Generalization of operator type Shannon inequality and its reverse one

Takayuki Furuta

Abstract. We shall state the following generalization of operator type Shannon inequality and its reverse one as a simple corollary of parametric extensions of Shannon inequality in Hilbert space operators.

Let \(\{A_1, A_2, \ldots, A_n\} \) and \(\{B_1, B_2, \ldots, B_n\} \) be two sequences of strictly positive operators on a Hilbert space \(H \). If \(\sum_{j=1}^{n} A_j = \sum_{j=1}^{n} B_j = I \), then

\[
\sum_{j=1}^{n} S_2(A_j|B_j) \geq \left[\sum_{j=1}^{n} B_j A_j^{-1} B_j \right] \log \left[\sum_{j=1}^{n} B_j A_j^{-1} B_j \right] \geq \log \left[\sum_{j=1}^{n} B_j A_j^{-1} B_j \right] \geq \sum_{j=1}^{n} S_1(A_j|B_j) \geq 0 \geq \sum_{j=1}^{n} S(A_j|B_j)
\]

where \(S_q(A|B) = A^\frac{1}{2} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^q (\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}) A^\frac{1}{2} \) for \(A > 0 \), \(B > 0 \) and any real number \(q \) and \(S(A|B) = S_0(A|B) = A^\frac{1}{2} (\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}) A^\frac{1}{2} \) which is the relative operator entropy of \(A > 0 \) and \(B > 0 \).

Our results can be considered as parametric extensions of the following celebrated Shannon inequality ([3],[5] and [233 p ,1]) which is very useful and so famous in information theory. Let \(\{a_1, a_2, \ldots, a_n\} \) and \(\{b_1, b_2, \ldots, b_n\} \) be two probability vectors. Then

\[
0 \geq \sum_{j=1}^{n} a_j \log b_j - \sum_{j=1}^{n} a_j \log a_j \text{ (see inequalities (2.4) of Corollary 2.4)}.
\]

§1 Introduction

First the Shannon inequality asserts: Let \(\{a_1, a_2, \ldots, a_n\} \) and \(\{b_1, b_2, \ldots, b_n\} \) be two probability vectors. Then
We remark that \(0 \geq \sum_{j=1}^{n} a_j \log \frac{b_j}{a_j} \) in (1.1) is equivalent to \(D = \sum_{j=1}^{n} a_j \log \frac{a_j}{b_j} \geq 0 \) which is the original number type Shannon inequality and this \(D \) is called “divergence” in [3] and [5].

In this paper we shall state parametric extensions of Shannon inequality and its reverse one in Hilbert space operators.

A bounded linear operator \(T \) on a Hilbert space \(H \) is said to be positive (denoted by \(T \geq 0 \)) if \((Tx,x) \geq 0 \) for all \(x \in H \) and also an operator \(T \) is said to be strictly positive (denoted by \(T > 0 \)) if \(T \) is invertible and positive.

Definition 1.1. \(S_q(A|B) \) for \(A > 0, B > 0 \) and any real number \(q \) is defined by

\[
S_q(A|B) = A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^q (\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}) A^{\frac{1}{2}}.
\]

We recall that \(S_0(A|B) = A^{\frac{1}{2}} (\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}) A^{\frac{1}{2}} = S(A|B) \) is the relative operator entropy in [2] and \(S(A|I) = -A \log A \) is the usual operator entropy in [4].

Definition 1.2. \(A \mathfrak{h}_q B \) for \(A > 0 \) and \(B > 0 \) and any real number \(q \) is defined by

\[
A \mathfrak{h}_q B = A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^q A^{\frac{1}{2}}
\]

and \(A \mathfrak{h}_p B \) for \(p \in [0,1] \) just coincides with \(A^p B \) which is well known as \(p \)-power mean.

We remark that \(S_1(A|B) = -S(B|A) \) and moreover \(S_q(A|B) = -S_{1-q}(B|A) \) for any \(q \).

Following after Definition 1.1, The original Shannon inequality can be expressed as follows:

\[
0 \geq \sum_{j=1}^{n} a_j \log \frac{b_j}{a_j} = \sum_{j=1}^{n} a_j^{\frac{1}{2}} (\log a_j^{-\frac{1}{2}} b_j a_j^{-\frac{1}{2}}) a_j^{\frac{1}{2}} = \sum_{j=1}^{n} S(a_j|b_j).
\]

Consequently \(0 \geq \sum_{j=1}^{n} S(a_j|b_j) \) in the original Shannon inequality can be extented to

\[
0 \geq \sum_{j=1}^{n} S(A_j|B_j) \text{ in operator version case (2.4) of Corollary 2.4, so that the form of (1.1) is convenient for operator type extension. We can summarize the following contrast:}
\]
The original Shannon inequality and its reverse one

\[0 \geq \sum_{j=1}^{n} a_j \log \frac{b_j}{a_j} \geq -\log \sum_{j=1}^{n} \frac{a_j^2}{b_j}. \]

for \(a_j, b_j > 0 \) with \(1 = \sum_{j=1}^{n} a_j = \sum_{j=1}^{n} b_j. \)

The operator version Shannon inequality and its reverse one

\[0 \geq \sum_{j=1}^{n} S(A_j|B_j) \geq -\log \sum_{j=1}^{n} A_j B_j^{-1} A_j. \]

for \(A_j, B_j > 0 \) with \(I = \sum_{j=1}^{n} A_j = \sum_{j=1}^{n} B_j. \)

§2 Parametric extensions of operator reverse type Shannon inequality derived from two operator concave functions \(f_1(t) = \log t \) and \(f_2(t) = -t \log t \)

Firstly we shall state the following parametric extensions of Shannon inequality and its reverse one in Hilbert space operators derived from an operator concave function \(f(t) = \log t. \)

Theorem 2.1. Let \(p \in [0, 1] \) and also let \(\{A_1, A_2, \ldots, A_n\} \) and \(\{B_1, B_2, \ldots, B_n\} \) be two sequences of strictly positive operators on a Hilbert space \(H \) such that \(\sum_{j=1}^{n} A_j \#_p B_j \leq I, \) where \(I \) means the identity operator on \(H. \) Then

\[(2.1) \quad \log \left[\sum_{j=1}^{n} (A_j \#_{p+1} B_j) + t_0 (I - \sum_{j=1}^{n} A_j \#_p B_j) \right] - \log t_0 (I - \sum_{j=1}^{n} A_j \#_p B_j) \]

\[\geq \sum_{j=1}^{n} S_p(A_j|B_j) \]

\[\geq -\log \left[\sum_{j=1}^{n} (A_j \#_{p-1} B_j) + t_0 (I - \sum_{j=1}^{n} A_j \#_p B_j) \right] + \log t_0 (I - \sum_{j=1}^{n} A_j \#_p B_j) \]

for fixed real number \(t_0 > 0, \) where \(S_p(A|B) \) is defined in Definition 1.1 and \(A \#_p B \) is defined in Definition 1.2.

Secondly we shall state the following parametric extensions of Shannon inequality and its reverse one in Hilbert space operators derived from an operator concave function \(f(t) = -t \log t. \)

Theorem 2.2. Let \(p \in [0, 1] \) and also let \(\{A_1, A_2, \ldots, A_n\} \) and \(\{B_1, B_2, \ldots, B_n\} \) be two sequences of strictly positive operators on a Hilbert space \(H \) such that \(\sum_{j=1}^{n} A_j \#_p B_j \leq I, \) where \(I \) means the identity operator on \(H. \) Then
(2.2) \[\sum_{j=1}^{n} S_{p+1}(A_j|B_j) \]

\[\geq \left[\sum_{j=1}^{n} (A_j h_{p+1} B_j) + t_0 (I - \sum_{j=1}^{n} A_j h_p B_j) \right] \log \left[\sum_{j=1}^{n} (A_j h_{p+1} B_j) + t_0 (I - \sum_{j=1}^{n} A_j h_p B_j) \right] \]

\[-t_0 \log t_0 (I - \sum_{j=1}^{n} A_j h_p B_j) \quad \text{for fixed real number } t_0 > 0,\]

and

(2.2') \[\sum_{j=1}^{n} S_{p-1}(A_j|B_j) \]

\[\leq - \left[\sum_{j=1}^{n} (A_j h_{p-1} B_j) + t_0 (I - \sum_{j=1}^{n} A_j h_p B_j) \right] \log \left[\sum_{j=1}^{n} (A_j h_{p-1} B_j) + t_0 (I - \sum_{j=1}^{n} A_j h_p B_j) \right] \]

\[+ t_0 \log t_0 (I - \sum_{j=1}^{n} A_j h_p B_j) \quad \text{for fixed real number } t_0 > 0,\]

where \(S_q(A|B) \) is defined in Definition 1.1 and \(A h_q B \) is defined in Definition 1.2.

We shall state the following result which can be shown by combining Theorem 2.1 with Theorem 2.2.

Corollary 2.3. Let \(p \in [0, 1] \) and also let \(\{A_1, A_2, \ldots, A_n\} \) and \(\{B_1, B_2, \ldots, B_n\} \) be two sequences of strictly positive operators on a Hilbert space \(H \) such that \(\sum_{j=1}^{n} A_j h_p B_j \leq I \), where \(I \) means the identity operator on \(H \). Then

(2.3) \[\sum_{j=1}^{n} S_{p+1}(A_j|B_j) \]

\[\geq \left[\sum_{j=1}^{n} (A_j h_{p+1} B_j) + (I - \sum_{j=1}^{n} A_j h_p B_j) \right] \log \left[\sum_{j=1}^{n} (A_j h_{p+1} B_j) + (I - \sum_{j=1}^{n} A_j h_p B_j) \right] \]

\[\geq \log \left[\sum_{j=1}^{n} (A_j h_{p+1} B_j) + (I - \sum_{j=1}^{n} A_j h_p B_j) \right] \]

\[\geq \sum_{j=1}^{n} S_{p}(A_j|B_j) \]

\[\geq - \log \left[\sum_{j=1}^{n} (A_j h_{p-1} B_j) + (I - \sum_{j=1}^{n} A_j h_p B_j) \right] \]
\[
\geq - \left[\sum_{j=1}^{n} (A_j \mathfrak{h}_{p-1} B_j) + (I - \sum_{j=1}^{n} A_j \mathfrak{h}_{p} B_j) \right] \log \left[\sum_{j=1}^{n} (A_j \mathfrak{h}_{p-1} B_j) + (I - \sum_{j=1}^{n} A_j \mathfrak{h}_{p} B_j) \right] \\
\geq \sum_{j=1}^{n} S_{p-1}(A_j | B_j)
\]

where \(S_q(A|B) \) is defined in Definition 1.1 and \(A \mathfrak{h}_q B \) is defined in Definition 1.2.

Corollary 2.3 easily implies the following result which can be considered as operator version of Shannon inequality and its reverse one.

Corollary 2.4. Let \(\{A_1, A_2, \ldots, A_n\} \) and \(\{B_1, B_2, \ldots, B_n\} \) be two sequences of strictly positive operators on a Hilbert space \(H \). If \(\sum_{j=1}^{n} A_j = \sum_{j=1}^{n} B_j = I \), then

\[
\sum_{j=1}^{n} S_2(A_j | B_j) \geq \sum_{j=1}^{n} B_j A_j^{-1} B_j \geq \log \sum_{j=1}^{n} B_j A_j^{-1} B_j \geq \sum_{j=1}^{n} S_0(A_j | B_j) \geq 0 \geq \sum_{j=1}^{n} S_{-1}(A_j | B_j).
\]

Remark 2.1. We recall \(S_q(A|B) \) for \(A > 0, B > 0 \) and any real number \(q \) as follows:

\[
S_q(A|B) = A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^{q} (\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}) A^{\frac{1}{2}}.
\]

By an easy calculation we have

\[
\frac{d}{dq}\bigl[S_q(A|B)\bigr] = A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^{q} [\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}]^{2} A^{\frac{1}{2}} \geq 0,
\]

so that \(S_q(A|B) \) is an increasing function of \(q \), and it is interesting to point out that the decreasing order of the positions of \(\sum_{j=1}^{n} S_2(A_j | B_j), \sum_{j=1}^{n} S_1(A_j | B_j), \sum_{j=1}^{n} S(A_j | B_j) \), and \(\sum_{j=1}^{n} S_{-1}(A_j | B_j) \) in (2.4) of Corollary 2.4 is quite reasonable since \(\sum_{j=1}^{n} S(A_j | B_j) = \sum_{j=1}^{n} S_0(A_j | B_j) \).

This paper will appear elsewhere with complete proofs.
References

Takayuki Furuta
Department of Mathematical Information Science, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
e-mail: furuta@rs.kagu.tus.ac.jp