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1 Introduction
This paper formulates the nonparametric maximum likelihood estimation of
probability measures and generalizes the consistency result on the maximum
likelihood estimator (MLE) by introducing a parameterized family of density
functions corresponding to a nonparametric family of probability measures.
The extensions are twofold: First, we drop the independence assumption on
the underlying stochastic process and replace it with the assumption that the
stochastic process is stationary and ergodic. In previous proofs of consistency,
the independence assumption is used to apply the strong law of large numbers
(SLLN), which plays a crucial role. The present proof employs Birkhoff’s er-
godic theorem and the martingale convergence theorem. Second, we present
a proof that does not resort directly to the integrability of the log-likelihood
or the $\log$-likelihood ratio, which has been imposed since Wald (1949), under
the compactness assumption on the estimation set of probability measures.
The technical assumptions on a parameterized family of density functions
imposed in the previous studies are expressed systematically in terms of a
nonparametric family of probability measures. Consequently, consistency
is formulated in terms of the convergence of probability measures in total
variation.

The consideration of a parameterized family of density functions corre-
sponding to a nonparametric family of probability measures with respect
to maximum likelihood estimation is not the standard framework. One of
the prominent merits of our approach lies in the fact that the nonparamet-
ric maximum penalized likelihood estimation of density functions along the
lines of De Montricher, Tapia, and Thompson (1975), Dong and Wets (2000),
Good and Gaskins (1971), Klonias (1982), and Silverman (1982) is embedded
into our framework. Thus, the existence and consistency of the maximum
penalized likelihood estimator are formulated within our framework by the
constructive method. Moreover, the approach developed here can be sub-
sumed into the standard framework with the maximum likelihood estimation
of the parameters in density functions.

Since the pioneering work of Wald (1949), who first gave a rigorous proof
of the consistency of the MLE, several other proofs have appeared under
less restrictive hypotheses. Generalizations of this result are found in, for
example, Bahadur (1967), Huber (1967), Kiefer and Wolfowitz (1956), Le
Cam (1953), Perlman (1972), and Wang (1985). While the consistency of
the MLE has been studied as a traditional issue in statistical inference, a
recent development in stochastic programming exemplifies the fact that the
problem of statistical estimation can also be formulated as the approximation
of minimizers in a general stochastic optimization problem, based on the
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$epi$-convergence approach (Arstein and Wets (1995), Dupacova and Wets
(1988), and King and Wets (1991) $)$ . The $\mathrm{e}\mathrm{p}\mathrm{i}$-convergence of an stochastic
objective function to the $epi$-limit function ( $epi$-consistency) guarantees the
convergence of minimizers of the objective function to a minimizer of the epi-
limit. Therefore, the problem of maximum likelihood estimation is formalized
as an application of a stochastic optimization problem and the consistency of
the MLE is proved under weaker hypotheses. The proof of consistency of the
MLE along this line is found in Dong and Wets (2000), Geyer (1994), and
$\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}$ (1996) for independent processes, and Choirat, $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}$ , and Seri (2003)
for stationary ergodic processes. The idea of this approach in statistical
estimation originated with Huber (1967), while Hoffman-Jorgensen (1992)
and Peskir (1998) elaborated Huber’s method of approximation of the MLE
employing essentially the same method of epi-convergence.

This paper presents another approach for proving the consistency of the
MLE without the independence assumption. A difficulty in treating a depen-
dent process lies in the fact that the likelihood function is not the product
of the density functions. This forces Choirat, $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}$ , and Seri (2003) to maxi-
mize a psuedolikelihood to obtain the consistency of the $\mathrm{M}$-estimator. In this
paper, we maximize the ‘exact’ likelihood function for dependent processes
to obtain the MLE, which seems novel in the literature.

The paper is organized as follows. In Section 2, we introduce the probabil-
ity model in which the analysis is carried out, and we formulate the nonpara-
metric maximum likelihood estimation of probability measures. In Section 3,
we present the main result of this paper, Theorem 3.1: the existence and con-
sistency of the MLE. We also apply the main result to the parametric and
nonparametric maximum likelihood estimation of density functions. Sec-
tion 4 briefly summarizes the related literature regarding Birkhoff’s ergodic
theorem and the martingale convergence theorem, which are the techniques
developed in this paper. (Section 5 collects mathematical results on the
measurability of correspondences and the martingale property of a likelihood
ratio, which are required to prove the main results. Section 6 is devoted to
the proofs of the theorems).1

2 Description of the Problem
Let (F2, $\mathrm{p}$ , $P$) be a probability space with the a-field $\mathscr{T}$ of a sample space $\Omega$

and the probability measure $P$ on 0. The set of probability measures on $\Omega$ is
denoted by 7 and metrized by the total variation $||\mu-\lambda||:=$ sup$A\in \mathscr{F}|\mu(A)-$

$\lambda(A)|$ , $\mu$ , $\lambda\in$ F. Note that 7 is a complete metric space under the total
1 Sections 5 and 6 are omitted here, which are available in the full version of the paper.
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variation metric (Dunford and Schwartz (1958, p. 161)). We endow $\mathrm{F}$ with
the Borel a-field.

Let $(X, \mathscr{T})$ be a measurable space with the a-field $\mathscr{T}$ of $X$ . For $s=$

$1,2$ , . . . , let {Xs, $\mathrm{r}s$ ) be the $s$-fold product of $(X, \mathscr{T})$ equipped with the
product a-field $\mathrm{y}$’ of the product space X8. For $s=\infty$ , we then write
$(X^{\infty}, \mathrm{y}")$ . We denote an $\{\mathscr{T}_{s}\}_{s=1}^{\infty}$ -adapted stochastic process on $\Omega$ with
values in $X$ by $\{X_{s}\}_{s=1}^{\infty}$ , where $\{\mathscr{T}_{s}\}_{s=1}^{\infty}$ is a filtration on $\Omega$ such that $\mathrm{p}$, is
the sub-a-field of $\mathscr{T}$ generated by the observations (Xi, $\ldots$ , $X_{s}$ ) and $\mathrm{r}_{\infty}$ is
the a-field generated by 371 $F_{s}$ .

A stochastic process $\{X_{s}\}_{s=1}^{\infty}$ is stationary under $\mu\in$ !9, if for any $B_{s}\in$

$\mathrm{f}$ , $s=1,2$ , $\ldots$ , the equality $\mu(\bigcap_{s=1}^{\infty}X_{s}^{-1}(B_{s}))=\mu(\bigcap_{s=1}^{\infty}X_{s+t}^{-1}(B_{s}))$ holds for
each $t$ . A set $A\in F$ is said to be $\{X_{s}\}_{s=1}^{\infty}$-invariant if there exist $B_{s}\in \mathrm{r}$ ,
$s=1,2$ , . . . ’ such that $A= \bigcap_{s=0}^{\infty}X_{s+t}^{-1}(B_{s})$ for each $t$ . The collection of
all $\{X_{s}\}_{s}*$ 1-invariant sets constitutes a sub-cr-field of $\mathrm{y}$ , and we denote it
by $\mathrm{y}’$ . A stochastic process $\{X_{s}\}_{s=1}^{\infty}$ is called ergodic under $\mu\in \mathscr{B}$ if any
$\{X_{s}\}_{s=1}^{\infty}$-invariant set has a $\mu$-measure of zero or one.

2.1 Nonparametric Maximum Likelihood Estimation
of Probability Measures

A probability model $M$ is a triplet consisting of a probability space $(\Omega, \mathrm{r}, P)$ ,
a measurable space ($X$ , $\mathscr{T}|$ , and an $\{\mathscr{T}_{s}\}_{s=1}^{\infty}$ -adapted, $\mathrm{Y}$-valued stochastic
process $\{X_{s}\}_{s=1}^{\infty}$ on $\Omega$ , which is denoted by

$M=\langle$ ( $\Omega$ , $\mathrm{y}$ , $P$), (X,-y), $\{X_{s}\}_{s=1}^{\infty}\rangle$ .

In probability theory, 0 is the set of states, $\mathscr{T}$ is the a-field of events, $P$

is the objective probability of events, and the measurable space $(X, \mathscr{T})$ is
the set of observations. In what follows, we assume that $P$ is the unknown
(or true) probability measure to be estimated. Let a subset $\mathrm{m}$ of $\mathrm{F}$ be an
estimation set. For each $\mu\in \mathscr{A}$ , let $f_{s}(\cdot ; \mu)$ be a measurable function on
$X^{s}$ . An estimation set $\mathrm{m}$ is represented by a family of density functions
$\{(f_{s}(\cdot ; \mu))_{s=1}^{\infty}|\mu\in/\}$ if for $t=1$ , $\ldots$ , oo there exists a $\mathrm{c}\mathrm{r}$-finite measure $\nu_{t}$

on $X^{t}$ such that

$\mu((X_{1}, \ldots , X_{t})\in B^{t})=\int_{B^{t}}f_{t}(x_{1}, \ldots, x_{t};\mu)\nu_{t}(dx_{1}\ldots dx_{t})$ (2.1)

for any $B^{t}\in$ $\mathrm{f}^{t}$ . Thus, when $t\neq\infty$ , the probability measure on $X^{t}$ defined
by the right-hand side of (2.1) is a finite-dimensional distribution of $\{X_{s}\}_{s=1}^{\infty}$ .

The problem of statistical estimation is defined for a given probability
model $M$ and an estimation set $\mathscr{A}$ that is represented by a family of density
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functions. The problem under investigation consists of obtaining an appr0-
priate estimator of $P$ from $\mathrm{r}$ after observing a sample of data $x_{1}$ , $\ldots$ , $x_{t}\in X$

of a realization of $(X_{1}$ , . . . , $X_{t})$ , where $t$ is the sample size. An estimator is
provided by a map from $X^{t}$ into $\mathrm{y}$ . Nonparametric maximum likelihood es-
timation of probability measures is formulated as the following optimization
problem:

$\sup_{\mu\in}$

$f_{t}(x_{1}, \ldots, x_{t};\mu)$ . $(\mathrm{P}_{t})$

An estimator $\mu_{t}$ : $X^{t}arrow$ $\mathscr{A}$ that is a solution to $(\mathrm{P}_{t})$ , $\nu_{t^{-}}\mathrm{a}.\mathrm{e}$ . $(\mathrm{X}$ , . . . , $x_{t})\in X^{t}$ ,
is called an $MLE$. A sequence $\{\mu_{\mathrm{t}}\}_{\mathrm{t}=1}^{\infty}$ of MLEs is said to be consistent if
$\mu_{t}(x_{1}$ . . . , $x_{t})arrow P$ , $\nu_{\infty}- \mathrm{a}.\mathrm{e}$ . $(x_{1},$ $x_{2}$ , . . . $)$ $\in X".$

2.2 Regular Probability Model
Nonparametric maximum likelihood estimation is formulated in a probability
model with an estimation set that is represented by a parameterized family
of density functions corresponding to a nonparametric family of probability
measures. Obviously, it is not guaranteed that any probability model admits
such representation. This motivates the following definitions.

Definition 2.1. A probability model $M=((\Omega, \mathrm{P}, P),$ $(X, \mathrm{y})$ , $\{X_{s}\}_{s=1}^{\infty}\rangle$ is
regular if $\{X_{s}\}_{s=1}^{\infty}$ is stationary and ergodic under $P$ .

Note that an independent and identically distributed $(i.i.d.)$ process is
stationary and ergodic (Breiman (1968, Corollary 6.33)). If a Markov chain
with stationary transition probabilities is indecomposable and has a station-
ary initial distribution, it is also stationary and ergodic (Breiman (1968,
Proposition 7.11 and Theorem 7.16)). Therefore, any probability model ad-
mits two types of stochastic processes as special cases. One is an $i$ . $i.d$. process,
the other is a Markov chain that has the above properties.

Definition 2.2. An estimation set $\mathrm{d}$ is admissible for a probability model
$M=\langle$ (n, $\mathrm{P}$ , $P$), $(X,$ $\mathrm{y})$ , $\{X_{s}\}_{s=1}^{\infty}\rangle$ if the following conditions are satisfied:

(i) $P\in \mathscr{A}$ .
(ii) 1 is relatively compact.
(iii) There exists a a-finite measure $Q$ such that $\mu\ll Q$ for any $\mu\in d$ .
(iv) $\{X_{s}\}_{s=1}^{\infty}$ is stationary and ergodic under any $\mu\in \mathscr{A}$ .
(v) For any $\mu\in d$

$\mathrm{Z}$

$\{P\}$ there exists a measurable set $B\in$ 7 such that
$\mu(X_{\mathit{8}}^{-1}(B))\neq P(X_{\partial}^{-1}(B))$ for some $s$ .
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We engage ourselves with a regular probability model with an admissible
estimation set. The following theorem is a starting point for the analysis in
the sequel.

Theorem 2.1. For any regular probability model $M$ , there exist an estima-
than set $\mathscr{A}$ and a family of density functions $\{(f_{s}( \cdot ; \mu))_{s=1}^{\infty}|\mu\in d\}$ such
that $d$ is admissible for $M$ and represented by {( $f_{s}$ ( $\cdot$ ; $\mu$)) $\mathrm{S}_{1}|$ p $\in \mathscr{A}$ }.

3 Main Results
We show that in a regular probability model with an admissible estimation
set, an MLE exists and converges in total variation to the true probability
measure with a probability of one. This is a main result of this paper.
This result is applied to the nonparametric maximum likelihood estimation
of density functions. We also apply it to the standard framework in which
the maximum likelihood estimation is formulated in terms of the density
functions with a general parameter space.

3.1 Existence and Consistency of the MLE
Theorem 3.1. Let $M=\langle$(Q, $\mathrm{y}$ , $P$ ), $(X,$ $\mathrm{y})$ , $\{X_{s}\}_{s=1}^{\infty}\rangle$ be a regular proba-
bility model, and let $\mathrm{y}$ be admissible for $M$ and represented by a family of
density functions $\{(f_{s}(\cdot ; \mu))_{e=1}^{\infty}|\mu\in \mathscr{A}\}$ . Then for each $t$ there exists a rnea-
surable map $\mu_{t}$ : $X^{t}arrow$ $\mathrm{y}$ with the following properties:

(i) $f_{t}(X_{1}(\omega),$
$\ldots$ , $X_{t}(\omega);\mu_{t}(X_{1}(\omega), \ldots, X_{t}(\omega))$

$= \sup_{\mu\in d}f_{t}(X_{1}(\omega), \ldots, X_{t}(\omega);\mu)$ p-a. $e.\omega$ $\in\Omega$ for any $\mu\in d$ .

(ii) $||\mu_{t}(X_{1}(\omega), \ldots, X_{t}(\omega))-P||arrow 0$ P-a. $e.\omega$ $\in$ Q.

Remark 3.1. We have dealt with a general sample space 0 that does not
have any topological structure. When it is a metric space, there exists an-
other mode of amenable topologies on $\mathrm{P}$ : the topology of weak convergence.
Because this topology is weaker than the metric topology with total vari-
ation, the compactness in Definition 2.2(ii) implies the compactness in the
topology of weak convergence, and the convergence of the MLE in Theo
rem 3.1 implies the weak convergence of the MLE. The topology of weak
convergence is metrized by the Prohorov metric, but in general, it is not
equivalent to the total variation metric. Therefore the topological require-
ment in the present paper might be more stringent than the topology of weak
convergence. Under some restrictive hypotheses, the consistency result in the
standard framework can be translated into our nonparametric framework by
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considering the continuous relation between the parameter space and the set
of probability measures endowed $\mathrm{w}\mathrm{i}$ th the topology of weak convergence (see
Bahadur (1971, Section 9) $)$ .

3.2 Nonparametric Maximum Likelihood Estimation
of Density Functions

We apply the main result to the nonparametric estimation of density func-
tions. We transform the problem of the nonparametric maximum likelihood
estimation of density functions into problem $(\mathrm{P}_{t})$ in a regular probability
model with an admissible estimation set and show that Theorem 3.1 can be
applied also in the nonparametric framework to prove consistency. To this
end, the point is the construction of an admissible estimation set from a
nonparametric family of density functions.

Let $(X, \mathscr{T}, \nu)$ be a $\mathrm{c}\mathrm{r}$-finite measure space. Define the set of density
functions on $X$ with respect to $\nu$ by

$\mathscr{D}_{\nu}:=\{f\in L^{1}(X, \mathscr{T}, \nu)|\int f(x)\nu(dx)=1$ , $f\geq 0\}$

Let $g$ $\subset \mathscr{D}_{\nu}$ be a nonparametric family of density functions. The problem
is, given sample observations $x_{1}$ , $\ldots$ , $x_{t}\in X,$ to find an estimator $\hat{f}\in g$

of the true density function $f^{*}\in \mathscr{C}$ associated with an $i.i.d$ . stochastic pr0-
cess such that its distribution is given by the probability measure $\nu^{*}$ with
$\nu^{*}(B)=\int_{B}f^{*}(x)$ $/(dx)$ , $B\in \mathscr{T}$ . Then the nonparametric maximum likeli-
hood estimation of density functions is given by

$\sup_{f\in t}f(x_{1})\ldots f(x_{t})$ . $(\mathrm{N}_{t})$

For $t=1$ , $\ldots$ , $\infty$ , let $\nu_{t}$ be the product measure on $X^{t}$ induced by $\nu$ . A
map $\hat{f}_{t}$ : $X^{t}arrow \mathscr{D}_{\nu}$ is an MLE if $7_{t}(x_{1}\wedge, \ldots, x_{t})$ is a solution to $(\mathrm{N}_{t})$ , $\nu_{t^{-}}$

$\mathrm{a}.\mathrm{e}$ . $(x_{1}, \ldots, x_{t})$ $\in X^{t}$ . Consistency of the MLE is defined in terms of the
convergence $7_{t}(x_{1}\wedge$ , . . . , $x_{t})arrow f^{*}$ in Ll $(\mathrm{X}, \mathscr{T}, \nu)$ , vt-a. $\mathrm{e}$ . $(x_{1},$ $x_{2}$ , . . . $)$ $\in X".$

If there is no constraint on $g$ , which is the case for $g$ $=\mathscr{D}_{\nu}$ , then the MLE is
simply the sum of the Dirac functions that assigns equal mass to each sample
point: $\hat{f}_{\iota}(x1, \ldots, xt)(x)=t^{-1}\sum_{s=1}^{t}\mathrm{I}1_{x_{S}}(x)$ . Therefore, the really important
case is $g$ $\subsetneq \mathscr{D}_{\nu}$ .

The problem under consideration is to construct a regular probability
model with an admissible estimation set from this nonparametric framework
and to subsume $(\mathrm{N}_{t})$ into $(\mathrm{P}_{t})$ . The following theorem is a basis for the
analysis in the sequel: an immediate consequence of Kolmogorov’s eistence
theorem (Shiryaev (1995, Corollary II.9.1)).
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Proposition 3.1 (Kolmogorov). There eist a probability space $(\Omega, \mathrm{P}, P)$

and an $X$ -valued stochastic process $\{X_{s}\}_{s=1}^{\infty}$ on $\Omega$ such that $\{X_{s}\}_{s=1}^{\infty}$ is $i.i.d$.
under $P$ and its distribution is given by $\nu^{*}$ .

Let $\{\mathscr{T}_{s}\}_{s=1}^{\infty}$ be a filtration on 0 such that $\mathrm{y}_{s}$ is a $\mathrm{s}\mathrm{u}\mathrm{b}-\sigma$-field of $\mathrm{F}$ gen-
erated by the observations $(X_{1}$ , . . . , $\mathrm{X}_{s})$ and $y_{\infty}$ is the a-field generated by
$\bigcup_{s=1}^{\infty}\mathscr{T}_{s}$ . Then $\{X_{s}\}_{s=1}^{\infty}$ is $\{\mathscr{T}_{s}\}_{s=1}^{\infty}$ -adapted. Thus, Proposition 3.1 validates
our involvement with the regular probability model

$\tilde{M}=\langle$ ( $\Omega$ , $\mathrm{y}$ , $P$), (X,-y), $\{X_{s}\}_{s=1}^{\infty}\rangle$ .

The next step is to construct an admissible estimation set from $g$ .
Denote the set of all probability measures on $X$ by $\mathscr{B}^{X}$ . For each $f\in g,$

define $\nu_{f}\in \mathscr{B}^{X}$ by $\nu_{f}(B):=\int_{B}f(x)\nu(dx)$ , $B\in \mathscr{T}$ . Let $\mathrm{a}(X)$ be the afield
on $\Omega$ generated by the random variable $X$ : $\Omegaarrow X.$

Assumption 3.1. There exists an $X$-valued random variable $X$ on 0 with
the following properties:

(i) $\mathrm{a}(X)=F.$

(ii) $P(X^{-1}(B))=\nu^{*}(B)$ for any $B\in \mathscr{T}$ .
(iii) $B\in \mathscr{T}$ and $B\subset X\backslash X(\Omega)$ implies $\nu(B)=0.$

Assumption 3.2. g is relatively compact in $L^{1}(X, \mathscr{T}, \nu)$ .

Assumption 3.3. For each f $\in g$ $\backslash \{f^{*}\}$ there exists a $\mu\in \mathscr{B}$ Z {P} such
that $\{X_{s}\}_{s=1}^{\infty}$ is i.i.d. under $\mu$ and its distribution is given by $\nu_{f}$ .

Let $\mathrm{r}$’ $:=$ $\{\nu’\in \mathrm{P}’|\nu’\ll \nu\}$ and $\mathscr{B}_{Q}$ $:=\{\mu\in 7|7 <<Q\}$ . Denote
the topological equivalence relation in terms of a homeomorphism $\mathrm{b}\mathrm{y}\cong$ . The
underlying probabilistic structure has the following important property:

Theorem 3.2. Under Assumption 3.1, there exists a $\sigma$-finite measure $Q$

such that $\mathscr{D}_{\nu}\cong F"$ $\cong$
$\mathrm{P}_{Q}$ .

Define the estimation set $\mathrm{y}$ of probability measures by

1 $:=\{\mu\in \mathscr{B}$

$\exists f\in d$ : $\mu(X_{s}^{-1}(B))=\mu(X^{-1}(B))$

$\mu(\bigcap_{s=1}^{t}X_{\mathit{8}}^{-1}(B_{s}))=\prod_{s=1}^{t}\nu_{f}(B_{s})\forall B_{s}\in \mathscr{T}\forall s\}$

$=\nu_{f}(B)\forall B\in \mathscr{T}\forall s$

Note that by construction, $P\in d$ in view of Proposition 3.1 and Assumption
3.1, and $\{X_{s}\}_{s=1}^{\infty}$ is $i.i.d$. under any $\mu\in d$ .
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Theorem 3.3. Suppose that Assumptions 34-3.3 hold. Then $\#$ is adrnis-
sible for $\tilde{M}$ , $\mathscr{A}\subset \mathscr{B}_{Q}$ , and d $\cong d.$

Theorem 3.3 ensures that $\mathscr{A}$ is identified with $g$ and each element in $g$ is
parameterized by an element in $\mathrm{y}$ . Thus, / is represented by the family of
density functions $\{f(\cdot ; \mu)|\mu\in/\}$ $=g.$ Therefore, we can apply Theorem
3.1. Let $\mu_{t}$ : $X^{t}arrow \mathscr{A}$ be the MLE in Theorem 3.1. It is obvious that
$f(\cdot ; /’ t(x_{1}, \ldots, x_{t}))$ is a solution to $(\mathrm{N}_{t})$ , $\mathrm{a}.\mathrm{e}$ . $(x_{1}, \ldots,x_{t})$ . Define $\hat{f}_{t}$ : $\Omega$ $arrow g$

by $7\mathrm{t}(\mathrm{c}")$ $:=f(\cdot ; \mu_{t}(\omega))$ . Then the convergence $\mu_{t}(\omega)arrow p$ $P\mathrm{a}.\mathrm{e}.\omega$ in total
variation is equivalent to $7\mathrm{t}(?\mathrm{J})$ $arrow f^{*}\mathrm{a}.\mathrm{e}.\omega$ in $L^{1}(X, \mathscr{T}, \nu)$ .

As concerns the nonparametric estimation of density functions, Dong
and Wets (2000) develops a constrained maximum likelihood estimation in
a general framework by employing the $\mathrm{e}\mathrm{p}\mathrm{i}$-convergence approach, which can
be effectively applied to the nonparametric maximum penalized likelihood
estimation. They investigate the following problem of the form:

$\sup\sum_{s=1}^{t}\log f(x_{s})$

$(\mathrm{L}_{t})$

$\mathrm{s}.\mathrm{t}$ . $f\in G\subset H:=L^{2}(X, !f^{\mathit{7}}, \nu)$ .

In particular, when $G$ is restricted to

$G=\{f\in H|\Phi(f)\leq\beta, f\in C\}$ , $\beta\in \mathbb{R}$ ,

where the functional (I) describes a constraint on density functions, with the
suitable choice of $\alpha\geq$ 0, the problem (ht) can be transformed into the
following equivalent problem (Dong and Wets (2000, Lemma 4.1)):

Sfup $[ \sum_{s=1}^{t}\log f(x_{s})-\alpha\Phi(f)]$ $(\mathrm{M}_{t})$

Here, -a$\Phi(f)$ is a penalized term. They provide the existence and consis-
tency for $(\mathrm{L}_{t})$ , which broadly encompasses the previous result on the max-
imum penalized likelihood estimation problem $(\mathrm{M}_{t})$ with the specific func-
tional forms of (I similar to those in Good and Gaskins (1974), Klonias
(1982), Montricher, Tapia, and Thompson (1975), and Silverman (1982). It
is obvious that the problems $(\mathrm{L}_{t})$ and $(\mathrm{M}_{t})$ are subsumed into our framework
by considering $g$ $=G$ and $g_{\Phi}=$ $\{f\in \mathscr{D}_{\nu}|f\in H\cap C, \mathrm{D}(f) \leq \mathrm{d}\}$ .

Roughly speaking, the consistency result established by Dong and Wets
(2000) is based on the following observation. Under certain conditions, the
SLLN guarantees the following.



$5\theta$

$\circ$ The objective function $L_{t}(f):=-t^{-1}$ $\sum_{s=1}^{t}\log f(x_{s})\mathrm{e}\mathrm{p}\mathrm{i}$-converges to
the $\mathrm{e}\mathrm{p}\mathrm{i}$-limit $L(f):=- \int\log f(x)\nu(dx)$ as $tarrow\infty$ , $\nu_{\infty}- \mathrm{a}.\mathrm{e}$ . $(x_{1}, x_{2}, \ldots)$ .
This $\mathrm{e}\mathrm{p}\mathrm{i}$-limit is a nonstochastic function.

$\circ$ A cluster point $\hat{f}_{0}$ of the sequence of minimizers $\{\hat{f}_{t}\}_{t=1}^{\infty}$ , where $/t\wedge\in$

$\arg\min_{f\in S}L_{t}(f)$ , is a minimizer of the $\mathrm{e}\mathrm{p}\mathrm{i}$-limit: $\hat{f}_{0}\in\arg\min_{f\in S}L(f)$ ,
$\nu_{\infty}- \mathrm{a}.\mathrm{e}$ . $(x_{1},x_{2}$ , . . . $)$ .

$\circ$ The set of minimizers $\arg\min_{f\in \mathrm{S}}L(f)$ contains the true density func-
tion $f^{*}$ .

As Dong and Wets note, their consistency result does not guarantee the
existence of an $\arg\min$-estimator $\hat{f}_{t}$ and a cluster point $\hat{f}_{0}$ of $\{\hat{f}_{t}\}_{\mathrm{t}=1}^{\infty}$ . These
will, of course, exist if $G$ is compact. Thus, Assumption 3.2 is implicit in
their structure.

Note that the family of density functions under consideration is broader
in our ffamework than in theirs, because $L^{2}$-space is included in $L^{1}$ -space.
Because the $\mathrm{e}\mathrm{p}\mathrm{i}$-convergence approach works for Hilbert spaces, their method
is not valid when considering a family of density functions in $L^{1}$ . One of
the merits of using the $\mathrm{e}\mathrm{p}\mathrm{i}$-convergence together with the $L^{2}$-space lies in
the fact that their consistency result also works in the weak topology in $L^{2}$

(Dong and Wets (2000, Theorem 7.12)). Although our consistency result also
implies weak convergence in $L^{1}$ , if $g$ is only assumed to be relatively weakly
compact in $L^{1}$ and not to be relatively norm compact, then consistency in
terms of the weak convergence in $L^{1}$ is not obtained by our method. The
weak compactness is more easily achieved than the norm compactness. In
some families of density functions, however, the norm compactness in $L^{1}$ can
be verified in a simple manner (see Remark 3.2 and Examples 3.1-3.4 below).

Assumption 3.1 is innocuous. Conditions (i) and (ii) in Assumption 3.1
will be required also in their framework, when considering explicitly the
$\mathrm{a}.\mathrm{e}$.-convergence on the sample space $\Omega$ . As in the proof of Theorem 3.2,
conditions (i) and (iii) in Assumption 3.1 together enable us to establish the
one-t0-0ne correspondence between $\mathscr{B}^{X}$ and $\mathscr{B}$ , which is not so stringent
and is implicit in many statistical models.

Assumption 3.3 is our point of departure from the assumptions in Dong
and Wets. Although it is indeed unnecessary for them, in the present frame-
work it plays an important role in the proof of Theorem 3.3. This seems,
however, a plausible assumption because it requires that any density func-
than in $g$ generates an $i.i.d$ . process under some probability measure on the
sample space, which is implicitly assumed in many statistical models.

On the contrary, Dong and Wets (2000, Theorems 7.9 and 7.12) assume
the local integrability of the $\log$-likelihood: for any $g\in S$ there exists a
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neighborhood $V(g)$ of $g$ such that $\int\log f(x)\nu(dx)<$ oo for any $f\in V(g)$ .
We do not require this condition.

Remark 3.2. To apply Theorem 3.1, we have imposed the relative compact-
ness of $g$ in Assumption 3.2. It may not be a easy task to check whether
or not a given family of density functions is relatively compact in $L^{1}$ . How-
ever when the observation space $X$ is finite-dimensional, which is the case
in most applications, we might be more hopeful. Let $(\mathbb{R}^{n}, \mathscr{B}_{\mathrm{R}^{n}}, \nu)$ be a mea-
sure space on the $n$-dimensional Euclidean space $\mathbb{R}^{n}$ with the Borel a-field

$\#_{\mathrm{R}}$ . and the Lebesgue measure $\nu$ on Rn. The following characterization of
the compactness of $g$ in $L^{1}(\mathbb{R}^{n}, ?_{\mathrm{R}^{n}}, \nu)$ provides a useful criterion for many
cases.

Theorem 3.4. A su bset g of $\mathscr{D}_{\nu}$ is compact in $L^{1}(\mathbb{R}^{n}, \mathscr{B}_{\mathrm{R}^{n}}, \nu)$ if and only
if it is closed and the follow ing condition is satisfied:

flgm Sfup $7_{x||>r}$ $f(x)\nu(dx)=0.$ (3.1)

Condition (3.1) is easy to check. For example, when each density function
in 9 is defined on some bounded set in $\mathbb{R}^{n}$ , it holds obviously by assigning
value zero to each element in $g$ outside the bounded set.

Remark 3.3. Because $If\subset L^{1}$ for $p>1$ and the relative topology of $L^{p}$

inherited from the $L^{1}$ -norm is finer than the UlAnorm topology (Aliprantis
and Border (1999, Corollary 12.3) $)$ , an $L^{p}$ZAnorm closed set is obviously $L^{1}-$

norm closed. Therefore, in view of Theorem 3.4, when we limit ourselves to
a family of density functions in $IP$ , it suffices to show the $IP$-norm closeness
to ensure the $L^{1}$-norm compactness.

Consider some applications of Theorem 3.4 to the nonparametric maxi-
mum penalized likelihood estimation.

Example 3.1 (De Montricher, Tapia, and Thompson (1975)). Let
$[a, b]$ be a closed interval in R. For each integer $k=1,2$ , $\ldots$ , denote the
Sobolev space $H_{0}^{k}([a, b])$ of functions $f\in L^{2}([a, b])$ with $(i-1)$-th generalized
derivatives $f^{(i-1)}$ vanishing at the end points $\{a, b\}$ , and with $i$-th generalized
derivatives $f^{\langle:)}$ in $L^{2}([a, \mathrm{b}])$ $i=1$ , . . . , $s$ :

$H_{0}^{k}([a, b]):=\{f\in L^{2}([a, b])|f^{(i)}\in L^{2}([a,b].),i=1,\ldots,$$kf^{(\iota-1)}(a)=f^{(/-1)}(b)=0\}$ .

The inner product in $H_{0}^{k}([a, b])$ is given by $\langle f,g\rangle_{H_{0}^{k}}:=\int_{a}^{b}f^{(k)}(x)g^{(k)(x)}$ \mbox{\boldmath $\nu$}(dx),
which makes $H_{0}^{k}([a, b])$ a Hilbert space, and the norm in $H_{0}^{k}([a, b])$ is given
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by $||f||_{H}\mathrm{y}=\langle f, f\rangle_{k}^{\frac{1}{H2}}0^{\cdot}$ By Schwartz’s inequality, we have

$|f^{(}$”$(x)|=| \int_{a}^{x}f^{(i)}(y)\nu(dy)|\leq(b-a)||f^{(i)}||_{L^{2}([a,b])}$ for any $x\in[a, b]$

for each $i=1$ , . . . ’
$k$ . Therefore, $||$ $7_{n}$ $-f||_{H_{0}^{k}}arrow 0$ implies $||f_{n}$ $-f||L^{2}((a,b))$ $arrow 0.$

By assigning zero to each element in $H_{0}^{k}([a, b])$ outside the interval $[a, b]$ , we
can regard $H_{0}^{k}([a, b])$ as a subset of $L^{2}(\mathbb{R}, \mathscr{B}_{\mathrm{R}}, \nu)$ . Consider the functional (I)

on $H_{0}^{k}([a, b])$ of the form
$\mathrm{D}(f)$ $:=||f||H\mathrm{y}$ .

As mentioned previously, the constraint $\Phi(f)\leq$ $\mathrm{d}$ in problem $(\mathrm{L}_{t})$ is replaced
by the penalty term $-\mathrm{c}\mathrm{x}\mathrm{C}\Phi(f)$ for some $\mathrm{a}\geq 0$ in problem $(\mathrm{M}_{t})$ . Define the
estimation set of density functions by

$g_{\Phi}:=\{f\in \mathscr{D}_{\nu}|f\in H_{0}^{k}([a, b]), \Phi(f)\leq\beta\}$.

We claim that $g_{\Phi}$ is compact in $L^{1}(\mathbb{R}, \mathrm{W}_{\mathrm{R}}, \nu)$ . Because $\Phi$ is continuous in
the $H_{0}^{k}$ norm $\mathrm{r}_{\Phi}$ is closed in $H_{0}^{k}([a, b])$ . Thus, $g_{\Phi}$ is closed in $L^{2}([a, b])$ ,
and hence closed also in $L^{1}(\mathbb{R}, \mathscr{B}_{\mathrm{R}}, \nu)$ by Remark 3.3. Therefore, it suffices
to show that $g_{\Phi}$ satisfies (3.1), but this is evident because each element in
$g_{\Phi}$ takes value zero outside $[a, b]$ . If we replace $L^{2}([a, b])$ with $L^{1}([a, b])$ in
the above argument, we obtain the Sobolev space $W\mathrm{f}’ 1([a, b])$ with the norm
$||f||_{W},,1$ $:= \int|f^{(k)}(x)|\nu(dx)$ , $\mathrm{w}$ ith makes $W0’ 1([a, b])$ a Banach space. It is

obvious that the compactness in $L^{1}(\mathbb{R},\mathscr{B}_{\mathrm{R}}, \nu)$ is obtained also for $W_{0}^{k,1}([a, b])$ .

Example 3.2 (Good and Gaskins (1971)). Good and Gaskins proposed
two penalty functions in the penalized maximum likelihood estimation of den-
sity functions. Let $H^{p}([a, b])$ be the Sobolev space of functions $f\in L^{2}([a, b])$

with the $i$-th order generalized derivatives 7 i $\mathrm{n}$ $L^{2}([a, b])$ , $i=1,$ $\ldots$ , $p$ . The
norm in $H^{p}([a, b])$ is given by $||f||H^{p}$ $:=||$ $7||L^{2}$ ( $\mathrm{t}a$ ,b$]$ )

$+ \sum_{i=1}^{\mathrm{p}}||f^{\mathrm{e})}$ $||L^{\mathrm{z}}(\mathrm{t}a,b])$ . The
first problem involves a penalty function $\Phi$ on $H^{1}([a, b])$ with the following
form:

$\mathrm{f}$ $(f)= \int_{a}^{b}f’(x)^{2}\nu(dx)$ ,

together with the constraint $\int_{a}^{b}f(x)^{2}\nu(dx)=1.$ Define

$d_{\Phi}:=\{f\in \mathscr{D}_{\nu}|f\in H^{1}([a, b])$ , $\acute{a}bf(x)^{2}\nu(dx)=1$ , $\mathrm{D}(f)$ $\leq\beta\}$
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By Schwartz’s inequality, we have

$|$ I $(f)-\Phi(g)|=|$ $7(f’(x)^{2}-g’(x)^{2})\nu(dx)|$

$=|/_{(f’(x)-g’(x))(f’(x)+g’(x))\nu(dx)|}$

$\leq||f’-g’||L^{2}([a,b])|\mathrm{L}/’+g’||L2([a,b])$ .

Therefore, 0 is continuous. It is obvious that $ff_{\Phi}$ is closed in the $H^{1}$ norm
Thus, $g_{\Phi}$ is closed in $L^{2}([a, b])$ , and hence closed also in $L^{1}(\mathbb{R}, \mathscr{B}_{\mathrm{R}}, \nu)$ by
Remark 3.3. Therefore, $g_{\Phi}$ is compact in $L^{1}(\mathbb{R}, \mathscr{B}_{\mathrm{R}}, \nu)$ . If we replace $L^{2}([a, b])$

with $L^{1}([a, b])$ in the above argument, we obtain the Sobolev space $W^{1}$’ $([a, b])$

with the norm $||f||W^{1,1}$ $:=||f||_{L^{1}([a,b])}+||f’||_{L^{1}([a,b])}$ , which makes $W^{1,1}([a, b])$ a
Banach space. It is obvious that the compactness in $L^{1}(\mathbb{R}, \mathscr{B}_{1\mathrm{R}}, \nu)$ is obtained
also for $W^{1,1}([a, b])$ .
Example 3.3 (Good and Gaskins (1971)). The second problem in Good
and Gaskins treats the following form of the penalty function on $H^{2}([a, b])$

$\Phi(f)$ $:= \int_{a}^{b}f’(x)^{2}\nu(dx)+\gamma\int_{a}^{b}f’(x)^{2}\nu(dx)$ , $\gamma\in \mathbb{R}$

together with the constraint $\int_{a}^{b}f(x)^{2}\nu(dx)=1.$ Let

$\mathscr{E}_{\Phi}:=\{f\in \mathscr{D}_{\nu}|f\in H^{2}([a,$ &] $)$ , $\int_{a}^{b}$ $/(x)^{2}\nu(dx)$ $=1,$ $\Phi(f)\leq$ $!\}$ .

As in Example 3.1, it suffices to show that (I is continuous in the $H^{2}-$

norm to demonstrate the compactness of $g_{\Phi}$ in $L^{1}(\mathbb{R}, \#_{\mathrm{R}}, \nu)$ . The conti-
nuity of 0 follows from the same argument as in Example 3.2. If we replace
$L^{2}([a, b])$ with $L^{1}([a, b])$ in the above argument, we obtain the Sobolev space
$W^{2}$ :1 $([a, b])$ with the norm $||f||W^{2_{=}1}$ $:=||f||_{L^{1}([a,b])}+||f’||L^{1}([a,b])$ $+||f\prime\prime||_{L^{1}([a,b])}$ ,
which makes $W^{2,1}([a, b])$ a Banach space. It is obvious that the compactness
in $L^{1}(\mathbb{R}, \mathscr{B}_{\mathrm{R}}, \nu)$ is obtained also for $W^{2}$ :1 $([a, b])$ .
Example 3.4 (Silverman (1982)). Let S be a bounded open set in $\mathbb{R}^{n}$ .
Suppose that (I) on the Hilbert space $H^{p}(S)$ is given by

! (f) $:=||f||_{H^{p}}$ ,

together with the constraint $\int_{S}e^{f(x)}\nu(dx)=1.$ Define

$g_{\Phi}:=\{f\in$ $\mathscr{D}_{\nu}|f\in H^{p}(S)$ , $\int_{S}ef(x)_{\mathrm{p}(dx)}$ $=1$ , $\Phi(f)\leq$ $\mathrm{d}$ $\}\backslash$
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As in the above examples, it is evident that $g_{\Phi}$ is compact in $L^{1}(\mathbb{R}^{n}, \mathscr{B}_{\mathrm{R}^{n}}, \nu)$ .
If we replace $H^{p}(S)$ with the Banach space $W^{p,1}(S)$ , then the compactness
in $L^{1}(\mathbb{R}, \mathscr{B}_{\mathrm{R}}, \nu)$ is obtained also for $W^{p,1}(S)$ .

3.3 Maximum Likelihood Estimation of the Parame-
ters in Density Functions

Bahadur (1971, Section 9) transformed the standard statistical model into the
maximum likelihood estimation of probability measures by considering the
continuous relation between the parameter space and the family of probabil-
ity measures. In this section, we present a converse approach. We transform
the present ffamework into the standard statistical model in which parame-
ters in density functions are estimated.

Note that the nonparametric estimation of density functions in Section 3.2
has a straightforward translation into the parametric estimation. Let — be a
parameter space and let $\ominus$ be a subset $\mathrm{o}\mathrm{f}---$ . Let $f$ : $X\mathrm{x}---arrow \mathbb{R}$ be a function
such that $f(\cdot ; \theta)$ is a density function in $\mathscr{D}_{\nu}$ for each $\theta\in---$ . Suppose that $\theta’\in$

$\mathrm{e}$ is the (unknown) true parameter. Then $f^{*}=f($ . ; $\theta^{*})$ is the true density
function. If $g$ $=\{f(\cdot ; \theta)|\theta\in\Theta\}$ is relatively compact in $L^{1}(X, \mathscr{T}, \nu)$ , then
the result in Section 3.2 is obviously applicable. This covers the consistency
result in the standard statistical models such as Bahadur (1967), $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}$ (1996),
Huber (1967), Kiefer and Wolfowitz (1956), Le Cam (1953), Perlman (1972),
Wald (1949), and Wang (1985). With this transformation, the compactness
of $\Theta$ and the continuity of $\theta\mapsto f(\cdot ; \theta)$ are not required. By this method,
however, it seems difficult to obtain the consistency of the MLE without the
independence assumption.

On the contrary, the nonparametric estimation of probability measures
in Section 3.1 is transformed into the parametric estimation for dependent
processes. Let $M=\langle$(n,-t, $P$), $(X,$ $\mathrm{y})$ , $\{X_{\epsilon}\}_{s=1}^{\infty}\rangle$ be a regular probabil-
ity model, and let $\mathscr{A}$ be admissible for $M$ and represented by a family of
density functions $\{(f_{s}(\cdot ; \mu))_{s=1}^{\infty}|\mu\in \mathrm{c}\mathrm{y}\}$ . Suppose $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}---\mathrm{i}\mathrm{s}$ endowed with

a Hausdorff topology and — a $\theta\mapsto\Psi\mu_{\theta}\in \mathscr{B}$ is a homeomorphism. Then
$\{\mu_{\theta}|\theta\in---\}=\mathscr{B}$ is a parameterized family of probability measures. Put
$\mathrm{e}$ $:=\Psi^{-1}(d)$ and 0” $:=\Psi^{-1}(P)$ . This, $\theta^{*}$ is the true parameter. Define
72 : $Xt$ $\mathrm{x}---arrow \mathbb{R}$ by $7\mathrm{t}(x_{1}, \ldots, x_{t};\theta):=f_{t}(x_{1}, \ldots, x_{t};\mu_{\theta})$ . Then the likelihood
maximization problem $(\mathrm{P}_{t})$ is transformed to

$\sup$ $f_{t}(x_{1}, \ldots, x_{t};\theta)$ . $(\mathbb{Q}_{t})$

eee
Let $\mu_{t}$ : $X^{t}arrow d$ be the MLE stated in Theorem 3.1. It is obvious that
$\theta_{t}(x_{1}, \ldots, x_{t}):=\Psi^{-1}(\mu_{t}(x_{1}, \ldots, x_{t}))$ is a solution to $(\mathbb{Q}_{t})$ , $\mathrm{a}.\mathrm{e}$ . $(x_{1}\ldots, x_{t})\in$
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$X^{t}$ . Define $\theta_{t}(\omega):=\theta_{t}(X_{1}(\omega), \ldots\rceil X_{t}(\omega))$ . The convergence $||/’ t(\omega)-P||arrow 0$

$\mathrm{a}.\mathrm{e}.\omega$ is equivalent to $\theta_{t}.(\omega)arrow\theta^{*}\mathrm{a}.\mathrm{e}.\omega$ .
The result stated here is the consistency of the MLE in the standard

framework without the independence assumption. Among previous authors,
Haes (1996) presented the general result on consistency that does not assume
the compactness of the parameter space and the continuity of density func-
tions with respect to a parameter, under the hypothesis that the underlying
stochastic process is pairwise independent identically distributed. We now
compare our assumptions with those in the existing literature by reducing
the present framework to the case of independent processes.

Let $(X, \mathscr{T}, Q^{X})$ be a $\mathrm{c}\mathrm{r}$-finite measure space with $Q^{X}(B):=Q(X_{1}^{-1}(B))$

for any $B\in \mathscr{T}$ . Suppose that $\{X_{s}\}_{s=1}^{\infty}$ is $i$ . $i.d$. under $\{\mu^{\theta}|\theta\in\Theta\}$ . Define the
probability measure on $X$ by $\mu_{\theta}^{X}(B):=\mu^{\theta}(X_{s}^{-1}(B))$ for any $B\in$ !t. Note
that the definition of $\mu_{\theta}^{X}$ does not depend on the choice of $s$ . Then $\mu_{\theta}^{X}\ll Q^{X}$

for any $\theta\in\Theta$ and $f_{t}$ is of the form $f_{t}(x_{1}, \ldots, x_{t};\theta)=f(x_{1}; \theta)\ldots$ $f(x_{t};\theta)$ ,
where $f(\cdot ;\ )$ is a density function on $X$ with $\mu_{\theta}^{X}(B)=\int_{B}f(x;\theta)Q^{X}(dx)$

for any $B\in \mathscr{T}\mathrm{t}$

In comparison with $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}$ (1996), the conditions in Definition 2.2 corre-
spond to the following conditions.
(D-1) $\mathrm{e}$ is relatively compact.

(D-2) $\theta\mapsto f(x;\theta)$ is continuous for $Q^{X}- \mathrm{a}.\mathrm{e}.x\in X.$

(D-3) $Q^{X}\{x\in X|f(x;\theta)\neq f(x;\theta^{*})\}>0$ for any $\theta\in\Theta$ ’ {?’}.

Conditions (D-1) and (D-2) are somewhat stronger than the sup-compactness
in $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}$ (1996, Condition (c)) when $\Theta$ is compact. $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}$ assumes 0 to be a
Suslin space. $\Theta$ is also a Suslin space in our formulation, because 7 is a
complete metric space and $\Theta\cong$ $/$ . Condition (D-3) is the identifiability
condition imposed by many authors (Bahadur (1967, Condition (c)), Kiefer
and Wolfowitz (1956, Assumption 4), $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}$ (1996, Condition (d)), and Wald
(1949, Assumption 4) $)$ .

Note that we do not impose the integrability of the $\log$-density function:

(D-4) $7$ $|\log f(x;\theta^{*})|Q^{X}(dx)<\mathrm{o}\mathrm{o}$ ,

which is assumed in Hoffman-Jergensen (1992, Condition (1.2.2)), Huber
(1967, (A-3)), and Wald (1949, Assumption 6) $)$ . Nor do we require the global
integrability of the $\log$-likelihood ratio:

$( \mathrm{D}- 5)\int(\log\frac{g(x)}{f(x,\theta^{*})}.)f(x;\theta^{*})Q^{X}(dx)<oo$, wher$\mathrm{e}$

$g(x):= \sup_{\theta\in\Theta}f(x;\theta)$ ,
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which is imposed in Bahadur (1967, Condition (b)), $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}$ (1996, Condition
(H) $)$ , Huber (1967, (A-5)), and Kiefer and Wolfowitz (1956, Assumption 5).
There is common understanding among statisticians that condition (D-5) is
problematic and is not satisfied in many common statistical models. Indeed,
it is not necessary for an MLE to be consistent (see $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}$ (1996, Remark
6.5)). Perlman (1972) clarifies the role of (D-5) in proving consistency when
$\Theta$ is not compact and shows that if it is compact, then the local integrability
of the 10g likelihood ratio implies (D-5), where the local integrability requires
that for any $0’\in$ $\Theta$ there exists a neighborhood $V(\theta’)$ of $\theta’$ such that

(D-6) $\int(\log\frac{f(x;\theta)}{f(x,\theta^{*})}.)$ $f(x;\theta^{*})Q^{X}(dx)<$ oo on $V(\theta’)$ ,

which is satisfied in many reasonable statistical models. While we assume
the relative compactness of $\Theta$ , we do not employ condition (D-6) explicitly.
Wang (1985, pp. 932-933) illustrates a nonparametric estimation problem of
a certain family of density functions in which the consistency of the MLE
holds even if (D-6) is violated.

For each $\theta\in\Theta$ , let $\nu_{\infty}^{\theta}$ be a probability measure on $X^{\infty}$ induced by $\mu_{\theta}$ as
in the proof of Lemma $??$ , and let $\nu_{\infty}^{*}:=\nu_{\infty}^{\theta^{\mathrm{r}}}$ . Define $\hat{\mathscr{B}}^{X^{\infty}}:=\{\nu_{\infty}^{\theta}|\theta\in\Theta\}$.
Let $V_{\epsilon}(\theta^{*})$ be the $\epsilon$ neighborhood of $\theta^{*}$ . Examining the proof by Perlman
(1972), we notice that the following condition plays an important role in
proving the consistency of the MLE:

(D-7) $\nu_{\infty}(\lim\sup_{\theta tarrow\infty\in}\sup_{\Theta\backslash V_{\epsilon}(\theta^{*})}\mathrm{l}\mathrm{o}\mathrm{g},\cdot\frac{f(x_{1},\theta)\ldots f(x_{t},\theta)}{f(x_{1}\cdot\theta^{*})\ldots f(x_{t},\theta^{*})}..<0)=1$

for any $\nu_{\infty}\in\hat{\mathscr{B}}^{X^{\infty}}$ and $\epsilon$ $>0.$ This condition is implied by the dominance by
zero condition of $\log$ $f(x;\theta)/f(x;\theta^{*})$ on 03 $V_{\epsilon}(\theta^{*})$ for any $\epsilon>0$ (see Defini-
tion 1 and Theorem 2.1 of Perlman (1972) $)$ . Wang (1985) extends condition
(D-7) and apply the consistency result to the nonparametric family of con-
cave continuous distribution functions. Returning to the case for dependent
processes, in view of Theorem $??$ , we obtain the following sufficient condition
for consistency, which is weaker than (D-7) in the present framework:

(D-8) $\nu_{\infty}^{*}(\lim_{tarrow\infty}\log\frac{f_{t}(x_{1},\ldots,x_{t},\theta)}{f_{t}(x_{1},\ldots,x_{t}\cdot\theta^{*})},\cdot<0)=1$ for any $\theta$ $\in\Theta$ .

Examining the proof of Theorem 3.1(ii), we notice that (D-8) is implicitly
employed. The proof of Theorem 3.1(\"u) suggests that it is possible to ex-
tend the consistency result under the more general hypothesis (D-8) in the
standard framework, at least for relatively compact $\Theta$ .
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Remark 3.4. Le Cam (1990) collects many tricky examples in which MLEs
misbehave. In particular, Examples 1 to 4 of Le Cam demonstrate the nonex-
istence of an MLE. Note that these examples do not satisfy the relative com-
pactness of the parameter space $\Theta$ and they are based on the fact that for
some parameter value $\theta_{0}\in\Theta$ , the density function $f(x;\theta)$ tends to infinity
as $\thetaarrow\theta_{0}$ . Le Cam (1990) also illustrates density functions, adapted from
Bahadur (1958) and Ferguson (1982), in which an MLE is inconsistent. The
example given by Bahadur lacks the relative compactness of 0. The density
function in Ferguson is continuous on the interval $\Theta=[0,1]$ , but does not
satisfy condition (D-8).

4 Comments on the Technique
The proof of Theorem 3.1 relies heavily on the use of Birkhoff’s ergodic
theorem and the martingale convergence theorem. We briefly mention the
application of these two theorems to the consistency of the MLE in the
literature.

Choirat, $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}$, and Seri (2003, Corollary 2.4) prove that for any stationary
ergodic stochastic process $\{X_{s}\}_{s=1}^{\infty}$ and random lower semicontinuous (LSC)
function $g:X\cross---arrow \mathbb{R}$ with certain integrability conditions, the sample av-
erage $t^{-1}\mathrm{p}:_{=1}g(X_{s}(\omega), \cdot)$ $\mathrm{e}\mathrm{p}\mathrm{i}$-converges to the $\mathrm{e}\mathrm{p}\mathrm{i}$-limit $\int g(X_{s}(\omega), \cdot)Q(d\omega)$

$\mathrm{a}.\mathrm{e}.\omega$ . This is a generalization of Birkhoff’s ergodic theorem for random
(LSC) functions, in which the underlying integrand depends continuously on
a parameter, which is also an extension of the $\mathrm{e}\mathrm{p}\mathrm{i}$-convergence approach to
the SLLN for random LSC functions developed by Arstein and Wets (1996,
Theorem 2.3), and King and Wets (1991, Theorems 2.3 and 2.4). Birkhoff’s
ergodic theorem for random LSC functions using this approach is obtained
also by Korf and Wets (2001, Theorem 8.2) under somewhat restrictive hy-
potheses, but Korf and Wets present a systematic treatment for endowing the
space of random LSC functions with a suitable $\mathrm{c}\mathrm{r}$-field. The consistency of
the $\mathrm{M}$-estimator for stationary ergodic processes is derived in Choirat, $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}$ ,
and Seri (2003, Theorem 2.8) by putting $g(x, \theta):=-\log f(x;\theta)$ . This proof
of consistency is now standard in the literature, and is essentially the same
as $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}$ (1996, Theorem 5.1) with the integrability condition (D-5).

In this paper, we apply the standard version of Birkhoff’s ergodic the-
orem to the empirical process $\{\mathrm{I}_{B}(X_{s}(\omega))\}_{s=1}^{\infty}$ with $B\in \mathscr{T}$ to obtain the
$\mathrm{a}.\mathrm{e}$ . convergence $t^{-1} \sum_{s=1}^{t}\mathrm{I}_{B}(X_{s}(\omega))arrow P(X_{1}^{-1}(B))$ , as is shown in the proof
of Lemma 5.1. Our use of Birkhoff’s ergodic theorem seems more subsidiary
than that by Choirat, $\mathrm{H}\mathrm{e}\mathrm{s}\mathrm{s}$ , and Seri (2003), as it is employed only to show
the mutual singularity of the underlying probability measures, but this prop-
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erty is essential for the martingale convergence of a likelihood ratio (Theorem
5.1).

$\mathrm{P}\mathrm{e}\check{\mathrm{s}}\mathrm{k}\mathrm{i}\mathrm{r}$ (1998) investigates the following stochastic optimization prob-
lem: $\sup_{\theta\in\ominus}h_{t}(\omega, \theta)$ , where $\{\langle h_{t}(\cdot, \theta), \mathscr{T}_{t}\rangle_{\mathrm{t}=1}^{\infty}|\theta\in\Theta\}$ constitutes a fam-
ily of reversed submartingales. The martingale convergence theorem im-
plies $h_{t}(\omega$ , ? $)$ $arrow E[h_{\infty}(\theta)]:=\int h_{\infty}(\omega, \theta)Q$(h) $\mathrm{a}.\mathrm{e}.\omega$ for each &e $\Theta$ if the
tail $\mathrm{c}\mathrm{r}$-field $\bigcap_{t=1}^{\infty}\mathrm{F}_{t}$ has the zero ne property. Under certain measurability
and continuity assumptions on $h_{t}$ , $\mathrm{P}\mathrm{e}\check{\mathrm{s}}\mathrm{k}\mathrm{i}\mathrm{r}$ (1998, Theorem 3.3) shows that
$\theta_{t}(\omega)\in\arg\min_{\theta\in\Theta}h_{t}(\omega, \theta)$ converges to an element in $\arg\min_{\theta\in\Theta}E[h_{\infty}(\theta)]$

$\mathrm{a}.\mathrm{e}.\mathrm{w}$ . This type of problem originates in Huber (1967, pp. 224-226) and is
elaborated by Hoffman-Jorgensen (1992). The result of Peskir is an extension
of Hoffman-Jorgensen (1992, Section 1.12) and obviously contains a partial
generalization of the consistency of the MLE for dependent processes such as
exchangeable processes ( $\mathrm{P}\mathrm{e}\check{\mathrm{s}}\mathrm{k}\mathrm{i}\mathrm{r}$ (1996, p. 314)), but the result does not seem
to be applicable to stationary ergodic processes.

In Theorem 5.1 of this paper, we show that a likelihood ratio is a martin-
gale and converges to zero with probability one by the martingale convergence
theorem. This fact is well known when the underlying stochastic process is
$i.i.d$. We drop the independence assumption and generalize the result when
the stochastic process is assumed to be only stationary and ergodic. The fact
that the likelihood ratio converges to zero was proved by Wald (1949, TheO-
rem 1) for $i.i.d$. processes. The martingale property of a likelihood ratio was
established originally by Doob (1953, p. 93) under the absolute continuity hy-
pothesis of the underlying probability measures. Doob (1953, pp. 348-350)
also demonstrated the consistency of the MLE by applying the martingale
convergence theorem for $i.i.d$. processes. Billingsley (1986, Example 35.4)
gives another proof of the convergence of a likelihood ratio by effective use of
the strong law of large numbers, and Williams (1991, Section 14.17) presents
a different approach, applying Kakutani’s theorem on product martingales
(Williams (1991, Section 14.12)).
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