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Generic Grobner basis in $\hat{\mathcal{D}}$

- announcement

Rouchdi BAHLOUL
Department of Mathematics, Kobe University *

Abstract

Many authors have studied parametric Grobner bases. Here we develop this notion in
the case of ring of differential operators in the formal case where the ring of coefficients

$\mathrm{C}$ is the most general as possible. This gives rise to the notion of generic Grobner basis
on an irreducible affine scheme of $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathrm{C})$. Our goal here is to state existence theorems
of generic Grobner bases and comprehensive Grobner bases for local orders, these will
use truncated divisions in the Buchberger algorithm. We will emphasize the difference
between nonreduced and reduced generic Grobner bases by seeing that truncated divi-
sions are not applicable to reduced ones in general. Finally, we will propose applications
to comprehensive standard bases, local Bernstein polynomials and Grobner fans.

Introduction

This short note is related to the talk given, under the same title, in the workshop
“Computer Algebra $\cdot$ . Design of Algorithms, Implementations and Applications” given at
the RIMS (Kyoto university) on december 2003. This talk was based on the preprint
[Ba03]. New results have been discovered since this preprint so this note shall be an
extended abstract and an announcement of a paper (in preparation) which shall be an
improvement of the first part of [Ba03].

Parametric Grobner bases have been studied by several authors and is now $\mathrm{a}$. fur-
ther developped subject: P. Gianni [Gi89], M. Lejeune-Jalabert and A. Philippe [LP89],
T. Becker [Be94], V. Weispfenning [We92] with the existence a comprehensive Grobner
basis and more recently [We03] with the notion of a canonical comprehensive Grobner
basis. There also exists an alternative approach to the construction of a comprehensive
Gr\"obner basis by T. Sato and A. Suzuki [SS03].

All these constructions are concerned with ideals in polynomial rings. In 1997, T. Oaku
[Oa97] studied parametric Grobner bases in rings of algebraic differential operators in a
work concerning (among others) the study of the local or global Bernstein polynomial
for a polynomial with parameters. This work enables A. Leykin [LeOl] to obtain a con-
structibility result concerning the (global) Bernstein polynomial for a polynomial with
parameters. In the same spirit, U. Walther [Wa03] made a study of algebraic de Rham
cohomology groups.
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Now concerning the local situation, in a recent paper, A. Fr\"uhbis-Kriiger [Fr03] makes
use of a parametric approach to standard bases for the study of singularities of analytic
functions with parameters, but it seems that no general construction have been made.

The purpose of this note is an exposition and a announcement concerning a general
study of parametric standard bases. We will be concerned by all the local situations: local
algebraic, analytic, formal. This will take place in rings of differential operators but will,
of course, cover the commutative situations.

Here we will be concerned mainly by local orderings but our interest lies both in
algebraic, analytic or formal cases.

Moreover we will emphasize the difference between reduced and nonreduced standard
bases. For this, let us see a trivial but instructive example in the commutative case.

Let us consider $/(\mathrm{a}, x, y)=ay-xy+x$ and consider a local order on $\mathrm{N}^{2}$ (i.e. on
the $x$ , $y$ monomials) such that the leading monomial of $f$ is $y$ (here $a$ is a parameter).
Consider the ideal I in $\mathbb{C}[a][x, y]$ and $\hat{I}$ i $\mathrm{n}$ $\mathbb{C}[a][[x, y]]$ both generated by $f$ . It is trivial
to say that $f$ is standard bases of Frac(C[a])[x, $y$] . I so that $f$ is a generic Grobner basis
of I on $\mathbb{C}\simeq$ Specm(C[a]) (the maximal spectrum). Indeed, for any $a_{0}\neq 0$ , $/(\mathrm{a}, x, y)$ is
a standard basis of $I_{|a=a_{0}}$ or of $\hat{I}_{|a=a0}$ and the leading monomial is constant (of course in
this trivial example, $f(0, x, y)$ is also a standard basis of $I_{|a=0}$ ). But $f$ is not a reduced
generic standard basis, i.e. its specialization into $a_{0}\neq 0$ is not reduced. So let us reduce
$f$ . The reduction of $f$ (which is unique up to a factor in $\mathbb{C}[a]$ ) is

$g=ay+x+x^{2}/a+x^{3}/a^{2}+x^{4}/a^{3}+\cdot$

As one can see, this is not in the ring of the begining $\mathbb{C}[a][x, y]$ nor in $\mathbb{C}[a][[x, y]]$ but in
an extension of the latest and one can not take off the denominators. The idea in this
case shall be to “control” these denominators.

The plan is the following. In the first section we shall introduce the objects and state
the main results. By using a notion of truncated divison, in the nonreduced case, we
shall thus be able to simplify the results of [Ba03]. In the second section, we shall state
and anounce applications: existence of comprehensive standard bases, application to the
(local) generic Bernstein polynomial (work in progress), application to a constructiblity
result (see [Ba03]) for Grobner fans (and in project to GKZ-hypergeometric systems).

This paper contains no proofs. Some of them can be found in [Ba03] but in a subse-
quent paper, we shall prove all the results of the present note.

I wish to thank N. Takayama for fruitfull discussions that helped to make things more
clear to me.

This work was made under the support of the FY2003 JSPS Postdoctoral Fellowship.

1. Main results

To be as more general as possible, we shall work in $\mathrm{I}_{n}(\mathrm{k})\langle z\rangle$ and $D_{n}$ $\langle$z) but every
thing said in this section will work for any other (usual) ring if one dispose of a division
theorem.
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Let $n\geq 1$ be an integer and $\mathrm{k}$ be a field of characteristic zero. Let $x_{1}$ , $\ldots$ , $x_{n}$ be
variables and set $x=(1)\ldots$ , $x_{n}$ ). Define Vn{k)(z) as the $\mathrm{k}[[x]]$ (resp $\mathbb{C}\{x\}$)-algebra
generated by the $\partial_{x}$. ’s and $z$ with the relations:

$li$ , $j\forall u$ , $v$ , $[u, z]=[\partial_{x_{i}}, z]=[u, v]=[\partial_{x_{i}}, \partial_{x_{j}}]=0$ and $[ \partial_{x_{i}}, u]=\frac{\partial u}{\partial x_{i}}z$ ,

here $u$ and $v$ are in $\mathrm{k}[[x]]$ (resp. $\mathbb{C}\{x\}$ ). The obtained ring is a homogenized version of the
ring $D_{n}(\mathrm{k})$ (resp. $D_{n}$ ) of differential operators with formal (resp. analytic) power series
as the coefficient ring. The ring $\hat{D}_{n}(\mathrm{k})\langle z\rangle$ is much more convenient than $D_{n}(\mathrm{k})$ for we can
deal with more orders (the technique of homogenizing, computing and dehomogenizing is
usual).

Let $\prec$ be an order on $\mathrm{N}^{2n+1}$ compatible with sums and for which the following notions
are well defined (for example the order $<\mathrm{i}$ defined in [ACGOI] and used in [Ba03]).

An operator $P\in\hat{D}_{n}(\mathrm{k})\langle z$ ) can be written uniquely as $P= \sum c_{\alpha,\beta,k}x^{\alpha}\partial_{x}^{\beta}z^{k}$ (here
$x^{\alpha}=x_{1}^{\alpha_{1}}\cdots x_{n}^{\alpha_{n}}$ $)$ We define its Newton diagram $\mathrm{N}\mathrm{D}(P)$ as the set of $(\alpha, \beta, k)\in \mathrm{N}^{2n+1}$

such that $c_{\alpha}$ ,t”tk $\neq 0.$ Then we define the
$\mathrm{o}$ leading exponent $\exp_{\prec}(P)=\max_{\prec}$ ND(P),
$\circ$ leading monomial $1\mathrm{m}_{\prec}(P)=(x, \partial_{x}, z)^{\exp_{\prec}(P)}$ ,
$\circ$ leading coefficient $1\mathrm{c}_{\prec}(P)=c_{\exp_{\prec}(P)}\in \mathrm{k}$ (or in $\mathbb{C}$ for $P\in$ Vn(k)).

Note that since the order $\prec$ is compatible with sums, we have $\exp_{\prec}(PQ)=\exp_{\prec}(P)+$

$\exp_{\prec}(Q)$ for any $P$, $Q\in$ Tl(z) (which is one of $\hat{\mathrm{Z}}_{n}(\mathrm{k})\langle z\rangle$ and $D_{n}\langle z\rangle$ ). Now, let us recall
the division theorem of [ACGOI]. For $e_{1}$ , . . . ’

$e_{r}\in \mathrm{N}^{2n+1}$ , define the partition of $\mathrm{N}^{2n+1}$ :
$\mathrm{o}\Delta_{1}=e_{1}+\mathrm{N}^{2n+1}$

$\mathrm{o}$ For $j=2$ , $\ldots$ , $r$ , $\Delta_{j}=(e_{j}+\mathrm{N}^{2n+1})\backslash (\Delta_{1}\cup\cdots\cup\Delta_{j-1})$

$\mathrm{o}\overline{\Delta}=\mathrm{N}^{2n+1}\backslash (\Delta_{1}\cup\cdots\cup\Delta_{r})$.

Theorem 1. ([ACGOl] th. 7) For any $P$, $Q_{1}$ , $\ldots$ : $Q_{r}\in \mathcal{R}\langle z\rangle$ ettith $Q_{j}\neq 0,$ tftere exists $a$

unique $(q_{1}, \ldots, q_{r}, R)\in \mathcal{R}\langle z\rangle^{r+1}$ such that $P=q_{1}Q_{1}+\cdots+q_{r}Q_{r}+R$ and
(1) for any $j$ such that $q_{j}\neq 0,$ $\exp_{\prec}(Q_{j})+\mathrm{N}\mathrm{D}(q_{j})$ $\subset\Delta_{j}$ ,
(2) $\mathrm{N}\mathrm{D}(\mathrm{P})\subset\overline{\Delta}$ if $R\overline{\neq}$ $0$ ,
uthere the partition $\mathrm{N}^{2n+1}=\Delta_{1}\cup\cdots\cup\Delta_{r}\cup\overline{\Delta}$ is associated with the $\exp_{\prec}(Q_{\dot{*}})$ ’s.
$R$ is called a remainder of the division of $P$ by $Q_{1}$ , $\ldots$ , $Q_{r}$ (with respect $to\prec$).

As a consequence:
$(^{*})$ $\exp_{\prec}(P)[succeq]\max_{\prec}\{\exp_{\prec}(q_{1}Q_{1}), \ldots, \exp_{\prec}(q_{r}Q_{r}), \exp_{\prec}(R)\}$ .

Let us recall the idea of the proof, this will be usefull in the sequel.
$\circ$ Put $(P^{00}, q_{1}, \ldots, q_{r}^{0}, R^{0})=(P, 0, \ldots, 0, 0)$ .
$\circ$ For $i\geq 0,$ if $P^{i}=0$ then put $(P^{i+1}, q_{1}^{i+1}, \ldots, q_{r}^{i+1}, R^{i+1})$ $=$ $(P^{ii}, q_{1}, \ldots, q_{r}^{i},\dot{H})$ .
$\circ$ if $\exp_{\prec}(P^{i})\in\overline{\Delta}$ then

$(P^{i+1i+1i+1}, q_{1}, \ldots, q_{r}, R^{i+1})=(P^{i}-1\mathrm{t}_{\prec}(P^{i}), q_{1}^{i}, \ldots, q_{r}^{i}, R^{:}+1\mathrm{t}_{\prec}(P^{i}))$,
$\mathrm{o}$ if not, then let $j= \min${ $k$ $\in\{1$ , $\ldots$ , $r\}$ , $\exp_{\prec}(P^{i})\in$ A$k$} and put

$P^{i+1}=P^{:}- \frac{1\mathrm{c}_{\prec}(P^{l})}{1\mathrm{c}_{\prec}(Q_{j})}\cdot(x, \partial_{x}, z)^{\exp_{\prec}(P)-\exp_{\prec}(Q_{j})}\cdot Q_{j}$

:
,

$q_{j}^{i+1}=q_{j}^{i}+ \frac{1\mathrm{c}_{\prec}(P^{i})}{1\mathrm{c}_{\prec}(Q_{j})}\cdot(x, \partial_{x}, z)^{\exp_{\prec}(P)-\exp_{\prec}(Q_{j})}$

: , and for $l\neq j$ , $q_{l}^{i+1}=q_{l}^{j}$ ,
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$R^{i+1}=R^{i}$ .
With this process, we obtain $(r+2)$ sequences $P^{i}$ , $q_{1}^{i}$ , . . . , $q_{r}^{i}$ and $R^{i}$ with $i\in \mathrm{N}$

satisfying $P= \sum_{j}q_{j}^{i}Q_{j}+R^{i}+P^{i}$ . The first point consists in showing that these sequences
converge for the $(x_{1}$ , . . . , $x_{n})$ -adic topology, by considering $D_{n}(\mathrm{k})$ $\langle z\rangle$ as a free $\mathrm{k}[[x]]$-module
(in particular the limit of $P^{i}$ is 0). The second point which is much harder is to prove that
if the inputs are in $D_{n}\langle z\rangle$ then the limits (which are in $D_{n}(\mathbb{C})\langle z$ ) $)$ are indeed in $D_{n}\langle z\rangle$ .
Now, as a consequence, we have:

Lemma 2. Let $\mathrm{C}$ be a commutative integral ring and let $\mathrm{r}_{=}$ Frac(C) denotes its fraction
field. Let $P$, $Q_{1}$ , $\ldots$ , $Q_{r}$ be in $\mathrm{I})_{n}(()(z\rangle$ ($i.e$ . the coefficients are in $\mathrm{C}$). Now let us consider
the division of $P$ by the $Q_{j}$ ’s in $D_{n}(’)\langle z\rangle$ with respect $to\prec:P=q_{1}Q_{1}+\cdots+q_{f}Q_{r}+R.$

We claim that the coefficients of $R$ and of the $q_{j}$ ’s are of the following form:

$\frac{c}{\prod_{j=1}^{r}1\mathrm{c}_{\prec}(Q_{j})^{d_{j}}}$ where $c\in$ C, $d_{j}\in$ N.

Truncated divisions. Let us keep the notations of the division process. If the remainder
is not zero then there exists an $i_{0}$ (that we suppose minimal) such that $\exp_{\prec}(P^{\dot{1}0})$ is not
divisible by any $Q_{j}$ so we can stop the division process at this point: $P= \sum_{j}q_{j}Q_{j}+R$

where $R=P^{i_{0}}$ and $q_{j}=$ $\mathrm{y}$; are “algebraic” (in the sense that they are obtained by
a finite number of algebraic operations). This truncated division does not satisfy (in
general) conditions (1) and (2) of theorem 1 but it satisfies $(^{*})$ and it is enough for
constructing Gr\"obner bases.

Grobner bases We still denote by $\mathcal{R}\langle z\rangle$ one of Vn(z), $\hat{D}_{n}(\mathrm{k})$
$\langle$2 $\rangle$ and let $J$ be an ideal in

$\mathcal{R}\langle z\rangle$ . Consider the set of leading exponents of $J$ (with respect to $\prec$s):
$\mathrm{E}\mathrm{x}\mathrm{p}_{\prec}(J)=\{\exp_{\prec}(P), P\in J\backslash 0\}$ .

This is a subset of $\mathrm{N}^{2n+1}$ which is stable by sums. By the usual Dickson lemma, we have
that:
Definition. There exists $Q_{1}$ , $\ldots$ , $Q_{r}\mathrm{E}$ $J$ such that

$\mathrm{E}\mathrm{x}\mathrm{p}_{\prec}(J)=\bigcup_{j=1}^{r}(\exp_{\prec}(Q_{j})+\mathrm{N}^{2n+1})$ .
Such a set $\{Q_{1}, \ldots, Q_{r}\}$ is called a Grobner basis of $J$ with respect to $\prec$ .

A consequence of the division theorem is the following: Let $J\subset \mathcal{R}\langle z\rangle$ be an ideal and
$Q_{1}$ , $\ldots$ , $Q_{r}\in J.$ Let $P\in \mathcal{R}\langle z\rangle$ then these two points are equivalent:
$\mathrm{o}$ $P\in J\Rightarrow$ the remainder $R$ of the division of $P$ by the $Q_{j}$ ’s (with respect to $\prec$ ) is zero.
$\mathrm{o}$ $Q_{1}$ , $\ldots$ , $Q_{r}$ form a $\prec-$Gr\"obner basis.

There also exists a criterion for a subset of $J$ to be a Grobner basis. It makes use of
$\mathrm{S}$-operators (see the definition in [Ba03] for example).

Proposition 3. (see for example [CG97]) Let $\{Q_{1}, \ldots, Q_{r}\}$ be a set of generators of $J$

in $\mathcal{R}\langle z\rangle$ . Then this set is $a\prec- Gr\dot{\mathit{0}}$bner basis of $J$ if and only if the following holds: for
any $j$ , $?’$ , the remainder of the division of $S(Q_{j}, Q_{j’})$ by $Q_{1}$ , . . . , $Q_{r}$ is zero.

As a consequence, one can construct a Grobner basis by using the Buchberger algO-
rithm [Bu70] which consists in adding to a set of generators of an ideal all the nonzero

V-4



35

remainders of the division of $S(P, Q)$ for $P$, $Q$ in this set, and to continue until the re-
mainders are zero (see [Ba03] for a more precise statement).
Remark on finiteness. Now if we use truncated divisions, then we can claim that each
element of Grobner basis can be obtained after a finite number of algebraic operations
(which does not mean that a finite number of steps is enough to construct a Grobner basis
since we don’t know in advance if the remainder of a division will be zero or not).

Generic Grobner bases. Now let $\mathrm{C}$ be a commutative unitary ring for which we denote by
$\mathcal{F}$ the fraction field and $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathrm{C})$ the spectrum. For any $\prime p$ in $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathrm{C})$ and $c\in$ C, denote
by $[c]_{P}$ the class of $c$ in $\mathrm{C}/\mathrm{V}$ and $(c)_{P}$ this class viewed in the fraction field $\mathrm{r}(\mathcal{P})$ of $\mathrm{C}\prime \mathcal{P}$ .
The element $(\mathrm{c})\mathrm{p}$ is called the specialization of $c$ into 7.

Now we can easily extend this notation to elements of $\hat{\mathrm{z}}_{n}(()\langle z\rangle$ and of $\hat{D}_{n}(\mathrm{r})\langle z\rangle$ for
which the denominator of the coefficients are not in $\mathcal{P}$ .

Now given an ideal $J$ in $\hat{D}_{n}$ ( $()\langle z\rangle$ , we define $(J)_{P}\subset\hat{D}$t$n(F(\mathcal{P}))\langle z\rangle$ as the ideal gener-
ated by all the $(P)_{P}$ for $P\in J.$

Localization. Let $C=\{c_{1}, \ldots, c_{r}\}$ be a subset of $\mathrm{C}$ and let $M(C)$ be the set of monomials
$c_{1}^{d_{1}}\cdots c_{r}^{d}$’ where $d_{i}\in$ N, then $M(C)$ is a multiplicative subset of C. Then we denote by
$\hat{D}_{n}(\frac{c}{M(C)})$ $\langle$ $z)$ be the localization of $\hat{D}_{n}$ ($(?)(z)$ w.r.t. $M(C)$ . We view this localization as
the set of the operators in $\mathrm{Z})_{n}(\mathrm{F})\langle z\rangle$ with denominators in $M(C)$ .

$\frac{\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{f}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{G}\mathrm{r}\dot{\mathrm{o}}\mathrm{b}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{s}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{i}\mathrm{b}1\mathrm{e}\mathrm{a}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{s}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{e}}{\mathrm{F}\mathrm{i}\mathrm{x}\mathrm{a}\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{a}\mathrm{l}Q\mathrm{i}\mathrm{n}\mathrm{C}.\mathrm{L}\mathrm{e}\mathrm{t}J\mathrm{b}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{a}1\mathrm{i}\mathrm{n}\hat{D}_{n}(\mathrm{C})\langle z\rangle}.\cdot$

(a) Since $(J)_{Q}$ is generated by $\{(f)_{Q};f\in J\}$ and $\hat{D}_{n}\mathrm{V}(\mathrm{Q})\langle z\rangle$ is noetherian, there exists
a finite system $\{f_{1}, \ldots, f_{s}\}$ of $J$ such that $\{(f_{1})_{\mathcal{Q}}, \ldots, (f_{s})_{Q}\}$ generates $(J)_{Q}$ .
Let $f_{1}$ , $\ldots$ , $f_{\mathit{8}}$ be such a system.
(b) Let $g_{1}=$ (J)Q $\ldots$ , $g_{s}=$ (J) $\mathrm{Q}$

$g_{s+1}$ , $\ldots$ , $g_{r}$ be a $\prec-$ Gr\"obner basis of $(J)_{Q}$ constructed
using the Buchberger algorithm starting from $\{(f_{1})_{Q}, \ldots, (f_{s})_{\mathcal{Q}}\}$ .
By multiplying $g_{j}$ by a suitable coefficient, we may assume that for any $j=1$ , $\ldots$ , $r$ , the

leading coefficient of $g_{j}$
$\mathrm{h}\mathrm{s}$ the following form: $\frac{[c_{j}]_{Q}}{[1]_{Q}}$ .

(c) For each $j$ , lift $g_{j}$ to $Q_{j}\in$ $\mathrm{z}\wedge n(\mathrm{i})$
$\langle$ z$\rangle$ in a way that $\mathrm{N}\mathrm{D}(g_{j})=$ ND(Qj). Put $\mathcal{G}=$

$\{Q_{1}, \ldots, Q_{r}\}$ .
Such a set $\mathcal{G}$ is called a generic Grobner basis of $J$ on $V(Q)\subset$ Spec(C).

Remarks.
(i) Denote by $1\mathrm{c}(\mathcal{G})$ the set of the leading coefficients of the elements of $\mathcal{G}$ . We have

$1\mathrm{c}(\mathcal{G})\subset$ C $\backslash$ Q. A priori, by lemma 2, (; is contained in $\hat{D}_{n}(6)$ $\langle$z$\rangle$ . We can be more
precise and say that $\mathcal{G}\subset\hat{D}_{n}(\frac{c}{1\mathrm{c}(\mathcal{G})})\langle z\rangle J+\hat{D}_{n}(_{\overline{1}\mathrm{c}(\mathcal{G})}^{\mathrm{g}})\langle z\rangle$.
(ii) By using truncated divisions, the elements of (; shall have denominators with bounded
multiplicities so by multiplying them by an element in $1\mathrm{c}(\mathcal{G})$ , we have: $(; \subset \mathrm{Z})_{n}$ ($()\langle$2$\rangle$ $\cdot J+$

$\mathrm{Z}_{n}\mathrm{C}’ 2)\langle z\rangle$ .
(iii) However, if one wants to compute a reduced generic Grobner basis, that is a generic
Grobner basis which specializes (generically) to the (up to a factor) reduced Grobner basis
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(see [Ba03]) then one may not be able to avoid unbounded denominators multiplicities as
in (ii). Indeed, see the trivial example given in the introduction.

Now the main result concerning a generic Gr\"obner basis is

Theorem 4. Take $Q$ $\subset$ C prime and $J\subset D_{n}(\mathrm{C})\langle z\rangle$ . Let $\mathcal{G}$ be a generic Grobner basis of
$J$ on $\mathrm{V}(\mathrm{Q})$ . Take

$h= \prod_{Q\in \mathcal{G}}1\mathrm{c}\prec(Q)$

which can be seen in $\mathrm{C}$ $\backslash (;)$ (indeed, the leading coefficient of each $Q$ has this form: $\frac{c}{1}$ , see
step (b) in the construction above), then for any $\mathit{7}’\in V$ ( $(Q)\backslash V(h)$ :
(i) $(\mathcal{G})_{P}\subset(J)_{P}$ ,

(ii) $\mathrm{E}\mathrm{x}\mathrm{p}_{\prec}((J)_{P})=\bigcup_{Q\in \mathcal{G}}(\exp_{\prec}((Q)_{P})+\mathrm{N}^{2n+1})$ .
In other words, $(\mathcal{G})_{P}$ is a Grobner basis of $(J)_{P}$ for a generic $\mathcal{P}\in V$ ( $(Q)$ and the leading
exponents are (generically) constant

The proof consists in considering the divisions of the $\mathrm{S}$-operators of $(\mathrm{G})\mathrm{q}$ , then to lift
these divisions from $\mathrm{F}(Q)$ to $\mathcal{F}$ and then to specialize into $\mathcal{P}$ (see the detailed proof in
[Ba03] $)$ .
2. Applications

$\circ$ This is more a remark than an application. Concerning standard bases in the polynO-
mial case:
Given a ideal in $\mathrm{k}[x_{1}$ , . . . , $1?_{n}]$ and any order, thanks to the truncated divisions (this
item is independant on generic Gr\"obner bases), one can show the existence of a stan-
dard bases without using any homogenization technique or the division with \’ecart.

Theorem 4. Take $Q$ $\subset$ C prime and $J\subset\hat{D}_{n}$ (C) $\langle z\rangle$ . Let $\mathcal{G}$ be a generic Gr\"obner basis of
$J$ on $V(Q)$ . Take

$h= \prod_{Q\in \mathcal{G}}1\mathrm{c}_{\prec}(Q)$

which can be seen in $\mathrm{C}$ $\backslash Q$ (indeed, the leading coefficient of each $Q$ has this form: $\frac{c}{1}$ , see
step (b) in the construction above), then for any $\mathcal{P}\in V(Q)\backslash V(h)$ :
(i) $(\mathcal{G})_{P}\subset(J)_{P}$ ,

(ii) $\mathrm{E}\mathrm{x}\mathrm{p}_{\prec}((J)_{P})=\bigcup_{Q\in \mathcal{G}}(\exp_{\prec}((Q)_{P})+\mathrm{N}^{2n+1})$ .
In other words, $(\mathcal{G})_{P}$ is a Gr\"obner basis of $(J)_{P}$ for a generic $\mathcal{P}\in V$ (Q) and the leading
exponents are (generically) constant

The proof consists in considering the divisions of the $\mathrm{S}$-operators of $(\mathcal{G})_{Q}$ , then to lift
these divisions from $\mathcal{F}(Q)$ to $\mathcal{F}$ and then to specialize into $\mathcal{P}$ (see the detailed proof in
$[\mathrm{B}\mathrm{a}03])$ .

$\underline{2.}$Applications
$\circ$ This is more a remark than an application. Concerning standard bases in the polynO-

mial case:
Given a ideal in $\mathrm{k}[x_{1}, \ldots, x_{n}]$ and any order, thanks to the truncated divisions (this
item is independant on generic Gr\"obner bases), one can show the existence of a stan-
dard bases without using any homogenization technique or the division with \’ecart.

$\mathrm{o}$ Existence of comprehensive standard bases:
Given an ideal $J$ in $\mathbb{C}\{a, x\}$ with parameters $a=$ $(a_{1}, \ldots, a_{m})$ and variables $x=$
$(x_{1}, \ldots , xn)$ and given a local order on $\mathbb{N}$ , then there exists a comprehensive standard
basis $G\subset J,$ that is for any $a_{0}$ in a small neighborhood of 0 in $\mathbb{C}^{n}$ , $G_{|a=a_{0}}$ is a standard
basis of $J_{|a=a0}$ . This can be shown also for ideals in $\mathbb{C}\{a, x\}\langle\partial_{x}\rangle$ .
The proof will be made in details in a subsequent paper.

$\mathrm{o}$ Application to the local generic Bernstein polynomial:
In a work in progress, we prove a constructiblity result concerning the local Bernstein
polynomial associated with an analytic germ depending on parameters, which is a local
version of A. Leykin’s main one [LeOl]. This makes a full use of generic standard bases
in rings of analytic and formal differential operators. This application was, firstly, the
main motivation for the study of generic Grobner bases in the local case.

$\mathrm{o}$ In [Ba03], we showed that given an ideal I in An(k) $\otimes \mathrm{k}[a\underline{\rceil}$ or in $D_{n}\otimes \mathbb{C}\{a\}$ , then the
set of $a\in \mathrm{k}^{m}$ (resp. $a\in(\mathbb{C}^{m}$ , 0)) is stratified (constructible) by the algebraic (resp.
analytic) Grobner fan. Note that the proof makes use of reduced generic Grobner
bases. We think that this construtibility result can be applied to the study of GKZ-
hypergeometric systems with parameters using the results in [SSTOO] (this remark
comes from N. Takayama). This application is a joint project work with N. Takayama.
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