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ABSTRACT. This paper constructs Hadamard matrices of order $4n$ . Given
the first 4 rows aixd columns of a Hadamard matrix of order $4n$ , we study
its $(n-1)\mathrm{x}(n -1)$ blodc matrix properties. Since the incidence matrices
of symmetric 2-designs do not violate the obtained properties, we use them
in the construction. We obtained the total number of Hadamard matrix
construction structures by only using incidence matrices of symmetric %
designs. Furthermore, at most 4 different incidence matrices with their
corresponding complements can have a Hadam ard matrix structure. Other
than this number is not possible.

1. INTRODUC.TION

A Hadamard matr$r\dot{u}.r$ of order $n$ is a square matrix $H$ whose entries consist
of 1’s and -1’s satisfying

$HH^{T}=nI$

where $H^{T}$ is the transpose of $H$ and I is the identity matrix of order $n$ . It is
known that Hadamard matrices exist only when $n=2$ or $n$ is a multiple of 4.
However, the converse still remains as a conjecture at present [11]. In particular,
for $n$ $\leq 28,$ Hadamard matrices are completely classified and the complete
listing of such matrices can be found in Sloane’s homepage[14]. This paper
aims to construct Hadamard matrices of order ,4$n$ by investigating Kimura’s
structure [9] for length 32. We determine the appropriate parameters of all the
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submatrices, having order $n-$ l, that will yield a Hadamard matrix of order
$4n$ . It is seen that the appropriate choice of incidence matrices of symmetric
2- $(n-1, \frac{n}{2}- 1, \frac{n}{4}-1)$ designs and their corresponding complements can be
such submatrices. The obtained Hadamard matrices are generator matrices to
self-0rthogonal codes over $\mathrm{G}\mathrm{F}(2)$ .

2. THE CONSTRUCTION

Let $n\equiv 0$ (mod 4). We construct a Hadamard matrix of order $4n$ ffom a
given 2-(n-l, $\frac{n}{2}-1,$ $\frac{n}{4}-1$ ) Hadamard design O. We consider the following
structure of a Hadamard matrix of order $4n$ and denote it by $H_{4n}$ .

$H_{4n}$ $:=$ $\{\begin{array}{l}1111110010101001111111111100\underline{1}10101010110011001\end{array}$

$0000000111111111111111111111A_{1}B_{1}D_{1}C_{1}$

$...\cdot..\cdot.\cdot$

$\mathrm{o}\mathrm{o}\mathrm{o}\mathrm{o}\mathrm{o}\mathrm{o}_{9},0111111111111111111111A_{A}B_{2}D_{2}C_{\vee}$

$..-\cdot.\cdot.\cdot$

.

$0000000111111111111111111111A_{3}B_{3}D_{3}C_{3}$

$...\cdot$.. $\cdot$..
$0000000000000000000001111111A_{4}B_{4}D_{4}C_{4}^{\cdot}$

..

(1)

3. PROPERTIES OF THE (n$-1)\cross(n$ -1) BLOCK MATRICES

To construct matrix (1), we need to find the block matrices $A_{1}$ , A2, $A_{3}$ ,
$A_{4}$ , $B_{1}$ , $B_{2}$ , $B_{3}$ , $B_{4}$ , $C_{1}$ , $C_{2}$ , $C_{3}$ , $C_{4}$ , $D_{1}$ , $D_{2}$ , $D_{3}$ and $D_{4}$ . All of these are
$(n-1)$ $\cross(n-1)$ matrices. We denote the weight (number of 1’s entry) of
a vector $x$ as $wt(x)$ and the number of l’s intersection between any two row
vectors $x$ , $y$ as $x*y.$

Lemma 3.1. Roett vectors of block matrices Ax, A2, $A_{3\mathrm{z}}A_{4},$ $B_{1}$ , $B_{2}$ , $C_{1}$ , $C_{3}$ ,
$D_{2}$ and $D_{3}$ are of weight $( \frac{n}{2}-1)$ . Also, row vectors of block matrices B$, $B_{4}$ ,
$C_{2}$ , $C_{4}$ , $D_{1}$ , and $D_{4}$ are of weight $\frac{n}{2}$ .
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To construct matrix (1), we make use of the $(n-1)\cross$ (n –1) incidence
matrices of $\mathfrak{D}$ that is, block matrices $A_{1}$ , $A_{2}$ , A3, $A_{4}$ , $B_{1}$ , $B_{2}$ , $C_{1}$ , $C_{3}$ , $D_{2}$ and
$D_{3}$ are incidence matrices of some 2-(n-l, $\frac{n}{2}-1,$ $\frac{n}{4}-1$ ) Hadamard designs
and, block matrices $B_{3}$ , $B_{4}$ , $C_{2}$ , $C_{4}$ , $D_{1}$ , and $D_{4}$ are incidence matrices of some
complements of the above designs. We can also consider incidence matrices
from inequivalent 2- ($n-$ l, $\frac{n}{2}-1,$ $\frac{n}{4}-1$ ) Hadamard designs.
Let $M$ be the $(4n-4)$ $\cross(4n -4)$ matrix obtained from deleting the first four
rows and columns of matrix (1). Then

$kI$ $:=$ $[_{D}$ABC: $|A_{2}D_{2}C_{2}B_{2}$ $|\begin{array}{l}A_{3}B_{3}C_{3}D_{3}\end{array}|$ $D_{4}A_{4}B_{4}C_{4}]$ (2)

We define $\beta_{i}(i=1,2,3,4)$ as follows:
$\beta_{1}=(A_{1}, A_{2}, A_{3}, A_{4})$

$\beta_{-},$ $=(B_{1}, B_{2}, B_{3}, B_{4})$

$\beta_{3}=(C_{1}, C_{2}, C_{3}, C_{4})$

$\beta_{4}=(D_{1}, D_{2}, D_{3}, D_{4})$

Let $S$ be the set of $(n-1)\cross(n-1)$ incidence matrices of some 2– $(n-$
$1$ , 7-1, $\mathrm{j}$ $-1$ ) designs and $M_{i}$ be an element of $S$ . Denote $M_{i}’$ as the incidence
matrix of its corresponding complement and $S’$ as the set of $M_{i}’$ . We check
some conditions of the block matrices in $M$ to obtain different constructions
of a Hadamard matrix using the given structure. Also, we determine the max-
imum number $\sigma$ of distinct matrices from $\mathrm{S}$ which can altogether construct a
Hadamard matrix. Observe that $\sigma\leq 16$ since matrix $M$ has 16 block matrices.

Lemma 3.2. Let $A$ , $B\in S$ . Then for any vectors $x_{A}$ @ $A$ and $y_{B}\in B,$

$x_{A}*y_{B}=0,1$ , $\ldots$ or $\frac{n}{2}-1.$

Lemma 3.3. Let $A$ , $B\in S$ and $0 \leq k\leq\frac{n}{2}-1$ . Then for any vectors $x_{A}\in A$

and $y_{B}\in B,$

$x_{4}-,$ $*y_{B}$ $=$ $( \frac{n}{2}-1)$ $-k\iota f$ and only if $x_{A}*y_{B}=k.$

Lemma 3.4. Let $A$ , $B\in S$ and $0 \leq k\leq\frac{n}{2}-1$ . Then for any vectors $x_{A}\in A$

and $y_{B}\in B,$
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$x_{\mathit{1}^{t}}’*y_{B’}=k+1$ if and only if $x_{A}*y_{B}=k.$

Let $A_{1\mathit{1}}=\uparrow I_{i}$ . Then we have the following possible values of $\beta_{1}$ :

(i) If the $A_{i}$ ’s $(i=1,2,3,4)$ are equal, then we have
1. $\beta_{1}=(\Lambda/I_{i}, lvI_{i}, \mathit{1}\mathrm{k}I_{i}, \mathrm{J}\sqrt I_{i})$.

(ii) If -,4; $(i=1,2,3,4)$ have two different values, then we have
2. $\beta_{1}$ $=(Mi, \Lambda/Ii, lt/Ij, hIj)$

3. $\beta_{1}$ $=$ (JWi, $M_{j},$ $NI_{j},$ $M_{i}$ )
4. $\beta_{1}=$ (Afi, $hI_{j}$ , $M_{i},$ $M_{j}$ )
5. $\beta_{1}$ $=(hI_{i}, M\dot{.}, M_{i}, M_{j})$

6. $\beta_{1}$ $=$ ( $hI\dot{.}$ , M.$\cdot$ , $l\mathcal{V}Ij$ , $M_{\dot{*}}$ )
7. $\beta_{1}=( i)hI_{j},$ $\Lambda I_{i},$ $hI\dot{.})$

8. $\beta_{1}=(M_{i}, M_{j}, M_{j}, M_{j})$ .
(iii) If $A_{i}(i=1,2,3, 4)$ have three different values, then we have

9. $\beta_{1}$ $=(hI_{i}, M_{j}, NI_{k}, hI_{i})$

10. $\beta_{1}=(NI_{i}, hIj, hI_{k}, M_{k})$

11. $\beta_{1}=(NI_{i}, Mj, J/Ik, Mj)$

12. $\beta_{1}=(hI_{i}, kI_{i}, Mj, M_{k})$

13. $\beta_{1}=$ ( $NI_{i}$ , $\lambda^{\gamma}$/I
$j$ , $NI_{j}$ , $M_{k}$ )

14. $\beta_{1}=$ (hI${ }$ , $M_{j},$ $M_{i}$ , $hI_{k}$ )
(iv) If $A_{i}(i= 1,2, 3, 4)$ have four different values, then we have

15. $\beta_{1}=(M_{i}, M_{j}, M_{k}, M_{l})$

The following is an algorithm in constructing the possible structures of $M$

which would generate a Hadamard matrix of order An:

(1) Consider the 15 possible values of $\beta_{1}$ above.
(2) For each case, generate the possible values of ’2 $\cdot$ At this point, 15 sets of

$\beta_{2}$ are generated.
(3) For every pair of $\beta_{1}$ and $\beta_{2}$ , generate the possible values of $\beta_{3}$ .
(4) For every triple of $\beta_{1}$ , $\beta_{2}$ and ’3, generate the possible values of $\beta_{4}$ .

Theorem 3.5. There are 149 possible structures of M which would generate
a Hadamard matrix of order An:

In finding values of $\beta_{i}(i=1,2,3,4)$ , we use different variables and check $\mathrm{a}\mathbb{I}$

possibilities to find the maximum number of distinct block matrices which can
altogether construct a Hadamard matrix of order An. Hence we also have the
following theorem:
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Theorem 3.6. The maximum number of distinct block matrices in matrix $M$

which would construct a Hadamard matrix of order An is 4.

4. THE HADAMARD MATRIX OF ORDER 32

We construct a Hadamard matrix of order 32 using the method in the pre
vious section, $n=32$ is the next length to be classified as $n\leq 28$ are com-
pletely classified. There are 26 matrices found in Seberry’s homepage[15] and
6 matrices found in Sloane’s page[14]. Araya, Harada and Kharaghani[l] also
enumerated a number of them. It is known that there are at least 66,000
inequivalent Hadamard matrices of length 32[3].

The following are direct consequences of the results in the previous section:
(1) Let $x_{1}$ be the first row vector and let $x$ , $y$ be any distinct row vectors other

than $x_{1}$ . Then $x_{1}*y= \frac{n}{2}=16$ and $x*y= \frac{n}{4}=8$ when $x\neq 1.$

(2) Row vectors of block matrices $A_{1}$ , A2, $A_{3},4_{4}$ , $B_{1}$ , $B_{2}$ , $C_{1}$ , $C_{3}$ , $D_{2}$ and $D_{3}$

are of weight 3. Also, row vectors of block matrices #3, $B_{4}$ , $C_{2}$ , $C_{4}$ , $D_{1}$ ,
and $D_{4}$ are of weight 4.

We investigate other properties of the block matrices of a Hadamard matrix
of order 32 by asking the question, “How many repetitions of row vectors are
possible in constructing each block matri.x?” The answer to this question gives
the following result.

Proposition 4.1. 3 repetitions of a vector in a block matrix is not possible,
for block matrices $A_{i}$ , $B_{i_{l}}C_{i}$ and $D_{i}(i= 1, 2, 3, 4)$ .

Hence, we are left with two remaining possibilities i.e., either a row vector
in a block matrix can be repeated twice or each row vector is distinct.

5. SOME EXAMPLBS

We make use of the incidence matrices of the isomorphic 2-(7, 3, 1) designs
and their respective complements, the 2–(7,4, 2) designs. Note that these
designs are unique and are self-dua1[2]. There are 30 cosets of the 2-(7, 3, 1)
designs and there are $(7!)^{2}/168$ incidence matrices. We use MAGMA in com-
puting some Hadamard matrix examples. The following are some construction
examples.
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Example 5.1.

$[\Lambda I_{i}hI_{i}hI_{i}h\mathit{1}_{i}$

,
$|l\Lambda NI_{}f_{i}\mathrm{V}I_{i}M_{i}$

’
$|\begin{array}{l}\mathrm{J}/I_{i}M_{i}’M_{i}hf_{i}\end{array}|$

$M_{i}M_{i}’M_{i}\mathit{1}\mathcal{V}I_{i},$

,
$]$

If the construction used has one distinct block matrix, we obtain 1 inequiv-
alent Hadamard matrix of order 32 with automorphism group order equal to
16515072.
Example 5.1.

$[hNhI_{i}i_{j}MI_{i}’|\begin{array}{l}NI_{i}M_{j}M’\dot{.}M\end{array}|$ $MM:MM$ $|M_{j}’M_{j}’M_{j}’M.\cdot]$

If the constr uction used has two distinct block matrices, we can obtain at most
$\frac{7^{\prime 2}}{168}.\cross(\frac{7!^{2}}{168}-1)$ Hadama $rd$ matrices of order 32. We have computed some
Hadamard matrix examples $fmm$ the above particular construction and ob-
tained 11 different automorphism group orders namely: 256, 768, 1024, 2048,
3072, 24576, 384, 512, $4096_{f}$ 6144 and 65536.
Example 5.3.

$[l\mathcal{V}M_{\mathrm{j}}I_{k}’hI_{k}M_{i}|l\mathrm{Y}I_{k}’M_{j}M_{k}M_{i}$ $|\begin{array}{l}MM_{j}’M_{j}M_{j}\end{array}|$ $M_{j}’M_{j}’M_{j}M.,\cdot]$

$\frac{If\tau^{2}}{168},.\cross the$($c \frac{7!^{2}on}{168}-1)\cross(\frac{7!u_{2}}{168}-2)struct\mathrm{i}onsedhas$

$Hadamardmat\uparrow\dot{\eta}\mathrm{C}CSthreedistinctblock$ mofatorridceers,$32we$ $canobtainatmostWehavecomputed$

some Hadamard matrix examples from the above particular constru ction and
obtained 13 different automorphism group orders namely: 256, 768, 1024, 2048,
3072, 24576, 64, 128, 192, 384, 512, 1536 and 4096.

Example 5.4.

$[\Lambda hhI_{i}I_{i}I_{i}hI_{i}’|\lambda NkI_{j}’I_{j}\prime I_{j}hI_{j}$ $|\begin{array}{l}M_{k}M_{k}’M_{k}NI_{k}\end{array}|$ $M_{l}’M_{l}’M_{l}M_{l}’]$
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If the construction used has four distinct block matrices, we can obtain at most
$\frac{\overline{\prime}!^{2}}{168}\cross(\frac{-\prime!^{\underline{9}}}{168}-1)\cross(\frac{-\prime!^{2}}{168}-2)\cross(\frac{\overline{(}!^{2}}{168}-3)$ Hadamard matrix of order 32.

To classify the obtained Hadamard matrices of order 32, equivalence and au-
tomorphism group order must be considered. This can be done using MAGMA,
too. Since computing requires a massive time, the total number of inequivalent
Hadamard matrix of order 32 from the different obtained structures were not
completely computed.

6. RANKS OF A HADAMARD MATRIX OF ORDER 32 OVER $GF(2)$ AND
Codes

Let $H_{n}$ be a generator matrix of a linear binary $[n, k]$ code. The codes
obtained from $H_{n}$ when $n$ $\equiv 0$ (mod 8) is self-0rthogonal and in particular,
it yields self dual when $k= \frac{n}{2}$ . The 2-rank of $H_{n}$ is the dimension of the
$[n, k]$ code over $C_{\tau}F(2)$ , and is written as $rank_{2}(H_{n})$ . This section enumerates
$rank_{2}^{\wedge}(H_{n})$ of examples 5.1, 5.2, 5.3 and 5.4. Ranks of $H_{n}$ were also computed
using MAGMA.

We denote a Hadamard matrix of order 32 as $H_{32}$ . From [2], $6\leq$ rank2(Hz2) $\leq$

$16$ . Ran $k_{2}^{\wedge}(H_{32})$ in example 5.1 is 7; in examples 5.2 and 5.3 axe 8, 9, 10, 11,
12 and 13. $Rank_{2}(H_{32})=14,15,16$ axe not obtained from the computed
examples but the author is hopeful to find examples of such ranks from the
149 different constructions. If $H_{32}$ exists with $rank_{2}(H_{32})=16$ from any of
our constructions, then we can also classify the $[32, 16]$ type II self dual codes
obtained from Hadamard matrices with Hall sets[8].

$\sim/$ . CONCLUSIONS AND RECOMMENDATIONS

In this paper, after checking the properties and conditions of the block ma-
trices of matrix (1), we had come up with the following:
$\mathrm{a}$. Construction of Hadamard matrices of order $4n$ if $n\equiv 0$ (mod 4) and

2- $(n-1, \frac{n}{2}-1,7 - 1)$ Hadamard designs exist.
$\mathrm{b}$ . We were successful in enumerating all the possible constructions of a Hadamard

matrix of order $4n$ using Kimura’s structure, restricting the row vectors of
each block matrix to be distinct and using the incidence matrices of a sym-
metric 2-design as block matrices of of such matrix.
For a Hadamard matrix of order 32 in particular, we also have come up with

the following:
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$\mathrm{a}$. Some examples with their automorphism group orders and $Rank_{2}(H_{32})$ were
computed,

$\mathrm{b}$ . 3 or more repetitions of a row vector in any of the $7\cross 7$ block matrices do
not yield Hadamard matrix.

$\mathrm{c}$ . The possibility of constructing a Hadamard matrix using block matrices
with $\mathrm{v}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}/\mathrm{s}$ repeated twice has not been explored.

Thus we are left with the following questions:

(1) Is there a possibility to construct a Hadamard matrix of order $4n$ using Kimura’s
structure if for any $n$ , Hadamard 2- $(n-1, 7-1, \frac{n}{4}- 1)$ design does not exist?

(2) If for $n=8,3$ or more repetitions of a row vector in any of the 7 $\mathrm{x}7$ block
matrices of $H_{32}$ do not yield Hadamard matrix, what would be the case for
$n>8$ ?

(3) Is there any relationship between the rank of a Hadamard matrix of order $4n$

$(n\geq 8)$ and the constructions?
(4) Which of the constructions could generate Hadamard matrix of order $4n\mathrm{o}\mathrm{f}$ high-

est rank?
(5) Let $H_{4n}$ be a Hadamard matrix of order An. Is $rank_{2}(H_{4n})= \frac{n}{2}$ possible in these

constructions? If so, then we can also clasify some Type II self dual codes from
$H_{4n}$ .
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