j}\models p_{j}^{2}$ and, for each $j$ and
$1\leq i(\neq i_{0})\leq k,\overline{a}_{i}x_{j}$ $\models p_{1}^{e}$ . This is possible by the Independence Theorem. Let $S_{1}=$

$S\cup\{x_{j} : j\in F(1,1)\}$ . Then repeat the step 1 for another point $y_{1}$
$\mathrm{E}$ $a$\overline i $1\subseteq S$ \ $\{y_{0}\}$

by finding points { $x_{j}’$ : $j\in$ F(l, 1)} independent from $S_{1}$ such that $p_{j}^{2}(y_{1}x_{j}’)$ and
$p_{1}^{e}(\overline{a}_{i}, x_{j}’)$ for any $1\leq i\neq i_{1}\leq k.$ Then eventually we can find $U_{2}(\supset \ldots 5\mathrm{i} \supset S\supset \mathrm{V})$

such that, for each $x\in S2$-genericity is witnessed inside $U_{2}$ , whereas
$\cup\{p_{2}^{e+1}(\overline{a}_{i\}}.z)|1\underline{\backslash }i’\leq k\}$ is not realized $(^{*})$

inside $U_{2}$

Step 2.

Now by modifying Step 1, find $U_{3}(\supset U_{2})$ to witness 3-genericity for $S$ inside $U_{3}$

while to satisfy $(^{*})$ . Namely for given independent $x$ , $y\in a$\overline i$2\cup\overline{a}_{i_{3}}\subseteq S(i_{2}, i_{3}\leq k)$

realizing $p^{2}\dot{.}$ , choose independent points {$w_{j}|j\in$ F(l, $i$)} independent from $U_{2}$ such
that $p_{j}^{3}(x, y, \mathrm{j},\cdot)$ and $p_{1}^{e}(\overline{a}_{i}, w_{j})$ for $1\leq i\neq i_{2}$ , $i_{3}\leq k.$ By repeating the process, we
can obtain $U_{k}(... \supset U_{3}\supset\ldots S\supset|N)$ inside which $k$-genericity for $S$ is witnessed where
as above (’) holds.
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Step 3.

Rename $U_{k}$ as $W_{1}$ , and repeat the previous steps for $W_{1}$ . Continuing in this way
we obtain a chain of spaces $S\subset W_{1}\subset W_{2}\subset$ . . . $W_{i}\subset|.$ . such that, inside $W_{i+1}$ , k-
genericity of $W_{i}$ is witnessed whereas $(^{*})$ holds. Let $M_{k}= \bigcup_{i}W_{i}$ . Then by construction
$M_{k}$ is the desired substructure. Therefore the theorem is proved. $\square$

Theorem 0.4. If $M$ is trivial, then $T$ is not finitely axiomatizable.

Proof. In $M^{eq}$ , we have the geometry $D$ of $M$ . For $n$ , clearly there is $k$ such that
whenever $A$ is a set of independent $i(<n)$ points of $M$ , then $A$ has at most $k$

conjugates over unique $B\subseteq D$ with acleq(A) $=$ acleq(B). Now by previous lemma,
there is $(n+k)$-generic $D’\subseteq D$ which is not $m$-generic for some $m>n+k$ . Then we
can find $C\subseteq M$ such that $ad(C)\cap M=C,$ and $C$ , $D’$ are interalgebraic.

We claim that $C$ is $n$-generic, but not $m$-generic. (This finishes the proof.): Let
$\overline{a}=a_{1}\ldots a_{i}$ be a set of independent $i(<n)$ points of $C$ , and let $b_{1}$ be a point in $M$

independent from $\overline{a}$ . We want to find $c\in C$ so that $tp(\overline{a}.c)=tp(\overline{a}b_{1})$ . Now, there is
$\overline{d}=d_{1}\ldots d_{i}$ in $D$ such that $\overline{d}$ and $\overline{a}$ are interalgebraic. Then over $\overline{d}$, there are $s(\leq k)$

conjugates of $\overline{a}$ , say $\overline{a}1(=\overline{a})$ , $\ldots$ , $\overline{a}_{s}$ . Then there is $\overline{b}=(b_{1}\ldots b_{s})$ independent over $\overline{a}$

such that $tp(a-ibi/d)$ $=tp(\overline{a}_{1}b_{1}/t)$ $(j=1, \ldots, s)$ . Moreover there exist corresponding
$\overline{e}=$ (ei...es) $\in D$ such that $b_{j}$ and $e_{j}$ are interalgebraic. Now by $n+k$-genericity of
$D’$ , there is $\overline{e}’$ in $D$’ such that $tp(\overline{e}/\overline{d})=tp(\overline{e}’/\overline{d})$ . Then as $C$ , $D’$ are interalgebraic,
$\overline{b}’=(b_{1}’\ldots b_{s}’)\in C$ where $tp(\overline{b}\overline{e}/\overline{d})=tp(\overline{b}’\overline{e}’/\overline{d})$ . Then clearly, for some $\nu_{i}$ , $tp(\overline{a}b_{1})=$

$tp(\overline{a}b_{\dot{l}}’)$ . Therefore $C$ is $n$-generic. Finally as $D’$ is not $m$-generic for some $m>n,$
obviously $C$ can not be $m$-generic, either. We have proved the theorem. Cl

Now we begin to prove the same result for the structure $N=(M, P)$ in $\mathcal{L}_{P}=$

$\mathrm{C}$ $\cup\{P\}$ where $P$ is generic unary predicate in the sense of Pillay and Chazidakis [1],
(For this we assume that $T=$ Th(M) has quantifier elimination.) We can understand
the predicate $P$ as a $P$-coloring on $M$ .

We can similarly define $k$-genericity of substructures of N. (We know that the
independence and algebraic closedness in $N$ coincide with those notions in $M.$ )

Definition 0.5. Let $N_{1}$ be a subset of N. We say that $N_{1}$ is $k$ -generic substructure
of $N$ if $N_{1}$ is an algebraically closed subset of $N$ such that, for any $m<k_{f}$ and
independent tuple $\overline{a}=$ $(a_{1}, \ldots, a_{m})$ from $N_{1}$ and $b\in N\backslash N_{1}$ , there is $b_{1}\in N_{1}$ such that
$tp_{N}(\overline{a}b)=tp_{N}(\overline{a}b_{1})$ .

Similarly the reader can show the following.
Lemma 0.6. Let $\sigma$ be a sentence in $T’$ having $k$ quantifiers. Then for sufficiently
large $n$ , whenever $N_{1}$ is $n$ -generic substmcture of $N_{f}$ then $N_{1}\models\sigma$ .

Now the following proposition shows non-finite axiomatizability of $N$ .
Proposition 0.7. For $k$ , there substructure $N’$ of $N$ which is $k$ -generic, but not
$k’$ -generic for sorne $k’>k$ .
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Proof. When the geometry is trivial, the proof is be left to the reader. (It will be
almost the same as the proof of 0.3.) Hence we assume that the geometry is non-
trivial, so that there is independent $(\mathrm{e}\mathrm{i}, \ldots e_{n}, e_{n+1})$ which is non-trivial, i.e. there is
$e\in acl(e_{1}\ldots e_{n+1})$ with $e\not\in acl(e_{1}\ldots e_{n})\cup acl(e_{n+1})$ (\dagger ). Let $q=tpL(e_{1}, \ldots, e_{n})$ and
$q’=$ tpL(el $\ldots e_{n+l}$ ). The rest of the proof will also be similar to the proof of 0.3.
Now pick up independent tuples $\overline{a}_{i}$ of $M$ $(i=1, \ldots, k)$ , such that each $\overline{a}_{i}\models q,$ and
$\overline{a}=\overline{a}1\cdots a-k$ is also independent. Let $A=acl(\overline{a})$ . There definitely is $b\not\in A$ such that
$\overline{a}_{i}b\models q’$ for all $i$ , and moreover, $acl(Ab)\backslash A$ is entirely not $P$-colored (f).

Now we proceed in a series of steps to construct the desired $k$-generic $N’$ containing
$A$ such that $tp_{N}(b/\overline{a})$ is not realized in $N’$ .

Step 1.

Choose a $y_{0}\in A.$ Clearly, $y_{0}$ is independent ffom same $\overline{a}_{\mathrm{i}_{0}}$ . Now find independent
set $\{x_{j}\}_{j}$ which is also independent from $A$ witnessing 2-genericity for $y_{0}$ (i.e. every
independent 2-complete type extending $tp_{N}(y_{0})$ in $T’$ is realized by some yoXj). Let
$A_{1}=acl(A\cup\{x_{j}\}_{j})$ . Now, moreover by the character of $N$ , we can further assume
that $A_{1}$ \ $(A) \bigcup_{j}acl(y_{0}x_{j}))$ is entirely colored by $P(^{*})$ . We claim that $tpN(b/a)$ is
not realized in $A_{1}$ (Call this property, $(^{**})$ for $A_{1}$ .):

Suppose not, say $tp_{N}(b/\overline{a})$ is realized by $p\in A_{1}$ . Then by $(^{*})$ and (J), $p\not\in A_{1}\backslash$

$(A \cup\bigcup_{j}acl(y_{0}x_{j}))$ . Hence $p\in$ acl(y0XjQ)\ $ad(y_{0})$ for some $j_{0}(\star)$ . Since $\overline{a}_{\dot{\infty}}p\models\phi,$

there is $z\in acl(\overline{a}_{i_{0}}p)\subseteq A_{1}$ witnessing non-triviality of aiopi $\cdot$ We shall show that
$z \in A_{1}\backslash (A\cup\bigcup_{j}acl(y_{0}x_{j}))$ . (Then it contradicts to $(^{*})$ and (\ddagger ). Hence the claim is
verified.) Firstly, by (f), $z\not\in A.$ Secondly, to show $z$ ( $acl(y0Xj0)$ , we note that by
$(\star)$ , $acl(yop)=acl(y_{0}x_{j_{0}})$ and $acl(p)=acl(a’ iQp)\cap acl(yop)$ as $a$\overline ti0 is independent from
$y_{0}$ over $p$ . Then $z\not\in acl(y_{0}x_{j_{0}})=$ acl(yop) since otherwise $z$ $\in acl(p)$ contradicting to
(\dagger ). Similarly one can see that $z\not\in acl(y_{0}x_{j})$ for any $j$ . Therefore we have proved the
claim $(^{**})$ for $A_{1}$ .

Now repeat the step 1 for another point $y_{1}(\in A)$ independent from some $\overline{a}_{\iota \mathrm{i}_{1}}$ .
Namely, find points $\{x_{j}’\}_{j}$ independent from $A_{1}$ witnessing 2-genericity of $T$’ for $y_{1}$

such that $A_{2} \backslash (A_{1}\cup\bigcup_{j}acl(y_{1}x_{j}^{l}))$ is entirely colored by $P$ , where $A_{2}=acl(A_{1}\cup\{x_{j}’\}_{j})$ .
Then by the same argument, $tp_{N}(b/\overline{a}_{i_{l}})$ is not realized in $A_{2}$ \ Ai. Eventually we can
find $U_{2}(\ldots A_{2}\supset A_{1}\supset A)$ such that, for each $x\in A2$-genericity is witnessed inside $U_{2}$ ,
whereas $(^{**})$ for $U_{2}$ holds.

Step 2.

For $m<k,$ and any independent $\overline{c}=$ (ci, $\ldots$ , $c_{m}$) $\in A,$ clearly some $a$\overline i2 is indepen-
dent from $\overline{c}$ . Now then by modifying Step 1, find $U_{m+1}(...\supset U_{2})$ to witness $(m+1)-$

genericity for any $\overline{c}\in A$ inside $U_{m+1}$ while to hold $(^{**})$ for $U_{m+1}$ . Namely choose
independent points $\{w_{j}\}_{j}$ independent from $U_{m}$ witnessing genericity for $\overline{c}$ such that
$U_{m}’\backslash$ $(U_{m}J \bigcup_{j}acl(\overline{\alpha}v_{j}))$ is entirely colored by $P$ and $U_{m}’(=ad(U_{m}\cup\{w_{j}\}_{j}))\backslash U_{m}$

omits $tp_{N}(b/\overline{\mathfrak{R}}_{2}.)$ . $U_{m+1}$ will contain $U_{m}’$ .
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Step 3.

Rename $U_{k}$ as $W_{1}$ , and repeat the previous steps for $W_{1}$ . Continuing in this way
we obtain a chain of spaces $A\subset W_{1}\subset W_{2}\subset$ . .. $W_{i}\subset$ , . . such that, inside $W_{i+1}$ ,
$k$-genericity of $W_{i}$ is witnessed whereas $(^{**})$ for $W_{i+1}$ holds. Let $N’=$ U{Wi. Then by
construction $N$’ is $k$-generic while omits $\mathrm{t}\mathrm{p}\mathrm{N}(\mathrm{b}/\mathrm{a})$ . Therefore the theorem is proved.

口
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