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Why Mathematics in Ancient China?

QU Anjing 曲安京

Department ofMathematics, Northwest University, Xian, 710069, China

1. Introduction
Since the beginning of the last century hundreds of scholars have devoted themselves to the

discipline of the history ofmathematics in China. Two approaches to the history ofmathematics in
China have been made, namely, discovering what mathematics was done and recovering how

mathematics was done, respectively. Both approaches, however, focus on the same problem, that is
mathematics in history. [1]

It is often said that, compared with Greek mathematics, Chinese mathematics was characterized
by apractical tradition. Many scholars hold that this tradition is the fatal weakness of Chinese

mathematical science, one that prevented it from developing into modern science. Some historians
ofmathematics have argued that certain fundamental factors of the Greek theoretical tradition, such
as proofand principle, can also be detected in the Nine Chapters $ofA$rithmetic (�九章算木�, 1
century $\mathrm{B}\mathrm{C}$) and Liu Hui’s Annotations (\ll 文|J徽注》, 263 $\mathrm{A}\mathrm{D}$). However, it seems to us that many
people are still not convinced.

For abetter understanding of the value of Chinese mathematics from ahistorical perspective,
we need to figure out the issue of why mathematics was done in ancient civilizations. Following the
topic of why mathematics, researches would be shifted, to some extent, ffom the mathematics in
history to the history of mathematics. Under these circumstances, mathematics in ancient China
and other old civilizations will be placed in the whole history of mathematics. The diversity of
mathematics in different civilizations would make us amore distinct picture of the history of

mathematics.
In this article, we will try to explore the reason why apractical tradition of mathematics was

chosen in ancient China.

2. The Aim ofmathematical science in ancient China
2.1 Royal science” and professional scientists

Royal science is the science that was controlled and encouraged by emperors. Of the exact
sciences, mathematical astronomy was the only subject that attracted agreat attention of rulers in
ancient and medieval China.

Mathematical astronomy was an art related to the calendar-making system in ancient periods.
In every dynasty, the Royal Observatory 司天遣 was an indispensable part of ffie state. Three
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kinds of expert, mathematicians $\ovalbox{\tt\small REJECT}_{\grave{\acute{\grave{7}}}^{\mathit{1}}}’$. jE, astronomers $\star \mathrm{X}\ovalbox{\tt\small REJECT}$ and astrologers $\lambda$ $\mathrm{L}_{\mathit{4}}^{\tilde{\mathrm{r}}}$., were
employed as professional scientists by the emperor. Those who were called mathematicians took

charge of establishing the algorithms of the calendar-ma ing system; those who were classified as
astronomers dealt with the astronomical instruments and observation. Astrologers made divination
of the supposed influences of the stars and planets on human affairs and terrestrial events. None of
them made researches in pure mathematics.

All of these professional scientists were royal officers. Biographies of the leading scholars
who worked in the Royal Observatory were recorded in the official history of each dynasty. Among

them are Zu Chongzhi $(\grave{\ovalbox{\tt\small REJECT}}\mathrm{f}\mathrm{l}\mathrm{f}\mathrm{f}\mathrm{Z}, 429- 500)$ who compiled the Daming calendar-making system $\ll \mathrm{t}$

$Rfl$ ffffi $\rangle\rangle$ in 463 $\mathrm{A}\mathrm{D}$ , Yi-xing $(^{-}\acute{\mathrm{t}}\overline{\mathrm{T}}, 683- 727)$ who compiled the Dayan calendar-making system $\ll\lambda$

@Jfi $\rangle\rangle$ in 724 AD and Guo Shoujing $(\mathrm{F}\beta \mathrm{E} , 1231- 1316)$ who compiled the Shoushi
calendar-making system $\ll \mathrm{F}\mathrm{x}\# 1\prime Fy$$\rangle\rangle$ in 1280 $\mathrm{A}\mathrm{D}$ .

On the contrary, even the most outstanding mathematicians were ordinary people, such as Liu
Hui ($\lambda|\mathrm{J}ffl$ , $\mathrm{f}1$ . $3^{\mathrm{r}\mathrm{d}}$ century, see $DSB$, $\mathrm{v}.8$ , pp.418-425), Li Ye ($Li$ Chih, $+\mathrm{m}$ , 1192-1279, see $DSB$,
$\mathrm{v}.8$ , pp.313-320), Qin Jiushao ($Ch’in$ Chiu-shao, $\ovalbox{\tt\small REJECT} f\mathrm{L}^{1}\ovalbox{\tt\small REJECT},1202$-1261, see $DSB$, $\mathrm{v}.3$, pp.249-256,),

Yang Hui ($\ovalbox{\tt\small REJECT} \mathrm{f}\mathrm{f}$ , $\mathrm{f}1$ . $13^{\mathrm{t}\mathrm{h}}$ century, see $DSB$, $\mathrm{v}.14$ , pp.538-546) and $\mathrm{Z}\mathrm{h}\mathrm{u}$ Shijie ($Chu$ $Sh_{i}h$ chieh, $*\mathrm{t}\mathrm{E}$

$*_{\backslash \backslash }$ , $\mathrm{f}1.13^{\mathrm{t}\mathrm{h}}$ century, see $DSB$, $\mathrm{v}.3$ , $\mathrm{p}\mathrm{p}.265\sim 271)^{[2]}$. Few facts are known about them from the

historical records except their mathematical works. [3-4]

2.2 Mathematics for mathematical astronomy
It is said that there were two peaks traditional Chinese mathematics. The Nine Chapters of

Arithmetic ($\mathrm{c}$ . 1 Centuyy $\mathrm{B}\mathrm{C}$) and its Annotations $(263 \mathrm{A}\mathrm{D})$ by Liu Hui featured the first one. Qin
J., Li $\mathrm{Y}$ , Yang H. and Zhu S. belonging to the same generation fomed another splendid peak in the
1 $3^{\mathrm{t}\mathrm{h}}$ century.

Basic topics of mathematics related to civil life were main theme in time ofthe Nine Chapters
and Liu Hui. But in the $12^{\mathrm{t}\mathrm{h}}$ and $13^{\mathrm{t}\mathrm{h}}$ centuries, mathematics was highly developed for the purpose
of application mathematics to astronomy. For instances:
Indeterminate problem. Found in Qin Jiushao’s book, the Chinese Remainder Theorem is an
algorithm for dealing with aset linear congruence. It is related with the problem to seek for the
superior epoch – aspecial moment when the earth, the moon and the five planets gather near
the point of winter solstice, and usually with other conditions. Aset of linear congruence to find
such an epoch was established.
Numerical solution ofalgebraic equations, known as Ruffini-Horner method. In order to transform
the length of arc on acircle to its corresponding chord, apolynomial equation of the $4^{\mathrm{t}\mathrm{h}}$ order was
established by Guo Shoujing in the Shoushi calendar-making system $(1280 \mathrm{A}\mathrm{D})$ . It was the highest
order algebraic equation that appeared in traditional Chinese mathematical astronomy.
Interpolation series summation. The formula for higher order series summation is found in Zhu
Shijie’s work. Series summation is related with finite differences. Interpolation ffinctions from $\mathrm{L}\mathrm{i}\mathrm{u}$

Zhuo’s $\lambda^{\mathrm{g}}\mathrm{E}$ quadratic $(600 \mathrm{A}\mathrm{D})$ to Guo Shoujing’s cubic $(1280 \mathrm{A}\mathrm{D})$ were constructed by finite
differences.

2.3 Mathematical astronomy under imperial authorit
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Compilation and promulgation of calendar symbolized the imperial authority in ancient China.
The calendar of adynasty had to be replaced by the new dynasty. Ordinary people were strictly
prohibited to construct acalendar-making system. They were not even allowed to acquire the

knowledge ofmathematical astronomy.

The technical details of calendar-making were kept secret to public, with the result that
nobody knew how atraditional Chinese calendar-making system was compiled after the tradition
was discontinued by the impact of Jesuit science in the Ming and Qing dynasties (16-19 century).

Calendar-makers were asked to maintain ahigh precision in prediction. It was judged by the
calculated positions of the celestial bodies and the predictions of astronomical phenomena such as
eclipse. It often happened that acalendar-making system was replaced by another one simply
because it failed to predict asolar eclipse. In the past 2000 years, more than 100 systems appeared.

Competition among calendar-makers did not concern cosmic or geometric model but
numerical method. The former might tell one how acelestial body moves, the topic that people did
not really care about. People were interested in the latter simply because it could tell them where a
celestial body was. Thus few people paid much attention to cosmic model building except some of
those who worked at the Royal Observatory.

In ancient China, most mathematicians were trained as calendar-makers. Mathematics, except
those which astrologers were interested in, was never apart of philosophy. It was developed for
mathematical astronomy besides for ordinary application.

The aim of calendar-makers and mathematical astronomy was accurate prediction but not
cosmic model building. In this way, apractical tradition to mathematics was formed in ancient
China.

3. Practical tradition: evolution of numerical method
In his Qiarrxiang calendar-making system ( $\not\in\ovalbox{\tt\small REJECT}$ ffi, $206\mathrm{A}\mathrm{D}$), linear interpolation was

employed by Liu Hong $\grave{7}$uu to calculate the equation of center of the moon after the irregular
lunar motion was discovered in the 2nd century. His method made the change of the moon’s
velocity from alevel line to astep like pattern.

By the end of the $6^{\mathrm{t}\mathrm{h}}$ century, after Zhang Zixin $\#\neq \mathrm{P}_{\overline{\mathrm{R}}}$ found that the apparent motion of the
sun was irregular, linear interpolation was applied to the calculation of the equation of center of the
sun in several calendar-making systems. The piecewise linear interpolation made the mean solar
motion presented by alevel line be replaced by 24 step like lines in atropical year that was divided
into 24 parts $(q\iota)$ .

It was Liu Zhuo (in 600 $\mathrm{A}\mathrm{D}$) who changed the pattern of the sun’s apparent velocity from step
like lines to aslant line. Thus the linear method was replaced by the piecewise quadratic
interpolation. Liu Zhuo’s method was used so extensive that it appeared in everywhere it could be
used afterward.

One may image from his intuition that the higher the order of an interpolation function is, the
higher the precision is. Unfortunately, it is far from the truth. The fact is that the higher the order of
an interpolation function is, the bigger the amplitude of vibration around the points of interpolation
is. It is called the Range Phenomenon in mathematics texts. In practice, the lower order piecewise
interpolation is much more welcome than ahigher order one, say the fourth or higher



18

Although the piecewise parabolic interpolation is such an important numerical algorithm

which is still widely used in modem science, the problem is how to determine the partition properly

since we do not know what its original function is. On the one hand, too many small pieces made
by partition would be inconvenient for application. On the other hand, if the length of the piece

made by partition is too wide, the interpolation function could not be $\mathrm{s}\mathrm{u}\mathrm{f}\mathrm{f}_{1\mathrm{C}}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}1\mathrm{y}$ precise to its
original one.

In order to solve such aproblem, anew algorithm was invented by Bian Gang u1W in his
Chongxuan calendar-moking system $(_{\pi\overline{\backslash }}^{\mathrm{g}}\mathrm{A}^{\wedge}\hslash, 892\mathrm{A}\mathrm{D})$ .His method constitutes amajor innovative
concept, even by the standards of modern computational mathematics. We name it piecewise

iterated quadratic interpolation. [5]

Since Liu Zhuo’s quadratic interpolation was constructed with the aid of ageometric model
under an astronomical background, the problem is that no similar geometric model exists for

constructing ahigher order interpolation following in Liu’s steps. That hindered Chinese
mathematicians from going further for hundreds ofyears.

In 1280 $\mathrm{A}\mathrm{D}$, apurely algebraic method was made use to transfom the third-0rder problem to
second-0rder by Wang Xun f.ffi and Guo Shoujing in their Shoushi $li\lambda \mathrm{F}\mathrm{x}^{\mathit{9}}\mathrm{f}\mathrm{f}\mathrm{f}ffi\rangle\rangle$ This idea with

which acubic interpolation was constructed was just that which people employ to construct
Newton’s interpolation. [6]

Ceaseless efforts to improve the numerical method were made in order to guarantee that the
algorithm could satisfy the precision of astronomical observation. Polynomial interpolation was by
no means the only numerical method which was used by calendar-makers in ancient China.
Compound functions and finite difference tables, for instance, were also found in the Chinese
calendar-making $\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{m}^{[7]}$.

It was neither necessary nor possible that ageometric model could replace the numerical
method which occupied the principal position in the Chinese calendar-making system. The reason
was that it was only the numerical method that satisfied the ruler’s aim: high accuracy in prediction
and computation. As the subject closely related to numerical method, $\mathrm{a}\mathrm{l}\mathrm{g}\mathrm{e}\mathrm{b}\mathrm{r}*$ instead of geomehy,
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became the most developed field ofmathematics in ancient China.

4. Evolution of planetary theory
The planetary theory has occupied an important position in the history of science. It is said

that there would be no modern science without the planetary theory. The Copernican revolution
was the revolution of the planetary theory from Ptolemy’s geocentric model to heliocentric. Great
attentions have been paid to this topic again and again.

It is obvious that historians of science would be interested in acomparative approach between

Greek and Chinese planetary theory. Such an approach, unfortunately, has not been undertaken due
to the fact that the planetary theory in ancient China was not figured out properly.

In this section, the theoretical model and the evolution of planetary theory in ancient Chinese
mathematical astronomy will be discussed briefly. We will take this model as acase study of
another scientific tradition, namely, practical tradition.

The aim of planetary theory in traditional Chinese mathematical astronomy was to calculate
the apparent position of planets at any given time, namely, to determine the geocentric longitude of
planets. Neither declination nor latitude of planets was cared much in ancient China

In about the fifth century $\mathrm{B}\mathrm{C}$, Chinese mathematical astronomer already designed an
algorithm for calculating the planetary movement. Every effort had been made to improve the
planetary theoyy until the $13^{\mathrm{t}\mathrm{h}}$ century $\mathrm{A}\mathrm{D}$ .

Ahistorical material shows that the precision requirement of planets should be up to 1 du $(=$

360’/365.25) in the $12^{\mathrm{t}1\mathrm{l}}$ century (see Table 2). Since the largest error of Mars in Copernicus’s

theory could be up to $5^{\mathrm{o}}$ , the precision requirement of 1’ for medieval Chinese astronomers seems
to be too high to be areality. But it is true, and the fact is that the precision required by the rulers

could not be negotiated. What Chinese astronomers challenged was to keep their planetary theory
improved so that it could catch up with the requirement ofthe emperor.

Source: Chapter ofAcoutics and Calendar-making, in the Song History, vol. 81.

Briefly speaking, the planetary theory after 600 AD consisted of two parts:
51. Mean geocentric longitude of the planets.
52. Difference between the mean and true geocentric longitude ofthe planets.
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The algorithms for SI were almost the same in the long history, while that for S2 changed
gradually following the advancement in astronomical observation.

In order to construct the algorithm for SI, asynodic period of planet was divided into several
parts (see Fig. 1). The key points of the division included: Conjunction, the sun and the planet at the
same longitude; Appearance in the moming, the ending point of invisibility; Station in the morning,
the starting point of retrogradation; Opposition, the earth between the sun and the planet; Station in
the evening, the starting point of prograde motion; Disappearance in the evening, the starting point
of invisibility.

Since the period between appearance and station in the morning (or station and disappearance
in the evening) was too long, it was often divided into several smaller intervals.

Station

Fig. 1Apparent motion of the superior planet

An astronomical table of SI is found in each calendar-making system. Observed data ofmean
motion on the division in asynodic period are given in this table. Making use of the data in the
table of synodic period planets, interpolation function would be constructed in each interval. The
mean geocentric longitude ofa planet at any given time was then calculated with these functions.

the mean conjunction; velocity $\mathrm{v}_{\mathrm{a}}$ :apparent speed planet at the beginning of the interval.
Source: Chapter ofAcousn.cs and Calendar-making, in the Song History, vol. 80.

Since the Mars was always troublemaker for ancient and medieval astronomers, let us take it
in the Jiyuan calendar-making system ($\mathrm{e},\mathrm{E}\overline{\pi}$ ffffi, $1106\mathrm{A}\mathrm{D}$) as an example to show how such atable
was constructed. The period between appearance and station of the Mars was broken into 6piece$\mathrm{s}$
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(see Table 3). Atheoretical analysis shows that the largest error ofthe mean longitude $(\beta)$ of Mars

in Table 3is 12’ and its average absolute error in asynodic period is only 4’.

Before the phenomenon of the irregular revolution of planets was discovered by Zhang Zixin
in about 560 $\mathrm{A}\mathrm{D}$, only the mean geocentric longitude was cared about in the planetary theory. In

this case, revolutions ofthe earth and the planet were supposed to be in mean motion. We name the

planetary theory in this period double-mean model.
After Liu Zhuo’s Huangji calendar-making system $(\ovalbox{\tt\small REJECT} 7R\ddagger\Gamma \mathrm{J}, 600\mathrm{A}\mathrm{D})$ at latest, an algorithm

was designed to calculate the difference between the mean and true geocentric longitude in every
traditional Chinese calendar-making system. However, its astronomical meaning could not be

figured out until Yi-xing’s Dayan calendar-making system $(\lambda\acute{\mathrm{f}}\grave{\tau}\overline{\mathrm{J}}\Pi\hat{\lrcorner}, 724\mathrm{A}\mathrm{D})$ .
In Yi-xing’s planetary theory, the algorithm was designed only for the equation of center of

planets. $\mathrm{Y}\mathrm{i}- \mathrm{x}\mathrm{i}\mathrm{n}\mathrm{g}_{\mathrm{S}}$ model can be explained as follows: the sun was surround by the earth in its mean
motion and by planets in their true motion. We name his theory mean-true model.

In his Chongxuan calendar-making system (,Zffi, 892 $\mathrm{A}\mathrm{D}$), Bian Gang was conscious that
Yi-xing’s mean-true model was incorrect. Several calendar-makers made their efforts to improve
the planetary theory one after another since then. In 1106 $\mathrm{A}\mathrm{D}$ , the algorithm for the deviation in
planetary theory was finalized by Yao Shunfli $\Phi \mathrm{b}\Re\Phi$ in the Jiyuan calendar-making system $\mathfrak{B}^{-}\overline{\pi}$

ffffi. His algorithm corresponds to the fact that both revolutions of the earth and planets were
supposed to be in their true motion. We name the last planetary theory in ancient China doubl\^e true

model.

5. Scientific tradition
5.1 Theoretical tradition and practical tradition

There are two traditions in science, namely, theoretical and practical.
In the theoretical tradition, science features to explain the natural phenomena. Theory is

judged by its function of the explanation. Observation is employed to verify the correctness of the
theoretical hypothesis. Old model is always replaced if the new one is more reasonable in the
explanation of natural phenomena

In the practical tradition, science features to solve the concrete problems. Theoyy is judged by

its accuracy of computation. Scientific progress follows the advancement of observation. A

theoretical model is always improved to meet the precision requirement step by step.
These two traditions differ mainly in their starting and ending points.
In the theoretical tradition, model is built up from the hypothesis to account for natural

phenomena. For abetter understanding of natural phenomena, the model is revised on the base of a
new hypothesis from time to time. The closer the model to the truth is, the more accurate the theory

is.
In the practical tradition, on the other hand, model is built up from the observation to solve

concrete problems. For amore accurate prediction, uninterrupted efforts are made to explore
unknown factors, and the related numerical analyses were improved. The more accurate the theory
is, the closer the model to the truth is.

Through different courses they approach the same goal (see Fig.2)
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Theoretical Tradition Practical Tradition

Fig.2Scientific tradition

5.2 Practical tradition in China
Chinese mathematical astronomy provides atypical example for the practical tradition.
Science in ancient China was supposed to solve concrete problems, such as planetary positions.

The function of explaining the natural phenomena never dominated the scientific tradition. What
Chinese scientists really cared about was how to solve the problem they faced as accurately as
possible. It was hue that numerical analyses won their favor over the cosmic or geometric model
building. The evolutions of numerical method and the planetary theory as we described above show
the reason why the practical tradition was formed in ancient China.

5.3 Theoretical tradition in Greece

Studies by historians of science in the last century showed that the Copernican Revolution
made no essential progress in terms of accuracy of planetary positions. The reason is that
Copernicus and Ptolemy made use of the same epicycle-eccentric method. And,

“It has been argued that as formalizations, Copernicus and Ptolemaic theories were
strictly equivalent (D. J. de S. Price), geometrically equivalent (A. R. Hall), even ‘absolutely
identical’ (J. L. E. Dreyer). ...... lZth Freud, man lost his Godlike mind; with Darwin his
exalted place among the creatures on earth; with Copernicus man had lost his privileged
position in the universe. $’$ ’[8]

Why was Copernicus’s heliocentric system bound to triumph over Ptolemy’s geocentric
$\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{m}^{\eta}$

It is obvious that Copernicus carried on the Greek astronomical tradition. As Neugebauer once
said that “One cannot read asingle chapter in Copernicus or Kepler without athorough knowledge
of the Almagest.” [9] In Ptolemy’s Almagest,

“This notion of uniform, circular motion is fundamental. In fact, the history of Greek
theoretical astronomy is, to a very large extent, the history of a long series of efforts at

explaining away the observed irregularities in the heavens by resolving even the most complex
celestial motion into a set ofuniform, circular $components.”[10]$

Copernicus’s goal was to give acomplete and physically correct description of the planetary
theory
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“The heliocentric theory-philosophical quibbles aside–gives the order and distances of
the planets unambiguously and under the reasonable assumption that the equation of the
anomaly shows the ratio of radii of the planet’s and earth ’s orbits. In so doing, it makes the
planetary system into a single whole in which no parts can be arbitrarily rearranged. By

contrary, in the geocentric theory the radii of the eccentrics and epicycles are known only

relatively, one planet at a time, and only by additional assumptions, such as the contiguity of
successive spheres, can the order artd distances ofthe planets be determined. ’$’[11]$

As aconsequence of Copernicus’s heliocentric model, the phases of an inferior planet like that
of the moon was never observed until in the fall of 1610 when Galileo turned his telescope to
Venus. Galelio’s observation not only provided evidence for the plausibility of $\mathrm{C}\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{c}\mathrm{u}\mathrm{s}’\mathrm{s}$ system,
but also began to threaten the cosmological system ofPtolemy.

Fig.3 Evolution of planetary theory in Greek tradition

In the aspects of the accountability ofthe phenomena, certain features of planetary models that
are unexplained in the geocentric theory are understood as the necessary consequences of the

transformation ffom ageocentric to aheliocentric arrangement. For instances, why the radii of the

epicycles ofthe superior planets remain parallel to the direction from the earth to the mean sun.
These facts show that the function of explanation in Copernicus’s model is better than that in

Ptolemy’s model. This is the reason why Copernicus heliocentric hypothesis was finally widely
accepted and drove away Ptolemy’s geocentric hypothesis.

The Copernican revolution on planetary theory provides atypical example of the theoretical
tradition.

6. Scientific progress: linear and dualstic
Ascientific tradition represents the principal aspects of scientific methodology, spirit and style.

When we speak of the theoretical tradition of Greek science, we do not mean that there was no
applied science at all. What we mean is that compared with this theoretical tradition, the practical
tradition was trivial importance in the development ofGreek science.

Roughly speaking, the scientific progress in ancient civilization featured alinear course, either
in practical or in theoretical tradition. However, the situation in modern time was never so simple.

It is believed that modern science, to alarge extent, benefits from the heritage of Greek
science. Nevertheless, it is hard to say that the theoretical tradition dominates the development of
modern science in all aspects. In facL the practical tradition also plays an important role
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It is obvious that the numerical analyses are more frequently used than theoretical hypotheses
in modern science. For instance, as the consequences of tidal friction, the velocity of earth’s

rotation is slowing down. Since the earth’s rotation is affected by too many factors that have never
been figured out, it is rather the numerical method than theoretical model that is in practice.

The task for modern scientists is not only to account for natural phenomena but also to solve

concrete problems. The researches arising from the search for solutions to scientific problems have
led in two directions: those which are concerned with finding general theorems concerning the

problems, and those which are searching for good approximations for solutions.
Both explaining natural phenomena and solving concrete problems are the goals that modem

scientists fight for. Observations have occupied asubstantial position in the development ofmodem

science. The evolution of the planetary theory ffom Kepler to Einstein could be an example to show
how the theoretical tradition and the practical tradition have merged into asingle whole after
renaissance:

Johannes Kepler (1571-1630) was aCopernican from his twenties on, and was destined to
bring about acceptance of the heliocentric concept. As the German assistant and successor to Tycho
Brahe (1546-1601), he developed his empirical laws from Brahe’s observations on Mars. However,

Kepler then generalized saying that his laws applied to all the planets, including the earth.
It was Isaac Newton (1642- 1727) who tried to answer some basic questions, such as what

keeps the planets in their elliptical orbits. He found that afundamental force called gravity
operating between all objects made them move the way they do. Newton, then, derived his law of
universal gravitation.

Kepler’s three laws can be obtained as an application of the law of universal gravitation in an
approximated case, a2-body problem where the bodies are point-like, the sun is still and the
planets dont interact. Newton himself had solved geometrically the 2-body problem for two
spheres moving under their mutual gravitational attraction.

In the $18^{\mathrm{t}\mathrm{h}}$ century, driven by the needs in navigation for knowledge about the motion of the
moon, scientists were working on the higher-dimensional problem. Meanwhile, the predictions
based on Newton’stheory of planetary motion could not match astronomical observations well.
These problems quickly stimulated the early research into the 3-body problem. It led Euler,

Largrange, and Laplace to establish the theory of perturbation.
In 1859 Le Verrier noted that the orbit of Mercury did not behave as required by Newton’s

equations. By 1882, the advance of the precession of the perihelion of Mercury was more
accurately known, i.e. 43” per century. The precession of the orbits of all planets except for
Mercury’s can, in fact be understood using Newton’s theoyy. Only Mercury seemed to be an
exception. The precession ofthe perihelion ofMercury, therefore, was aproblem in the study of the

Solar System.
From 1911, Einstein realized the importance of astronomical observations for his theories and

he worked with Freundlich to make measurements of Mercury’s orbit which were required to
confirm the general theory of relativity. According Einstein’s theory, Mercury, as the closest planet
to the $\mathrm{s}\mathrm{u}\mathrm{L}$ orbits aregion in the solar system where space-time is disturbed by the sun’s mass.
Mercury’s elliptical path around the sun shifts slightly with each orbit such that its closest point to
the sun (or perihelion) shifts forward with each pass
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Newton’s theory predicted an advancement only half as large as the one actually observed.

Einstein’s predictions exactly matched the observation.
It is obvious that most of the turning points in the development of planetary theory in modem

science are brought forth by observation. It advances in agradual but not revolutionary manner.

Fig.4. Planetary theory: From Kepler to Einstein

Science in ancient civilizations was often characterized by adistinctive tradition, either the

theoretical tradition like Gree4 or the practical tradition like Chinese. It developed in alinear
course.

The diversity of modem science features the blending of the two traditions. It develops in a
dualistic model. The origin of the dualistic scientific tradition might be traced back to the Islamic
science before renaissance.

16 Century AD

Fig.5. Model of scientific progress
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