On the $SL(3,\mathbf{R})$ action on 4-sphere

大阪市立大学 黒木慎太郎 (Shintarô Kuroki)*
Osaka City University

Abstract

We construct the smooth $SL(3, \mathbf{R})$ actions on S^4 . That is we solve the problem of F.Uchida ([6] and (P2) in [7]).

1 Introduction

In 1981 ([5]), F. Uchida gave the example of the orthogonal SO(4)-action on the 6-sphere S^6 which is not extendable to any continuous $SL(4, \mathbf{R})$ -action. In 1985 ([6]), he studied the action ψ of SO(3) on the 4-sphere S^4 which coming from the adjoint action on the vector space $sym(3) \simeq \mathbf{R}^5$, where $sym(3) = \{A \in M_3(\mathbf{R}) : trace(A) = 0, A = A^t\}$ and $S^4 = \{A \in sym(3) : trace(A^tA) = 1\}$. Then he constructed a continuous $SL(3, \mathbf{R})$ -action on S^4 which extends this SO(3)-action ψ . However this action is not smooth. It is still open whether this SO(3)-action can be extended to a smooth $SL(3, \mathbf{R})$ -action or not. In this paper we construct the smooth $SL(3, \mathbf{R})$ -action on S^4 which extends ψ .

2 Structure

First, remember the orbit structure of the SO(3)-action ψ on S^4 . The orbit space of this action is closed interval $[-\frac{1}{3\sqrt{6}}, \frac{1}{3\sqrt{6}}]$. Put the projection $\pi: S^4 \to [-\frac{1}{3\sqrt{6}}, \frac{1}{3\sqrt{6}}]$ which induced from a determinant of matrix. We can easily check $\pi^{-1}(\pm \frac{1}{3\sqrt{6}})$ are the singular orbits $\mathbf{R}P(2)$ and other orbits are the principal orbits $SO(3)/\mathbf{Z}_2 \oplus \mathbf{Z}_2$.

^{*}Department of Mathematics, Osaka City University, Sumiyosi-Ku, Osaka 558-8585 Japan (e-mail address: d03sa004@ex.media.osaka-cu.ac.jp). The author was supported by Fellowship of the Japan Society for the Promotion of Science.

3 Construction

Let us construct the smooth action. Consider the natural smooth $SL(3, \mathbf{R})$ -action on $\mathbb{C}P(2) \simeq \mathbb{C}^3 - \{0\}/\mathbb{C}^*$. Then the restricted SO(3)-action has just two singular orbits S^2 and $\mathbb{R}P(2)$ and the other orbits are principal orbit $SO(3)/\mathbb{Z}_2$. Moreover this action commute with complex conjugation. Remember the quotient space of $\mathbb{C}P(2)$ by complex conjugation is S^4 ([2]). Hence this action induces the smooth $SL(3, \mathbb{R})$ -action Ψ on S^4 because of the commutativity $SL(3, \mathbb{R})$ -action and the complex conjugation on $\mathbb{C}P(2)$. Consider the restriction Ψ to SO(3). Then this restricted action has just two singular orbits $\mathbb{R}P(2)$ and the other orbits are principal orbit $SO(3)/\mathbb{Z}_2 \oplus \mathbb{Z}_2$. From the classification ([1]), the effective SO(3)-action on S^4 which has this orbit structure is unique up to equivariant diffeomorphic. So this restricted action is equivariant diffeomorphic to ψ . Therefor the $SL(3, \mathbb{R})$ -action Ψ is smooth and extended action of ψ .

4 Classification problem

Does SO(3)-action ψ extend to a smooth $SL(3, \mathbf{R})$ -action? This problem was solved in this paper. The answer was Yes. To solve this problem, we can consider the classification problem about a smooth $SL(3, \mathbf{R})$ -action on S^4 .

In 1974 ([3]), C. R. Schneider succeeded in the classification of the real analytic $SL(2, \mathbf{R})$ -action on S^2 . In 1979 ([4]), F. Uchida classified the real analytic $SL(n, \mathbf{R})$ -action on S^n for $n \geq 3$. Moreover, in 1981 ([5]), he succeeded in the classification of the real analytic $SL(n, \mathbf{R})$ -action on S^m for $5 \leq n \leq m \leq 2n-2$. As is well known, $SL(n, \mathbf{R})$ -action on S^{n-1} is unique up to equivalence and $SL(n, \mathbf{R})$ -action on S^m for $m \leq n-2$ is trivial. Therefore the case (n, m) = (3, 4), (4, 5), (4, 6) and $m \geq 2n-1$ (for $SL(n, \mathbf{R})$ -action on S^m) are still open. The author would like to solve the case (n, m) = (3, 4), (4, 5), (4, 6) near the future.

References

- [1] T. Asoh: Compact transformation groups on \mathbb{Z}_2 -cohomology spheres with orbits of codimension 1, Hirosima Math. J. 11 (1981), 571-616.
- [2] N H. Kuiper: The quotient space of $\mathbf{C}P(2)$ by complex conjugation is 4-sphere, Math Ann. 208, (1974), 175-177.
- [3] C. R. Schneider: $SL(2, \mathbf{R})$ actions on surfaces, Amer. J. Math. 96 (1974), 511-528.

- [4] F. Uchida: Classification of real analytic $SL(n, \mathbf{R})$ actions on *n*-sphere, Osaka J.Math. 16 (1979), 561-579.
- [5] F. Uchida: Real analytic $SL(n, \mathbf{R})$ actions on sphere, Tohoku Math. J. 33 (1981), 145-175.
- [6] F. Uchida: Construction of a continuous $SL(3, \mathbf{R})$ action on 4-sphere, Publ. Res. Inst. Math. Sci. 21 (1985), 425-431.
- [7] F. Uchida and K. Mukoyama: Smooth actions of non-compact semi-simple Lie groups, A. Bak et al. (eds.), Current Trends in Transformation Groups, 201-215.