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1. INTRODUCTION
Many mathematical models for physical, biological or sociological phenomena

exhibit various kinds of symmetry, such as symmetry with respect to reflection,
rotation, translation, dilation, gauge transformation, and so on. Given an equation
with certain symmetry, a natural question that arises is whether or not the symmetry
of the equation is inherited by its solutions.

Needless to say, the answer is generally “No. There are abundant examples of
symmetry breaking that occur in a variety of problems, such as in morphogenesis,
fluid flows, crystal growth, or even in patterns of bacterial colonies. For example,
mathematical models for population distribution in a spatially uniform environment
have translational symmetry, but it often happens that intriguing geometric spatial
patterns emerge from such an environment, thus breaking the translational symme-
try. Without exaggeration one can say that the striking complexity and variety of
our world are a result of innumerable sequence of symmetry-breaking procedures.

On the other hand, there are also many situations in which symmetry is well
preserved. Otherwise our world would be too disorderly and chaotic, and no ad-
vanced structure could survive very long. Both aspects – symmetry breaking and
symmetry preserving – are important for the nature to function properly.

In this article we give rather a general mathematical framework for studying sym-
metry preservation. Mathematically, symmetry is expressed by a group of transfor-
mations, such as the group of rotations and translations. Given such a group action,
say $G$ , an equation is said to have $” G$-symmetry” if the equation remains unchanged
under this group action.

For example, suppose that a given equation $F(u)=0$ has the left-right mirror
symmetry. This means that the exchange of left and right does not affect the
equation. In other words, if we observe a mirror immage of what is happening
under the operation of $F$ , nothing looks different from the way $F$ operates in the
original world. More precisely, if we denote the left-right reflection by $\rho$, then $\rho F(u)$

(the mirror image of $F$ operating on u) is the same as $F(\rho u)(F$ operating on the
mirror image of $u$). Thus our question is formulated as follows:

Suppose that a group $G$ acts on a space $X$ and that a mapping $F:Xarrow X$

is $G$-equivariant, that is, $Fog=g\circ F$ for every $g\in G.$ Then can we say
that solutions of the equation $F(u)=0$ are G-invariant?

As we mentioned earlier, the answer is generally negative unless we impose addi-
tional conditions on the equation or on the solutions. We will henceforth restrict our
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attention to solutions that are “stable” in a certain sense and discuss the relation
between stability and symmetry, or stability and some kind of monotonicity.

In the area of nonlinear diffusion equations or heat equations, early studies in this
direction can be found in Casten-Holland [3] and Matano [11]. Among many other
things, they showed that if a bounded domain $\Omega$ is rotationally symmetric then any
stable equilibrium solution of a semilinear diffusion equation

$\frac{\partial u}{\partial t}=\Delta u+$
$7$

$(\mathrm{t}\mathrm{Z})$ , $x\in\Omega$ , $t>0$

inherits the same symmetry. Later it was discovered that the same result holds in a
much more general framework, namely that of “strongly order-preserving systems”.
This is a class of dynamical systems for which the comparison principle holds in a
certain strong sense, whose concept was introduced in [6], [12] (see also [19], which
gives a comprehensive survey on early developments of this theory). $\mathrm{M}\mathrm{i}\mathrm{e}\mathrm{r}\mathrm{c}\mathrm{z}\mathrm{y}\acute{\mathrm{n}}\mathrm{s}\mathrm{k}\mathrm{i}-$

$\mathrm{P}\mathrm{o}\mathrm{l}\acute{\mathrm{a}}\check{\mathrm{c}}\mathrm{i}\mathrm{k}$ $[15]$ (for the time-continuous case) and Takac [21] (for the time-discrete case)
considered strongly order-preserving dynamical systems with a symmetry property
associated with a compact connected group $G$ and showed that any stable orbit has
a $G$-invariant $\omega$-limit set. This, in particular, implies that any stable equilibrium
point or stable periodic point is G-invariant.

The aim of this article is first to establish a theory analogous to [15] and [21] for a
wider class of systems. We will do this in the first part of the present article. To be
more precise, we will relax the requirement that the dynamical system be strongly
order-preserving. This will allow us to deal with degenerate diffusion equations
and equations on an unbounded domain. Secondly, we will relax the requirement
that the acting group $G$ be compact. This will allow us to discuss symmetry or
monotonicity properties with respect to translation ; the results will then be applied
to the stability analysis of travelling waves of reaction-diffusion equations and to
equations of curvature-dependent motion of surfaces. Much of the material here is
a review of our earlier work [17].

In the second part of the present article, we will establish another useful general
theorem, which we call the “convergence theorem”. This theorem roughly states
that stability implies asymptotic stability. Combining the convergence theorem and
monotonicity theorem, one can derive various useful results concerning the stability
and monotonicity properties of travelling waves and periodic travelling waves for
certain classes of nonlinear diffusion equations with bistable nonlinearity. Some of
those results are already known for specific problems (for instance, [2], [4], [20], [22],
[23] $)$ , but our aim is to treat all those results from a unified point of view. Much of
the material here is a review of our earlier work [18] and some recent results.

.This article is organized as follows. In Section 2, we present our main theorems:
the monotonicity theorem and the convergence theorem. In Sections 3 and 4, we
prove these theorems. Section 5 deals with applications of the monotonicity the0-
rem. Among other things we prove the instability of closed orbits. We also apply
the theorem to show rotational symmetry of solutions of elliptic equations and the
monotonicity of travelling waves. In Section 6, we apply the convergence theorem
to the stability analysis of travelling waves and periodic travelling waves. We will
also study periodic growth patterns of certain equations and show that the growth
pattern is unique and stable.
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2. NOTATION AND MAIN RESULTS

2.1. Time-discrete systems. Let $X$ be an ordered metric space. In other words,
$X$ is a metric space on which a closed partial order relation is defined. We will denote
by $d$ and $\preceq$ the metric and the order relation in $X$ . Here, we say that a partial order
relation in $X$ is closed if $u_{n}\preceq v_{n}$ $(n=1,2,3, \cdots)$ implies $\lim_{narrow\infty}u_{n}\preceq\lim_{narrow\infty}n_{n}$

provided that both limits exist. We also assume that, for any $u$ , $v\in X,$ the greatest
lower bound of $\{u, v\}$ – denoted by $u\wedge v-$ exists and that $(u, v)\vdasharrow u\wedge v$ is a
continuous mapping from $X\cross X$ into $X$ . We write $u\prec v$ if $u\preceq v$ and $u\neq v.$ For
a subset $\mathrm{Y}\subset X,$ the expression $u\preceq \mathrm{Y}$ (resp. $u\prec \mathrm{Y}$ , $u\mathrm{r}$

$\mathrm{Y}$ , $u\succ$ Y) means $u\preceq v$

(resp. $u\prec v$ , $u[succeq] v$ , $u\succ v$ ) for all points $v\in$ Y.
Let $F$ be a mapping from a subset $D(F)\subset X$ into $X$ with the following properties

(F1) (F2) (F3) :

(F1) $F$ is order-preserving (i.e., $u\preceq$z $v$ implies $F(u)\preceq F(v)$ for all $u$ , $v\in D(F)$ ) ;
(F2) $F$ is continuous ;
(F3) any bounded orbit $\{F^{k}(u)\}_{k=0,1,2},\ldots$ is relatively compact.

In this paper $F^{n}$
. 1 denote the identity mapping in the $\mathrm{c}\mathrm{e}n=0$ $\mathrm{d}$ the

composition mapping $F\circ F\mathrm{o}\cdots$ $\mathrm{o}F$ in the case $n\in$ N, $\mathrm{d}$

$n$ times
$D(F^{n})=$ {$u\in X|F^{k}(u)\in D(F)$ for $k=1,2$ , $\cdots$ , $n-1$ },
$D(F^{\infty})= \bigcap_{n=1}^{\infty}D(F^{n})$ .

The set
$\omega(u)=\cap\overline{\{F^{k}(u)|k\geq n\}}n=1\infty$

is called the omega limit set of $u$ , where $\overline{K}$ denotes the closure of a set $K$ . As is
well-known, under condition (F3) $\omega(u)$ is a nonempty compact set provided that
the orbit $\{F^{k}(u)\}_{k=0,1,2},\cdots$ is bounded. Furthermore, by (F2) it is $F$-invariant, that
is, $F(\omega(u))=\omega(u)$ .

Let $G$ be a metrizable topological group acting on $X$ . We say $G$ acts on $X$ if
there exists a continuous mapping $\gamma:G\cross Xarrow X$ such that $g\vdash\succ\gamma(g, \cdot)$ is a group
homomorphism of $G$ into $Hom(X)$ , the group of homeomorphisms of $X$ onto itself.
For brevity, we write $\gamma(g, u)=gu$ and identify the element $g\in G$ with its action
$\gamma(g$ , $\cdot$ $)$ . We assume that

(G1) 7 is order-preserving (that is, $u\preceq v$ implies $gu\preceq gv$ for any $g\in G$) $;$

(G2) 7 commutes with $F$ (that is, $gF(u)=F(gu)$ for any $u\in D(F)$ , $g$ $\in G$) $;$

(G3) $G$ is connected.
We say that an element $u\in X$ is symmetric if it is $G$-invariant, that is, $gu=$ tt

for all $g\in G.$ The set $Gu=\{gu|g\in G\}$ is called a group orbit We will denote by
$e$ the unit element of $G$ .

An element $u\in X$ is called a fixed point of $F$ if $F(u)=u.$ In what follows $\overline{u}$ will
denote a fixed point of $F$ such that the group orbit $G\overline{u}$ is locally precompact. In our
previous paper [17], which studies symmetry and monotonicity properties of fixed
points, we have imposed the following condition on $\mathrm{U}$ :



(E) for any fixed point $u$ with $u\prec\overline{u}$ and with $d(u,\overline{u})$ sufficiently small, there exists
some neighborhood $B(e)\subset G$ of $e$ such that $u$ $\prec gu$ for any $g\in B(e)$ .

In the present paper we will impose a slightly stronger version of this condition
to prove the convergence theorem :

$(\mathrm{E}_{\omega})$ for any point $u$ with $\omega(u)\prec hu$ (resp. $\omega(u)\succ$ hu) for some $h\in G$ and $d(u,\overline{u})$

sufficiently small, there exists some neighborhood $B(e)\subset G$ of $e$ such that
ci(u) $\prec$? $gh\overline{u}$ (resp. $\omega(u)\succ$ gh\overline u) for any $g\in B(e)$ .

Clearly condition $(\mathrm{E}_{\omega})$ implies condition (E) since $\omega(u)$ $=\{u\}$ if $u$ is a fixed point.
In various applications which we will discuss in subsequent sections, both conditions
(E) and $(\mathrm{E}_{\omega})$ can be verified by using the maximum principle.

Remark 2.1. In the case where the mapping $F$ is strongly order-preserving, $(\mathrm{E}_{\omega})$

and hence (E) are automatically fulfilled. Here a mapping $F$ is called strongly order-
preserving if $u\prec v$ implies $F(\tilde{u})\prec F(\tilde{v})$ for any $\tilde{u}$ , $\tilde{v}$ that are sufficiently close to $\mathrm{J}\mathrm{j}$ ,
$v$ , respectively ([12], [19]). To derive $(\mathrm{E}_{\omega})$ , note that the strongly order-preserving
property and $\omega(u)\prec/$ $h\overline{u}$ imply $F(\mathrm{f}^{\mathrm{f}^{k}}(u))$ $\prec F(gh\overline{u})=gh\overline{u}$ for sufficiently large $k$

and any $g\in G$ sufficiently close to $e$ . It follows that $F^{k+1}(u)\prec gh\overline{u}$ for all large $k$ ,
hence $\omega(u)\preceq$ gh\overline u. Considering that $\omega(u)$ is compact and that $hu\not\in\omega(u)$ , we see
that $\mathrm{u}(\mathrm{u})\prec ghu$ if $g$ is sufficiently close to $e$ .
Definition 2.2. A fixed point $i$ $\in X$ of $F$ is called stable if, for any $\epsilon$ $>0,$ there
exists some $\delta>0$ such that

$d(v,\overline{u})<\delta\Rightarrow v\in D(F^{\infty})$ , $\mathrm{d}(\mathrm{F}\mathrm{n}(\mathrm{v}),\mathrm{u})$ $<\epsilon$ for any $n=1,2,3$, $\cdots$

It is called $G$ stable if, for any $\epsilon>0,$ there exists some $\delta>0$ such that
$d(v,\overline{u})<\delta\Rightarrow v\in D(F^{\infty})$, $d(F^{n}(v)$ ,(Th) $<\epsilon$ for any $n=1,2,3$, $\cdots$

Needless to say, stability implies $G$-stability. It follows from (G2) that if $\overline{u}$ is a
stable fixed point of $F$ then so are all points in Gu.

In our previous paper ([17]) we have obtained the following result :

Theorem 2.3. (monotonicity theorem [17, Theorem $\mathrm{B}]$ ) Let $\mathrm{i}$ be a G-stable
fixed point satisfying condition (E). Then either of the follomng alternatives holds :

(a) $G\overline{u}=\{\overline{u}\}$ , that is, $\overline{u}$ is symmetric.
(b) $G\overline{u}\simeq$ R, or, more precisely, $Gu$ is a totally ordered set that is homeomorphic

and order-isomorphic to R.

If $G$ is a compact group, such as the group of rotations, then $G\overline{u}$ is a compact
set, therefore the case (b) in the above theorem never occurs. Thus we obtain the
following corollary, which recovers the results of [15] and [21] in the case of stationary
problems:
Corollary. Let $\overline{u}$ be a stable (or $G$-stable)fixed point, and assume that $G$ is $a$

compact group. Then $\overline{u}$ is $G$ -invariant, that is, $\overline{u}$ is symmetric.

As we have seen in [17], this result implies, among other things, that any orbitally
stable travelling waves or periodic travelling waves are monotone in $x$ $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}t$ (see
Section 5 of the present paper).



In this paper we present another general result which is exceedingly useful in
many applications :

Theorem 2.4. (convergence theorem [18, Theorem 2.4]) Let $\overline{u}$ be a stable fixed
point satisfying condition $(\mathrm{E}_{1d})$ and $G\overline{u}4$ $\{\overline{u}\}$ . Then there exists some $\delta>0$ such
that if $u\in X$ satisfies $d(u,\overline{u})<\delta$ then $\mathrm{u}(\mathrm{u})$ $=\{g\overline{u}\}$ for some $g\in G$ . In other
words, $\lim_{narrow\infty}F^{n}(u)=$ gu.

Remark 2.5. As will be clear from the proof of Theorems 2.3 and 2.4, the group $G$

need not act on the whole space $X$ ; it only needs to act on the set of fixed points
of $F$ provided that all points in $Gu$ are known to be stable fixed points. This will
allow us much flexibility in the choice of group $G$ .

Remark 2.6. Theorem 2.3 remains true if we replace condition (F3) by :

(F4) for any bounded monotone decreasing orbit $\{F^{k}(u)\}_{k=0,1,2},\ldots$ there exists some
fixed point $v$ of $F$ and a universal constant $C>0$ such that

$v\preceq F^{k}(u)$ for any $k=0,1,2$ , $\cdots$ , ci(v, $u$ ) $\leq$
$\mathrm{C}\lim_{karrow}\sup_{\infty}d(F^{k}(u), u)$ .

Condition (F4) (or $(\Phi 4)$ which will be defined later) is fulfilled if a bounded
decreasing orbit is known to converge in an appropriate weak sense.

2.2. Time-continuous systems. With minor modifications, Theorems 2.3 and
2.4 carry over to time continuous systems. To be more precise, let $\{\Phi_{t}\}_{t\in[0,\infty)}$ be a
family of mappings $\Phi t$ from a subset $D(\Phi_{t})\subset X$ to $X$ that satisfies the following
semigroup property :

$D(\Phi_{t})$ is monotone non-increasing in $t$ , and $D(\Phi_{0})=X,$

$\Phi_{0}(u)=u$ for all $u\in X,$

$\Phi_{t_{1}}\circ\Phi_{t_{2}}=\Phi_{t_{1}+}\mathit{4}2$ for any $t_{1},t_{2}\in[0, \infty)$ .
We assume that

($4) $\Phi_{t}$ is order-preserving for each $t\in[0, \infty)$ ;
$(\Phi 2)\Phi_{t}(u)$ is continuous in $u$ for each $\mathrm{t}$ $\in[0, \infty)$ ;
$(\Phi 3)$ any bounded orbit $\{\Phi_{t}(u)\}_{t\in[0,\infty)}$ is relatively compact,

and that the group $G$ satisfies (G1), (G3) and

(G2;) 7 commutes with $\Phi_{t}$ for each $t\in[0, \infty)$ (that is, $g\Phi_{t}(u)=$ !t(gu) for each
$g\in G$ , $u\in D(\Phi_{t})$ , $t\in[0, \infty))$ .

The set
$\omega(u)=\cap\overline{\{\Phi_{t}(u)|t\in[s,\infty)\}}s\in(0,\infty)$

is called the omega limit set of $u$ . Under conditions $(\Phi 2)$ , $(\Phi 3)$ , an omega limit set
$\mathrm{u}(\mathrm{u})$ is a nonempty compact set that is $\Phi_{t}$$rinvariant for all $t>0,$ provided that the
orbit $\{\Phi_{t}(u)\}_{t\in[0,\infty)}$ is bounded.

A point $u\in X$ is called an equilibrium point if it satisfies $\Phi_{t}(u)=u$ for all
$t\in[0, \infty)$ . In the rest of this section $\overline{u}$ will denote an equilibrium point such that
$Gu$ is locally precompact. We impose either of the following conditions on $\mathrm{U}$ :



$(\mathrm{E}’)$ for any equilibrium point $u$ with $u\prec\overline{u}$ and with $d(u,\overline{u})$ sufficiently small, there
exists some neighborhood $B(e)\subset G$ of $e$ such that $u\prec$? $gu$ for any $g\in B(e)$ .

$(\mathrm{E}_{\omega}’)$ for any point $u$ with $\omega(u)\prec h\overline{u}$ (resp. $\omega(u)\succ$ hu) for some $h\in G$ and $d(u,\overline{u})$

sufficiently small, there exists some neighborhood $B(e)\subset G$ of $e$ such that
$\omega(u)\prec gh\overline{u}$ (resp. $\omega(u)\succ$ $gh\overline{u}$) for any $g\in B(e)$ .

Clearly $(\mathrm{E}_{\omega}’)$ implies $(\mathrm{E}’)$ since $\omega(u)$ $=\{u\}$ if $u$ is an equilibrium point.

Remark 2.7. A semigroup $\{\Phi_{t}\}_{t\in[0,\infty)}$ is called strongly order-preserving if the map
$\Phi t$ is strongly order-preserving (see Remark 2.1) for every $t>0.$ It is easily seen
that if $\{\Phi_{t}\}_{t\in[0,\infty)}$ is strongly order-preserving then any equilibrium point $\overline{u}$ satisfies
$(\mathrm{E}’)$ and $(\mathrm{E}_{\omega}’)$ . The converse is not true.

As in Definition 2.2, an equilibrium point $u\in X$ of $\{\Phi_{t}\}_{t\in[0,\infty)}$ is called stable if,
for any $\epsilon>0,$ there exists some $\delta>0$ such that

$d(v, u)<\delta\Rightarrow v\in D(\Phi_{\infty})$ , $\mathrm{d}(mathrm{t}(\mathrm{v}), u)<\epsilon$ for any $t\in[0, \infty)$ ,

where $D(\Phi_{\infty})=\cap D(\Phi_{t})t\in[0,\infty)$
. It is called $G$ stable if, for any $\epsilon>0,$ there exists

some $\delta>0$ such that

$d(v, u)<\delta\Rightarrow v\in D(\Phi_{\infty})$ , $\mathrm{d}(mathrm{t}(\mathrm{v}), Gu)<\epsilon$ for any $\mathrm{t}\in[0, \infty)$ .

The following are time-continuous versions of Theorems 2.3 and 2.4 :

Theorem 2.8. (monotonicity theorem [17, Theorem $\mathrm{B}’]$) Let $\overline{u}$ be a G-stable
equilibrium point satishing $(\mathrm{E}’)$ . Then either of the following alternatives holds :

(a) $G\overline{u}=\{\overline{u}\}$ , that is, $\overline{u}$ is symmetric.
(b) $G\overline{u}\simeq \mathbb{R}$, or, more precisely, there eists an order-preserving homeomorphism

frorn $G\overline{u}$ onto R.

Corollary. Let $\overline{u}$ be a stable (or $G$ stable fied point, and assume that $G$ is $a$

compact group. Then $\overline{u}$ is $G$-invariant, that is, $\overline{u}$ is symmetric.

Theorem 2.9. (convergence theorem) [18, Theorem 2.10] $)$ Let $\overline{u}$ be a stable
equilibrium point satisfying condition $(\mathrm{E}_{\omega}’)$ and $G\overline{u}\neq\{\overline{u}\}$ . Then there eists some
$\delta>0$ such that if $u\in X$ satisfies $d(u,\overline{u})$ $<\delta$ then $\omega(u)=\{g\overline{u}\}$ for some $g\in G$ . In
other words, $t \lim_{arrow\infty}\Phi t(u)=$ gu.

The same remarks as Remarks 2.5 also applies to the time-continuous systems.
As we noted in Remark 2.6, Theorem 2.9 holds if we replace $(\Phi 3)$ by

$(\Phi 4)$ for any bounded monotone decreasing orbit $\{\Phi_{t}(u)\}_{t\in[0,\infty\}}$ there exists some
equilibrium point $v$ and a universal constant $C>0$ such that

$v\preceq\Phi_{t}(u)$ for any $t\in[0, \infty)$ , $d(u, v) \leq C\lim_{tarrow}\sup_{\infty}d(u, \Phi_{t}(u))$ .
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3. PROOF OF THE MONOTONICITY THEOREM

In this section we prove the monotonicity theorems. Since the time-continuous
case (Theorem 2.9) can be treated with minor modification, we will only prove
Theorem 2.3.

We begin with the following proposition :

Proposition 3.1. One of the following holds :
(a) $G\overline{u}=\{\overline{u}\}_{j}$

(b) $Gu$ is a totally ordered set and has no maximum nor minimum $\mathfrak{j}$

(c) $G\overline{u}\neq\{\overline{u}\}$, and no pair of points Wi, $w_{2}\in Gu$ satisfy $w_{1}$ $\prec w_{2}$ or $w_{1}\succ w_{2}$ .
In the case (c), any fixed point $v$ with $v\prec\overline{u}$ satisfies $Gv\prec\overline u.$

To prove the above proposition, we need some lemmas.

Lemma 3.2. Define
$G_{0}=\{g\in G|g\overline{u}=\overline{u}\mathrm{L}$

$G_{\pm}=\{g\in G|g\overline{u}\prec\overline{u}$ or $g\overline{u}\succ\overline{u}1$

$G_{*}=$ { $g\in G|g\overline{u}\not\leq\overline{u}$ and $g\overline{u}$ \not\in $\overline{u}$}.
Then the subset $G_{0}$ is closed, $G_{\pm}$ and $G_{*}$ are open.

Proof From the definition it is easily seen that $G_{0}$ is a closed subset and $G_{*}$ an
open subset of $G$ . Moreover condition (E) implies that $G_{\pm}$ is also open. $\square$

Lemma 3.3. Let Go, $G_{\pm}$ and $G_{*}$ be as in Lemma 4.1. Then one of the following
holds :

(a) $G=G_{0}$ ;
(b) $G_{\pm}\neq\emptyset J$ and $G=G_{0}\cup G_{\pm}$ with $G_{0}=\partial G_{\pm};$

(c) $G_{*}\neq\emptyset$ and $G=G_{0}\cup$ $G_{*}$ with $G_{0}=\partial G_{*}$ .
In the last case, any fixed point $v$ with $v\prec\overline{u}$ satisfies $Gv\prec\overline u.$

Proof. Go, $G_{\pm}$ , $G_{*}$ are mutually disjoint and
G $=G_{0}\cup G_{\pm}\cup$ $G_{*}$ .

We first assume that $G_{*}\neq\emptyset$ . Then by the connectedness of $G$ we have
$\partial G_{*}\neq\emptyset$ .

Since both $G_{\pm}$ and $G_{*}$ are open, we have $\partial G_{*}\subset G_{0}$ . This means that there exists
an element $h_{0}\in\partial G_{*}\cap G_{0}$ . Now let $g_{0}$ be any element of $G_{0}$ and $\mathrm{B}(\mathrm{g}\mathrm{o})$ be any neigh-
borhood of $\mathrm{g}\mathrm{Q}$ . Then, sine $h_{0}g_{0}^{-1}B(g\mathrm{o})$ $=$ $\{h_{0}g_{0}^{-1}g |g\in B(g_{0})\}$ is a neighborhood
of $h_{0}$ , we have

$h_{0}g_{0}^{-1}B(g_{0})\cap G_{*}\neq\emptyset$.
It follows from this and $g0h_{0}^{-1}\in G_{0}$ that

$B(g_{0})\cap$ $G_{*}\neq\emptyset$ .
This shows that $\partial G_{*}=G_{0}$ . Now let $v$ be any fixed point of $F$ satisfying $v\prec\overline u.$ By
condition (E), it holds that $v\prec g_{*}\overline{u}$ for some $g_{*}\in G_{*}$ . Define

$A=\{g\in G|gv\preceq g_{*}\overline{u}$ , $gv\preceq\overline{u}1$ $A_{0}=\{h\in G|v\preceq h\overline{u}\}$ .



$\epsilon$

Since $h$ }$arrow$ hu: $Garrow X$ is continuous, $A_{0}$ is a closed subset of $G$ . In view of this
and the identity $A=A_{0}^{-1}\cap g_{*}A_{0}^{-1}$ , we see that $A$ is closed. (Here $A_{0}^{-1}$ stands
for the set $\{g^{-1}|!/\in A_{0}\}.)$ On the other hand, since $g_{*}\overline{u}$ and $\overline{u}$ are order-unrelated,
neither of the equality signs in the condition $gv\preceq g_{*}\overline{u}$, $gv\preceq\overline{u}$ can hold. Therefore

A $=\{g\in G|gv\prec g_{*}\overline{u},$gv $\prec\overline{u}\}$ .

It follows from this and (E) that $A$ is also open. Thus by the connectedness of $G$

we have $A=G,$ hence
$Gv\prec\overline u.$

This proves the last statement of the lemma. We next show that $G_{\pm}=\emptyset$ . Suppose
that $G_{*}\neq$ G9 and that there exists an element $g\in G_{\pm}$ . By replacing $g$ by $g^{-1}$ if
necessary, we may assume that $g\overline{u}\prec$ u. Applying the above result to $v=$ g|u, we
see that $Gv\prec\overline{u}$ holds. But this is impossible since

Gv $=Gg\overline{u}=G\overline{u}\ni\overline u.$

This contradiction shows $G_{\pm}=\emptyset$ , verifying case (c).
Next we assume that $G_{\pm}\neq\emptyset$ . Then it follows from statement (c) that $G=$

$G_{0}\cup G_{\pm}$ . The assertion $G_{0}=\partial G_{\pm}$ can be shown in the same manner as in (c). The
lemma is proved. $\square$

Lemma 3.4. The maimum of $Gu$ exists if and only if $Gu=\{\overline{u}\}$ . The same is
true for the minimum.

Proof. Suppose that $g_{0}\overline{u}$ is the maximum of Gu. Then
$g\overline{u}\preceq g_{0}\overline{u}$ for any $g\in G.$

In particular, $g_{0}^{2}\overline{u}\preceq$ gtu, hence
$g_{0}\overline{u}=g_{0}^{-1}(g_{0}^{2}\overline{u})$ i $g_{0}^{-1}(g_{0}\overline{u})$ $=\overline{u}\preceq g_{0}\overline{u}$.

This shows that $g0\overline{u}=\overline u,$ therefore $\overline{u}$ is the maximum of Gu. Consequently
$g^{-1}\overline{u}\preceq\overline{u}$ for any $g\in G,$

hence
$\overline{u}=g(g^{-1}\overline{u})\preceq g\overline{u}\preceq\overline u.$

This implies that $6=\{\overline{u}\}$ . The same argument applies if $\mathrm{f}\mathrm{f}\overline{u}$ has the minimum.
The lemma is proved. $\square$

Proof of Proposition 3.1. Let Go, $G_{\pm}$ , $G_{*}$ be as in Lemma 4.1. Suppose that there
exist $g_{1},92$ $\in G$ such that

$g_{1}\overline{u}\succ g_{2}\overline{u}$.
Then $\overline{u}\succ g_{1}^{-1}g_{2}\overline{u}$, hence $g_{1}^{-1}g_{2}$ $\in G_{\pm}$ . Therefore the existence of a strictly ordered
pair of points $w_{1}\succ w_{2}$ in $Gu$ is equivalent to the condition $G_{\pm}\neq\emptyset$ . In view of
this and Lemma 4.2, we find that G. 7 $\emptyset$ implies case (c) in Proposition 3.1. The
last statement of the proposition also follows from Lemma 4.2. On the other hand,
if $G_{*}=\emptyset$ , then $Gu$ is clearly a totally ordered set. The alternatives (a), (b) now
follows immediately from Lemma 3.4. $\square$

To prove Theorem 2.3, we further need the following lemma :



9

Lemma 3.5. Let $u\in D(F^{\infty})$ satisfy $F(u)\preceq u,$ and assume that the sequence
$\{F^{n}(u)\}n=0,1,2,\cdots$ $/s$ bounded in X. Then $F^{n}(u)$ converges to some point $v\in X$ as
$narrow\infty$ . If $v\in D(F)$ , then $v$ is a fixed point of $F$ .

Proof. Since assumption (F1) and $F(u)\preceq u$ imply

ur $F(u)[succeq] F^{2}(u)\mathrm{r}$ $F^{3}(u)[succeq]\cdot\cdot$ . ,
it follows from (F3) that the sequence $\{F^{n}(u)\}_{n=0,1,2},\cdots$ converges as $narrow$ oo to a
point, say $v$ .

Next assume that $v\in D(F)$ . Then, by (F2) we have
$F(v)=F( n arrow\infty li\cdot F^{n}(u))=\lim_{narrow\infty}F^{n+1}(u)=v.$

Hence $v$ is a fixed point of $F$ . Cl
$P$ roof of Theorem 2.3

Step 1 We first prove that the case (c) in Proposition 3.1 does not hold under
the stronger assumption that $\overline{u}$ is stable instead of $G$-stable. Supposing that case
(c) in Proposition 3.1 holds, we will derive a contradiction. Since $G$ is connected,
the set $Gu\subset X$ is connected. From this fact and $Gu\mathrm{e}$ $\overline{u}$, there exists a sequence
$\{g_{m}\overline{u}\}_{m=1,2,3},\ldots\subset Gu$ converging to $\overline{u}$ and satisfying $g_{m}\overline{u}\not\geq\overline{u}$ , $g_{m}\overline{u}$ ! $\overline{u}$ for all $m\in$ N.
The inequalities

$g_{m}\overline{u}\wedge\overline{u}$ $\prec g_{m}\overline{u}$, $g_{m}\overline{u}\wedge\overline{u}\prec\overline{u}$

and assumption (F1) yield
$F(g_{m}\overline{u}\wedge\overline{u})$ $\preceq F(g_{m}\overline{u})\wedge F(\overline{u})=g_{m}\overline{u}\wedge\overline{u}\prec\overline u.$

Because of the stability of $\mathrm{U}$ , we can choose $\{g_{m}\overline{u}\}_{m=}1,2,3$, $\cdot$ . such that the closure of
the sequence $\{F^{n}(g_{m}\overline{u}\wedge\overline{u})\}n=1,2,3,\ldots$ is contained in $D(F)$ and is bounded for each
$m\in$ N. Then it follows from Lemma 3.5 that $\{F^{n}(g_{m}\overline{u}\wedge \mathrm{i})\}n=1,2,3,\cdots$ converges
to some fixed point of $F$ , which we will denote by $v_{m}$ . By the last statement of
Proposition 3.1, for any $g\in G$ and $m\in$ N,

(3.1) $gv_{m}\prec$ tz

holds. Since $\overline{u}$ is stable and $g_{m}\overline{u}\wedge \mathrm{i}$ converges to $\overline{u}$ as $marrow\infty$ , its $\omega$-limit point $v_{m}$

converges to $\overline{u}$ as $marrow\infty$ . Letting $marrow$ oo in (3.1), we obtain
$g\overline{u}\preceq\overline{u}$ for all $g\in G,$

which contradicts our assumption that (c) holds. Thus either (a) or (b) in Proposi-
tion 3.1 holds.

Step 2 Next we show the same result as above under the asumption that $\overline{u}$ is sim-
ply $G$-stable. Supposing case (c) in Proposition 3.1, we will derive a contradiction.
Let $\{g_{m}\overline{u}\}_{m=1,2,3},\ldots$ be as in Step 1. Put $u_{m}=g_{m}\overline{u}\wedge\overline u.$ If

$\lim_{\mathrm{m}arrow}\inf_{\infty}\sup_{k}d(F^{k}(u_{m}),\overline{u})$ $=0,$

then repeating the same argument as Step 1, we obtain a contradiction. Thus we
only need to consider the case where there exists an $\epsilon_{0}>0$ such that

$\sup_{\mathrm{k}}d(F^{k}(u_{m}),\overline{u})>\epsilon_{0}$ for $m=1,2,3$, $\cdots$
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Since the mapping $F$ is continuous, if we choose a $\delta_{0}\in(0,\epsilon_{0})$ sufficiently small then
$\mathrm{d}\{\mathrm{w},\mathrm{u}$) $<\delta_{0}$ implies $d(F(w),\overline{u})$ $<\epsilon_{0}$ .

By taking a subsequence if necessary we may assume without loss of generality that
$d(u_{m},\overline{u})$ $<\delta_{0}$ . For each $m$ we set

$\mathrm{k}(\mathrm{m})=\min\{k\in \mathrm{N}|d(F^{k}(u_{m}),\overline{u})>\delta_{0}\}$ ,

$w_{m}=F^{k(m)}(u_{m})$ .
Then

(3.2) $w_{m}\prec\overline u,$ $\delta 0<d(w_{m},\overline{u})$ $<\epsilon 0.$

Since $\overline{u}$ is $G$-stable, $d(w_{m}, G\overline{u})arrow 0$ as $marrow\infty$ . Hence there exists some $h_{m}\in G$

such that

(3.3) $d(w_{m},h_{m}\overline{u})arrow 0$ as m $arrow\infty$ .
It follows from (3.2) and (3.3) that $\{h_{m}\overline{u}\}_{m=1,2,3},\cdots$ .s bounded. By the local precom-
pactness of $G\overline{u}$, there exists a subsequence $\{h_{m_{\mathrm{j}}}\overline{u}\}_{j=1,2,\theta},\cdots$ that converges to some
point $z_{\epsilon_{0}}$ . Prom this and (3.3), we see that $\{w_{m_{i}}\}_{j=1,2,3},\cdots$ also converges to $z_{\epsilon_{0}}$ .
Letting $m_{j}arrow$ oo in (3.2), we get

(3.4) $z_{\epsilon 0}\prec\overline u,$
$\delta_{0}<d(z_{\epsilon 0},\overline{u})$ $<\epsilon_{0}$ .

Furthermore, since each $h_{m_{\mathrm{j}}}\overline{u}$ is a fixed point of $F$ and since $F$ is continuous, the
limit $z_{\epsilon_{0}}$ is also a fixed point. Hence by the last statement of Proposition 3.1, it
holds that

$Gz_{\epsilon_{0}}\prec$z $\overline{u}$.
Combining this with (3.4) and letting $\epsilon_{0}arrow 0,$ we get $G\overline{u}\preceq$ w, and equivalently
$G\overline{u}\mathrm{r}$ $\overline{u}$. Thus $G\overline{u}=\overline u,$ yielding a contradiction. Therefore either (a) or (b) in
Proposition 3.1 must hold.

Step 3 The conclusion (a) of this theorem follows from (a) in Proposition 3.1. The
conclusion (b) follows from (b) in Proposition 3.1 and Proposition Y2 in [17], which
we state below without proof. The proof of the theorem is completed. $\square$

Lemma 3.6. ([17, Prop. Y2]) Let $\mathrm{Y}$ be a totally ordered connected subset of $X$ and
suppose that $\mathrm{Y}$ is locally precompact (that is, $\overline{\mathrm{Y}}$ is locally compact) and that $\mathrm{Y}$ has
neither the maximum nor the minimum $j$ more precisely suppose that for any $x$ $\in \mathrm{Y}$

there exist points $y$ , $z\in \mathrm{Y}$ satisfying $y\prec x\prec$c $z$ . Then $\mathrm{Y}$ is homeomorphic and
order-isomorphic to 11

4. PROOF OF THE CONVERGENCE THEOREM

In this section we prove Theorem 2.4. As the proof of Theorem 2.10 is almost
identical to that of Theorem 2.4, we omit its proof. In what follows $\overline{u}$ will denote a
fixed point of $F$ satisfying $(\mathrm{E}_{\omega})$ .
Lemma 4.1. Let $\overline{u}$ be stable. If $\omega(u)\cap G\overline{u}\neq\emptyset$ then $\omega(u)=\{g\overline{u}\}$ for some $g\in G.$
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Proof. Since $\overline{u}$ is a stable fixed point, so is every point in Gu. It is also easy to see
that if $\omega(u)$ contains a stable fixed point, say $x$ , then $\omega(u)$ $=\{x\}$ . The conclusion
of the lemma now follows immediately. $\square$

Lemma 4,2. Under the condition of Theorem 2.4 there exists some neighborhood
$U$ of $\overline{u}$ such that, if $u\in U$ satisfies $\mathrm{u}$) $(\mathrm{u})\preceq g_{1}\overline{u}$ or $\mathrm{u}(\mathrm{u})[succeq] g_{1}\overline{u}$ for some $g_{1}\in G,$ then
$\omega(u)=\{g_{2}\overline{u}\}$ for some $g_{2}\in G.$

Proof. Let $V$ be a neighborhood of $i$ such that condition $(\mathrm{E}_{\omega})$ holds for all $u\in V.$

Suppose that a point $u\in V$ satisfies $\mathrm{u}$) $(\mathrm{u})\preceq g_{1}\overline{u}$ for some $g_{1}\in G$ and

(4.1) $\omega(u)\neq\{g\overline{u}\}$ for any $g\in G.$

Then by Lemma 4.1 we have

(4.2) $\omega(u)\cap G\overline{u}=\emptyset$.
Define $A=\{g\in G|\mathrm{u}(\mathrm{u})\preceq g\overline{u}\}$ . Clearly $A$ is a closed subset of $G$ and is nonempty
since $g_{1}\in A.$ Furthermore, (4.2) implies $A=\{g\in G|\mathrm{u}(\mathrm{u})\prec g\overline{u}\}$. Hence from
condition (Ew) we see that $A$ is also open. Since $G$ is connected, we have $A=G,$
that is, $\omega(u)\preceq g\overline{u}$ for any $g\in G.$ Similarly, if a point $u\in V$ satisfies $\mathrm{u}$) $(\mathrm{u})[succeq] g_{1}\overline{u}$

for some $g_{1}\in G$ together with (4.1), then ($\mathrm{j}(\mathrm{u})[succeq] g\overline{u}$ for any $g\in G.$

Now suppose the conclusion of the lemma does not hold. Then, in view of the
above argument, there exists some sequence {um}\subset V converging to $\overline{u}$ such that

$\omega(u_{m})\preceq$E $g\overline{u}$ for any $g\in G$ or $\omega(u_{m})[succeq] g\overline{u}$ for any $g\in G$

for $m=1,2,3$ , $\cdots$ . Without loss of generality we may assume that the former holds
for all $m$ . Since $\overline{u}$ is stable, $\omega(u_{m})arrow\{\overline{u}\}$ as $marrow$ oo in the Hausdorff metric. Thus,
letting $marrow$ oo in the above inequality yields

$\overline{u}\preceq g\overline u,$ g $\in G.$

Replacing $g$ with $g^{-1}$ and applying $g$ on both sides, we get

$g\overline{u}\preceq\overline u,$

hence $g\overline{u}=\overline{u}$ for all $g\in G.$ This, however, contradicts the assumption that
$G\overline{u}\neq\square$

$\{\overline{u}\}$ . The proof is complete.

Prvof of Theorem 2.4. Let $U$ be as in Lemma 4.2 and take a neighborhood $W$ of $\overline{u}$

such that $W\subset U$ and that $u\wedge\overline{u}\in U$ for all $u\in W.$ Clearly

(4.3) $u\wedge\overline{u}\preceq u$ and $u\wedge\overline{u}\preceq\overline u.$

Since the latter inequality implies $\omega(u\wedge \mathrm{j})$ $\preceq\overline u,$ it follows from Lemma 4.2 that
$\omega(u\wedge\overline{u})$ $=\{g_{*}\overline{u}\}$ for some $g_{*}\in G.$ Therefore, by the former inequality of (4.3),
we get $g_{*}\overline{u}\preceq$E $\omega(u)$ . Applying Lemma 4.2 again, we see that $\omega(u)=\{g\overline{u}\}$ for some
$g\in G.$ Cl
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5. APPLICATIONS OF THE MONOTONICITY THEOREM

5.1. Instability of closed orbits. In this subsection we prove that closed orbits
(periodic motion) of order-preserving systems are always unstable. This result is first
proved by Hirsch [6] by using his celebrated “almost everywhere quasi-convergence
theorem”. Our proof here is different, and is simpler.

Let $\{\Phi_{t}\}_{t\in[0,\infty)}$ be a semigroup of mappings as in Section 3. We assume that $\Phi_{t}(\mathrm{t}\mathrm{g})$

is continuous in $t$ as well as in $u$ . Such a semigroup of mappings is called a local
semiflow on $X$ . It is called a semiflow if we further have $D(\Phi_{t})=X$ for every $t$ $\geq 0.$

By definition, any local semiflow satisfies $(\Phi 2)$ .
An orbit $O^{+}(u)=\{\Phi_{t}(,u)|t\in[0, \infty)\}$ is called a periodic orbit if there exists a

$\tau>0$ such that $\Phi_{\tau}(u)=u.$ In this case the point $u$ is called a periodic point or,
more precisely, a $\tau$-periodic point. Note that the quantity $\tau$ need not be the minimal
period in this definition. A periodic orbit $O^{+}(u)$ is called a closed orbit if $u$ is not
an equilibrium point.

Definition 5.1. A closed orbit $O^{+}(u)=$ { $\Phi_{t}(u)|t$ a [0, $\infty)$ } is called orbitally
stable if for any $\epsilon>0$ there exists a $\delta>0$ such that

$d(v, O^{+}(u))<\delta\Rightarrow \mathrm{d}(mathrm{t}(\mathrm{v}), O^{+}(u))<\epsilon$ for any $t$ $\in[0, \infty)$ .
It is called stable if for any $\epsilon$ $>0$ there exists a $\delta>0$ such that

$d(v, u)<\delta\Rightarrow \mathrm{d}$( $mathrm{t}(\mathrm{v}),$ $t(u))<\epsilon for any $\mathrm{t}\in[0, \infty)$ .

Clearly stability implies orbital stability.
We consider local semiflows satisfying the following conditions :

(P) for any $\tau>0$ and any $\tau$-periodic points $u$ , $v\in X$ satisfies $u\prec v,$ there exists
a $\delta>0$ such that

$t $(u)\prec\Phi_{s}(v)$ for any $t$ , $s\in[0, \delta]$ .

We are now ready to state our main result of this section :

Theorem 5.2. Let $\{\Phi_{t}\}_{t\in[0,\infty)}$ be a local semiflow satisfying conditions $(\Phi 1)$ , $(\Phi 3)$

in Section 3 and condition (P) above. Then any closed orbit is orbitally unstable
(hence unstable).

proof Let $O^{+}(\overline{u})$ be an orbitally stable closed $\mathrm{o}\mathrm{r}\mathrm{b}\mathrm{i}\mathrm{t}\cdot \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}$ period $\tau$ . Denote by $P_{\tau}$

the set of all $\tau$-periodic points of the semigroup $\{\Phi_{t}\}_{t\in[0,\infty)}$ and let $F=1\tau.$ Then
$\{F^{n}\}_{n=0,1,2},\cdots$ defines a discrete semigroup on $X$ , and $P_{\tau}$ coincides with the set of
fixed points of $F$ . It is easily seen that conditions (F1), (F2), (F3) in Section 2 are
all fulfilled. Furthe rmore, since each $u\in P_{\tau}$ is a periodic point of $\{\Phi_{t}\}_{t\in[0,\infty)}$ , $\Phi_{t}(u)$

can be defined for all $t\in \mathbb{R}$ and we clearly have $\Phi t(\mathrm{P}\tau)$ $=\mathcal{P}_{\tau}$ for any $t\in \mathbb{R}$ Thus
$\{\Phi_{t}\}_{t\in[0,\infty)}$ is extended to a one-parameter group acting on $P_{\tau}$ . Denote this group
by $G$ . Then conditions (G1), (G2), (G3) can easily be checked. Conditions (P) and
($1) imply condition $(\mathrm{E}’)$ . Furthermore $\overline{u}$ is a $G$-stable fixed point of $F$ such that
$G\overline{u}=O^{+}(\overline{u})$ is a compact subset of $X$ . Applying Theorem $\mathrm{B}$ and Remarks 2.5, we
see that either of the following holds :

(a) $G\overline{u}=\{\overline{u}\}$ ; (b) $G\overline{u}\simeq \mathbb{R}$
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Since $Gu$ is compact, case (b) is excluded. This means that $\overline{u}$ is an equilibrium point
of the semigroup $\{\Phi_{t}\}_{t\in[0,\infty)}$ , contradicting the assumption that $O^{+}(\overline{u})$ is a closed
orbit. The theorem is proved. $\square$

Example. The above Theorem applies, for example, to semilinear parabolic equa-
tions of the form

$\{\frac{\partial u}{u=\partial t}=$$0, \sum_{i\dot{q}=1}^{N},a_{ij}(x)\frac{\partial^{2}u}{\partial x\acute{.}\partial x_{j}}+f$

(x, u, Vu),
$x\in\partial\Omega x\in\Omega$

,

,
$t>0t>’ 0$

,

where $\Omega$ is a domain in $\mathbb{R}^{N}$ . This result has been known if $\Omega$ is a bounded $\mathrm{d}\sim$

main, but our theorem also covers the case where $\Omega$ is unbounded, provided that
$\partial_{u}f(x, 0,0)\leq-$y7 $(x\in\Omega)$ for some y7 $>0.$

5.2. Various other applications. There are many other applications of the mon0-
tonicity theorem. Let us list a few.

Rotational symmetry in PDE: We can apply the monotonicity theorem to
show the rotational symmetry of stable equilibrium solutions of an initial boundary
value problem for a nonlinear parabolic equation of the form

$\frac{\partial u}{\partial t}=\Delta u+f(u)$ , x $\in\Omega$ , t $>0,$

where $\Omega\subset \mathbb{R}^{N}$ is a rotationally symmetric domain that is not necessarily bounded.
This generalizes the result of Casten-Holland [3] and Matano [11] considerably. In
this problem, we choose $G$ to be the group of rotations.

Monotonicity of travelling waves: we apply our theory to s0-called travelling
waves for an equation of the form

(5.1) $\frac{\partial u}{\partial \mathrm{t}}=\frac{\partial^{2}u}{\partial x^{2}}+f(u,$ $\frac{\partial u}{\partial x})$ $x\in$ R $\mathrm{t}$ $>0,$

A nonconstant solution $\tilde{u}(x,\mathrm{t})$ is called a travelling wave if it is written in the form

$\mathrm{i}(x,t)=v$ ($x-$ ct)

for some constant $c\in \mathbb{R}$ which represents the speed of the travelling wave. The
function $v(z)$ is called the profile of the travelling wave and satisfies the equation

$v’+cv’+f(v, v’)=0.$

Here we deal with travelling waves whose limiting values

$\lim_{zarrow\pm\infty}v(z)=u"$

are both stable zeros of $f(u, 0)$ . In order to apply our thoery to study (5.1), we
rewrite the equation in the moving coordinates $z=x-ct,$ to obtain

(5.2) $\frac{\partial u}{\partial \mathrm{t}}=\frac{\partial^{2}u}{\partial z^{2}}+c\frac{\partial u}{\partial z}+f(u,$ $\frac{\partial u}{\partial z})$ , $z\in \mathbb{R}$ $t>0.$
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There is one-t0-0ne correspondence between the equilibrium solutions of (5.2) and
the travelling waves of (5.1) with speed $c$ . Let $G$ be the group of translations on K.

(5.3) $G=\{\sigma_{l}|\ell\in \mathbb{R}\}\simeq \mathbb{R}$ where $\sigma\ell:u(z)\}arrow u(z$ -/$)$ .

Thus, given any equilibrium solution $v(z)$ of (5.2), its $G$-orbit is expressed as
$Gv=\{\sigma_{\ell}v|\ell\in \mathbb{R}\}$ .

Then Theorem 2.9 implies that if $Gv$ is stable, then it is a totally ordered set. This
means that, for any $\ell\in \mathbb{R}$ we have

either $v(x-\ell)\leq v(x)(x\in \mathbb{R})$ or $v(x-/)$ $\geq v(x)(x\in \mathbb{R})$ .
In other words, $v(z)$ is a monotone function. Consequently, any stable (or orbitally
stable) travelling wave is monotone both in $ and $\mathrm{t}$ .

The same argument applies to a system of equations of the form

(5.4) $\{\begin{array}{l}\frac{\partial u_{1}}{\partial t}=d_{1}\frac{\partial^{2}u_{1}}{\partial x^{2}}+f_{1}(u_{1},\cdots,u_{m})\frac{\partial u_{m}}{\partial t}=d_{m}\frac{\partial^{2}u_{m}}{\partial x^{2}}+f_{m}(u_{1},\cdots,u_{m})\end{array}$ $x\in \mathbb{R}x\in$

R

$t>t>00’,$

where constants $\mathrm{d}\mathrm{i}$ , $\cdot\cdot$ .
’

$d_{m}$ are positive and functions $f_{1}$ , , . ., $f_{m}$ satisfy certain
conditions so that the system is of the cooperation type or of the competition type.
(We assume $m=2$ in the latter case.)

With minor modifications, our results extend to travelling waves for equations in
higher space dimensions such as

$\{$

$\frac{\partial u}{\partial \mathrm{t}}=\Delta u+f$ ($x_{1}$ , $\cdots,x_{N-1}$ , Lit), $x\in\Omega$ , $t>0,$

$\partial u$

$\overline{\partial n}=0$
$x\in$ an, $t>0,$

where $\Omega$ is a cylindrical domain of the form $\Omega=D\mathrm{x}\mathbb{R}$ with $D$ being a bounded
$(N-1)$-dimensional domain. A solution $u(x, t)$ is called a travelling wave if it is
written in the form

$u(x,t)=v(x_{1},$..r,$x_{N-1},x_{N}-cl)$ .
We consider travelling waves whose limiting profiles

$\lim_{z_{N}arrow\pm\infty}$ 1 $(z_{\mathrm{b}}\cdot\cdot.$,$z_{N-1}, z_{N})=u^{\pm}(z_{1},$
..($,z_{N-1})$

are stable in a certain sense. We can show that any stable (or orbitally stable) travel-
ling wave is monotone in the axial direction. Moreover these travelling waves inherit
the symmetry properties of $D$ provided that its symmetry group is connected. For
the monotonicity of the travelling wave, we choose $G$ to be the group of translations
along the $x_{N}$-axis. For the latter result, we choose $G$ to be the symmetry group for
the cross section $D$ .

The above results can be extended to so called periodic travelling waves, which
we will discuss in the next section.
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6. APPLICATIONS OF THE CONVERGENCE THEOREM

6.1. Asymptotic stability of travelling waves. In Section 5 we have applied
the monotonicity theorem to show that stable travelling waves are monotone either
in $x$ or in $t$ . In this subsection we prove the converse of this result in a certain sense.
We give only an outline. More details can be found in [18]

Let us first consider an equation of the form

$\frac{\partial u}{\partial t}=\frac{\partial^{2}u}{\partial x^{2}}+f(u)$ , $x\in \mathbb{R}$ $t>0$

or a system of equations of the cooperation type or of the competition type in the
form (5.4), or an equation with time-delay of the form

$\frac{\partial u(x,t)}{\partial \mathrm{t}}=\frac{\partial^{2}u(x,t)}{\partial x^{2}}+f$ $(u(x, t)$ , $u(x,t -1))$ , $x\in$ R $t>0.$

It follows from the monotonicity theorem that any stable travelling wave is mon0-
tone. Conversely, it is known that monotone travelling waves for such equations are
stable. This can be shown by constructing a suitable pair of super- and subsolutions;
see [17] for details. Using this fact and the convergence theorem, one can show that
monotone travelling waves are stable with asymptotic phase. This means that any
solution whose initial data is somewhat close to the travelling wave will eventually
converge to the travelling wave (or its phase-shift) as $tarrow\infty$ . More precisely, if
$v$ ($x-$ d) denots the travelling wave, then

$\sup|u(x,$t) $-v(x$ -ct $-\alpha)|arrow 0$ as t $arrow\infty$ ,
$ER

where $\alpha$ is some real number representing a phase shift. In the above problems, we
choose $G$ to be the group of translations along R.

6.2. Generalized travelling waves. The above results for travelling waves can be
extended to the class of generalized travelling waves (or periodic travelling waves)
in temporally or spatially inhomogeneous media. More specifically, let us consider
an initial value problem for the equation

(6.1) $\frac{\partial u}{\partial t}=$ a(t) $\frac{\partial^{2}u}{\partial x^{2}}+$ b{t, $u$) $\frac{\partial u}{\partial x}+$ f{t, $u$ ), $x\in \mathbb{R}$ $t>0,$

and one for the equation

(6.2) $\frac{\partial u}{\partial \mathrm{t}}=$ a(x) $\frac{\partial^{2}u}{\partial x^{2}}+$ $\mathrm{d}(x, u)$ $\frac{\partial u}{\partial x}+$ gix, $u$), $x\in$ R, $\mathrm{t}$ $>0,$

where functions $a$ , $b$ , $f$ are $T$-periodic with respect to $t$ while $\alpha$ , $\beta$ , 7 are L-periodic
with respect to $x$ . A nonconstant solution $u(x, t)$ for (6.1) is called a periodic
travelling wave if there exists a) $\in$ R such that

$u(x,t+T)=u(x-\lambda,t)$ , x $\in \mathbb{R}$, t $\in \mathbb{R}$

and one for (6.2) is called a periodc travelling wave if
$u(x,t +\tau)=u(x-L, t)$ , $x\in \mathbb{R}$ $\mathrm{t}\in \mathbb{R}$

for some $\tau\neq 0.$ The ratio $c:=\lambda/T$ or $c:=$ L/r is called the average speed or the
effective speed of the periodic travelling wave.
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Under suitable conditions, we can show that
(i) any stable periodic travelling wave for (6.1) is either monotone increasing in

$x$ or monotone decreasing in $x$ $j$

(ii) any periodic travelling wave for (6.1) that is monotone in $x$ is stable with
asymptotic phase.

Similarly we have:
$(\mathrm{i}’)$ any stable periodic travelling wave for (6.2) is monotone in $\mathrm{t}$ ;
(ii) any periodic travelling wave for (6.2) that is monotone in $t$ is stable with

asymptotic phase.

In the above problems, the travelling waves do not keep a constant profile nor a
constant speed. They fluctuate periodically in time. We handle these problems in
a discrete time setting. More precisely, in problem (6.2), we define

$F(u):=\sigma_{-L}\mathrm{o}\mathrm{I}_{\tau}(u)$ ,
where $\sigma$ is as in (5.3) and $\Phi_{t}(t\geq 0)$ is the evolution operator for (6.2). Then $5(x, t)$

is a periodic travelling wave in the above sense if and only if it is a fixed point of $F$ .
We then choose $G$ to be the group of time shifts.

In problem (6.1), we fix $t_{0}\in$ R arbitrarily and introduce an evolution operator
$\Psi_{t}(t\geq 0)$ by $\Psi_{\mathrm{t}}$ : $u(x, t_{0})|arrow u(x,t_{0}+\mathrm{t})$ . Then we define

$F(u):=\sigma_{-\lambda}0\Psi_{T}(u)$ .
and choose $G$ to be the group of spatial tanslations on $\mathbb{R}$

6.3. Travelling waves for surface motion. Our theory applies ako to an evolu-
tion equation of $N-1$ dimensional surfaces $\{S(t)\}_{t\geq 0}$ contained in a domain $\Omega\subset \mathbb{R}^{N}$

and intersecting with $\partial\Omega$ perpendicularly or at a prescribed angle. We can prove
uniqueness, monotonicity and asymptotic stability of travelling waves and periodic
travelling waves.

Let us explain the outline of our results using some simple examples. First, let $\Omega$

be a tw0-dimensional cylindrical domain of the form $\Omega=$ { ($x_{1}$ , $x_{2}$ ) $||x_{1}$ $|<$ h, x%\in R}
for some $h>0$ and consider the equation

(6.3) $V=-\mathrm{v}\mathrm{c}$ $+A(x_{1})$ on $\Gamma(t)$ ,

where $V$ and $\kappa$ are, respectively, the normal velocity and the curvature of the time
dependent curve $\Gamma(t)$ , and $4(x_{1})$ is a smooth function defined on $[-h, h]$ . Then our
results imply that any smooth travelling wave whose endpoints meet both sides of
$\partial\Omega$ with a given contact angle is unique up to translation and asymptotically stable
in a certain sense. Furthermore, this travelling wave is monotone in the $x_{2}$-direction,
that is, it is expressed in the form of a graph $x_{2}=\psi(x_{1})+ct$ for some function $\mathrm{c}$

defined on $[-h, h]$ . Our results also apply to the equation

(6.4) $V=$ -it $+A$ ($x_{1}$ , t) on $\Gamma(\mathrm{t})$ ,

where 4 $(x_{1}, t)$ is $T$-periodic in $t$ . A solution $\{\Gamma(t)\}_{t\geq 0}$ of (6.4) is called a periodic
travelling wave if there exists some A such that $\Gamma(t+T)=\Gamma(t)+\lambda \mathrm{e}_{2}$ for $t\in it\mathit{6}$

where $\mathrm{e}_{2}={}^{t}(0,1)\in \mathbb{R}^{2}$ . It follows from our general results that a smooth periodic
$\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{g},\mathrm{w}\mathrm{a}\mathrm{v}\mathrm{e}$ of (6.4) is unique up to translation and asymptotically stable in a
certain sense. Moreover it is monotone in the $x_{2}$-direction, that is, it is expressed as
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a graph $x_{2}=I(x_{1}, t)$ , where $\psi$ is a function on $[-h, h]\cross \mathbb{R}$ satisfying $\psi(x_{1}, t+T)=$

$\psi(x_{1}, t)+$ A.
Another interesting example is the case where 0 is a periodically undulating

cylindrical domain of the form (with $h>0$ some smooth $L$-periodic function)
$\Omega$ $=$ $\{(x_{1},x_{2})||x_{1}|<h(x_{2}), x_{2}\in \mathbb{R}\}$ ,

and the equation is of the form (with $A(x_{2})$ a smooth &periodic function)

(6.5) $V=-\kappa+A(x_{2})$ on $\Gamma(t)$ .
It follows from the convergence theorem (Theorem 2.4) that a smooth periodic
travelling wave of (6.5) is unique up to translation and monotone in $t$ . Using this
observation, one of the authors is studying homogenization limit of this problem
when the period of undulation depends on a small parameter $\epsilon$ as follows: $h_{\epsilon}(x_{2}):=$

$1+\epsilon g(x_{2}/\epsilon)$ . Details are discussed in the papers [9] and [10].

7. PERIODIC GROWTH PATTERNS

In this section we study a system which gives rise to a periodic growth pattern.
We then apply our convergence theorem to show that the growth pattern is unique
and stable.

First consider a simple ODE:

$\frac{du}{dt}=f(u)$ .

Here $u=u(t)$ can be interpreted, for example, as the total asset of some individual.
In that case, $du/dt$ is the gain per unit time. Or $u$ can be the mass of certain
material, such as crystals. In this case, the above equation describe some kind of
crystal growth.

If $f(u)\equiv c$ (constant), then $u$ grows linearly at a constant speed: $u(t)=ct+u(0)$ .
Suppose that the gain is a function of the current asset, and that $f$ (gain) depends
on ti (asset) periodically:

$f(u+L)\equiv f(u)$ for some $L>0.$

In this case, we have

$f(u)>0$ ($u\in$ R) $\Rightarrow$ u(t) $arrow\infty(tarrow\infty)$ ,
$f(\alpha)<0$ for some $\alpha$ $\Rightarrow$ the growth is blocked.

In the former situation, it is easily seen that the speed of growth fluctuate periodi-
cally in time, which we may call periodic growth.

Next consider the case where there are many individuals $\mathrm{x}\mathrm{u}$

’
$\cdots$ , $x_{m}$ and that each

individual is subject to its own growth law:

(7.1) $\frac{du_{i}}{d\mathrm{t}}=$
$7\mathrm{t}(u_{\dot{l}})$ $(i=1, \cdots, m)$ .

Here Ui(t) denotes the asset of the $i$-th individual Xi. As before, we assume
(7.2) $f:(u+L)\equiv$ f(u) $(i=1,2, \cdots,m)$ .
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If $J_{i}$ is in a favorable condition such that $\mathrm{f}\mathrm{i}(u)$ $>0$ for every $u\in \mathbb{R}$ then $u$: grows
periodically, as we have seen before for the case $m=1.$ On the other hand, if

(7.3) $f_{i}(\alpha,\cdot)<0$ for some $\alpha$:,

then the growth is blocked.

Now suppose that everybody is in an unfavorable enviornment, so that (7.3) holds
for every $i=1,2$ , $\cdots$ , $m$ . If everybody is acting completely independently, we have
the (uncoupled) system (7.1), and nobody can grow. However, quite interestingly, if
the individuals are cooperating in some way, and if $\alpha_{1}$ , $\alpha_{2}$ , $\cdots$ , $\alpha_{m}$ are not identical
(which means the bad period differs from individual to individual), then there are
some chances that the total asset can grow without being blocked. To be more
precise, consider the following system:

(7.4) $\frac{du}{dt}\dot{.}=$ f:(ui) $+$ $g_{i}(u_{\mathrm{b}}\cdots$
’
$u_{m})$ (i $=1,$\cdots ,m).

Here $g_{\}$
. represents the effect of cooperation, thus it satisfies

$\frac{\partial g_{\dot{l}}}{\partial u_{j}}\geq 0$ $(i\neq j)$ .

An example is the linear cooperation
$g:=\beta(u_{i+1}-u_{i})+\gamma(u:_{-1}-u:)$ $(u_{0}=u_{m})$ ,

which implies an averaging effect among adjacent individuals. We can construct an
example of the cooperation (7.4) satisfying (7.3) and yet its solution satisfies
which implies an averaging effect among adjacent individuals. We can construct an
example of the cooperation (7.4) satisfying (7.3) and yet its solution satisfies

(7.5) $u:(\mathrm{t})arrow\infty$ as t $arrow\infty$ (i $=1,$ 2, \cdots ,m).

By using our convergence theorem, we can show the following:

Theorem 7.1. Let (7.4) be a cooperation system satisfying the condition (7.2) and
suppose that the exists at least one initial data for which the solution satisfies (7.5).
Then there gists a periodically growing solution $\overline{u}_{\dot{*}}(t)(i=1, \cdots, m)$ satisfying

$\overline{u}_{\dot{1}}(t+Ti)=\overline{u},\cdot+L$ $(i=1, \cdots, m)$ .
Moreover, such a periodically growing solution is unique up to time shift, and is
stable with asymptotic phase.
Moreover, such a periodicdly gmwing solution $\dot{\mathrm{t}}s$ unique up to time shifl, and is
stable with asymptotic phase.

In order to derive Theorem 7.1 from Theorem 2.4, we set
$F(u):=\Phi_{T}(\mathrm{t}\mathrm{z})$ $-L,$

where $\Phi$, $(t\geq 0)$ is the evolution operator for (7.1), and choose $G$ to be the group
of time sifts, as we have done for equation (6.2).

We can extend the above model to the case where the individuals are distributed
continuously. The cooperation effect (some sort of averaging) can be expressed by
diffusion. In such a case, the model equation can be written as

(7.6) $\frac{\partial u}{\partial \mathrm{t}}=\Delta u+f(x, u)$ $(x \in\Omega, t>0)$ .

The nolinearity $f$ is assumed to satisfy
$f(x,u+L)\equiv f(x,u)$ .



IEI

Then one can prove a result completely analogous to Theorem 7.1. This equation
appears also as a model for crystal growth. For further details, see the recent work
of Nakamura and Ogiwara [16], in which the existence, uniqueness and stability
of periodic growth pattern are established for (7.6). In some cases, their growth
pattern exhibits spiraling behavior.

Appendix
In the case where the system is strongly order-preserving, the convergence theorem

(Theorems 2.4 and 2.10) can be derived from the following more general converegence
theorem. See [1] for a related result.
Theorem $\mathrm{A}.\mathrm{I}$ . Let $X$ be an ordered metric space such that any order interval $[x, y]$

is bounded. Let $F$ : $Xarrow X$ be a strongly order-preserving compact map. Assume
that there eists a set of fixed points $M$ that is totally ordered and connected. Let
$v_{1}<v_{2}$ be any points of M. Then for any rp $\in[v_{1}.v_{2}]$ , the orbit $F^{n}(w)$ converges to
some point in $[v_{1}, v_{2}]\cap M$ as $narrow\infty$ .

(Proof) For each $x\in[v_{1}, v_{2}]$ we define
$A(x):=$ {$y\in M\cap$ [vi, $v_{2}]|y\geq x$ }.

Then $A(x)\neq\emptyset$ since $v_{2}\in$ A(x). Clearly $A(x)$ is a bounded closed set. Since
$F(A(x))=A(x)$ and since $F$ is a compact map, $A(x)$ is a compact set. Moreover
$A(x)$ is totally ordered, since $M$ is totally ordered. Consequently $A$ (x) has the
minimal element, which we denote by $\mu(x)$ . For each $n$ we have

$w_{n}\leq$ $p(w_{n})$ where $w_{n}:=F^{n}(w)$ .
Applying $F$ to the above inequality yields $w_{n+1}\leq F(\mu(w_{n}))=\mu(w_{n})$ , which implies
$\mu(w_{n+1})\mathrm{S}$ $\mu(w_{n})$ . Consequently $\mu(w)\geq\mu(w_{1})\geq\mu(w_{2})\geq\cdot\cdot$ ( By the compactness
of the map $F$ , this monotone sequence is relatively compact, hece the limit

$\mu_{\infty}(w):=\lim_{narrow\infty}\mu(w_{n})$ .

exists. Now let $v$ be any $\omega$-limit point of the orbit $\{w_{\mathrm{n}}\}_{n=1}^{\infty}$ . Then $w_{n_{j}}arrow v$ as $jarrow|$ oo
for some sequence $n_{1}<n_{2}<n_{2}<\cdotsarrow\infty$, hence

$w_{n_{j}}\leq\mu(w_{n_{\mathrm{j}}})$ for $j=1,2,3$, $\cdots$

Letting $jarrow|$ oo we obtain $v\leq$ Fn(w). We will show that $v=$ Fn(w). Suppose the
contrary and assume $v<$ Fn(w). Then by the convergence $w_{n_{\mathrm{j}}}arrow v$ and by the
strongly orderpreserving property of $F$ , we have

$A(x):=\{y\in M\cap[v_{1},v_{2}]|y\geq x\}$ .
Then $A(x)\neq\emptyset$ since $v_{2}\in A(x)$ . Clearly $A(x)$ is abounded closed set. Since
$F(A(x))=A(x)$ and since $F$ is acompact map, $A(x)$ is acompact set. Moreover
$A(x)$ is totally ordered, since $M$ is totally ordered. Consequently $A$ (x) has the
minimal element, which we denote by $\mu(x)$ . For each $n$ we have

$w_{n}\leq\mu(w_{n})$ where $w_{n}:=F^{n}(w)$ .
Applying $F$ to the above inequality yields $w_{n+1}\leq F(\mu(w_{n}))=\mu(w_{n})$ , which implies
$\mu(w_{n+1})\leq\mu(w_{n})$ . Consequently $\mu(w)\geq\mu(w_{1})\geq\mu(w_{2})\geq\cdot\cdot$ ( By the compactness
of the map $F$ , this monotone sequence is relatively compact, hece the limit

$\mu_{\infty}(w):=\lim_{narrow\infty}\mu(w_{n})$ .

exists. Now let v be any $\omega$-limit point of the orbit $\{w_{\mathrm{n}}\}_{n=1}^{\infty}$ . Then $w_{n_{j}}arrow v$ as j $arrow\infty$

for some sequence $n_{1}<n_{2}<n_{2}<\cdotsarrow\infty$, hence
$w_{n_{j}}\leq\mu(w_{n_{\mathrm{j}}})$ for $j=1,2,3$, $\cdots$

Letting $jarrow\infty$ we obtain $v\leq\mu_{\infty}(w)$ . We will show that $v=\mu_{\infty}(w)$ . Suppose the
contrary and assume $v<\mu_{\infty}(w)$ . Then by the convergence $w_{n_{\mathrm{j}}}arrow v$ and by the
strongly orderpreserving property of $F$ , we have

$w_{n_{\mathrm{j}}+1}=F(w_{n_{\mathrm{j}}})<F(z)=z$

for sufficiently large $j$ and for any $z$ $\in M\cap[v_{1}, v_{2}]$ that is sufficiently close to $\mu_{\infty}(w)$ .
If Fn(w) $=v_{1}$ , then we have $v_{1}\leq$ $v$ $\leq$ Fn(w), contradicting our assumption
$v<$ Fn(w). Thus $\mu_{\infty}(w)>v_{1}$ . Since $M$ is totally ordered and connected, we can
choose $z$ to be sufficiently close to $\mu_{\infty}(w)$ and satisfy $z<\mu_{\infty}$ . It follows that

$w_{n_{j}+1}<z<\mu_{\infty}(w)\leq\mu(w_{n_{\mathrm{j}}+1})$ ,
which contradicts the minimality of $\mu(w_{n_{j}+1})$ in the set $A(w_{n_{j}+1})$ . Therefore $v=$

$\mu_{\infty(w)}$ . Consequently, the $\omega$ limit set of rp coincides with $\mu_{\infty}(w)$ , which implies the
convergence $w_{n}arrow\mu_{\infty}(w)$ as $n$ $arrow\infty$ . The theorem is proved. 0

which contradicts the minimality of $\mu(w_{n_{j}+1})$ in the set $A(w_{n_{j}+1})$ . Therefore v $=$

$\mu_{\infty(w)}.\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{t}1\mathrm{y},$ $\mathrm{t}\mathrm{h}\mathrm{e}\omega-\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{s}\mathrm{e}\mathrm{t}\mathrm{o}\mathrm{f}w\mathrm{c}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{s}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\mu_{\infty}(w),$which implies
$\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}w_{n}arrow\mu_{\infty}(w)\mathrm{a}\mathrm{s}narrow\infty.\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{s}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{d}.\square$
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