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CP-CONVEXITY AND ENTROPY OF CP-MAPS

ICHIRO FUJIMOTO AND HIDEO MIYATA

Kanazawa Institute of Technology
7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, Japan

ABSTRACT. The purpose of this note is to review some basic results on CP-
convexity and introduce new entropy of $\mathrm{C}\mathrm{P}$-maps in the context of CP-convex-
ity theory, and discuss the relations with other entropies of $\mathrm{C}\mathrm{P}$-maps defined
in quantum physics and entanglements in quantum information theory.

1. Introduction.

The notion of completely positive rnap between $\mathrm{C}$’-algebras, abbreviated by
$CP$-map in this note, was mathematically initiated by $\mathrm{W}.\mathrm{F}$ . Stinespring [17],

and was first introduced into physics by K. Kraus [14]. He showed that, assum-
ing that observables of a physical system are described by bounded operators

$a\in B(H)$ on a Hilbert space $H$ , after an interaction with an exterior, they are
changed by a normal contractive completely positive map (so called operation)
$\psi$ such that

$\psi(a)=\sum_{1}$.
$S_{\dot{\iota}}^{*}aS_{i}$ with $S_{i}\in B(H)$ such that $\sum_{i}S_{i}^{*}S_{i}\leq I_{H}$

.

Note that, using the polar decomposition $S_{i}=u_{i}|S_{i}|$ , this can be rewritten as

$\psi(a)=\sum_{i}|S<$
$|\varphi \mathrm{i}(a)|S_{i}|$ with $|S_{i}|$ $\in B(H)^{+}$ such that $\sum_{i}|S_{i}|^{2}\leq I_{H}$

,

where $f$)$i(a)=u_{i}^{*}au_{i}$ is a conditional transform with a partial isometry $u_{i}$ on
$H$ . We can also show that it can be decomposed as

$\psi(a)=\sum_{i}V_{i}^{*}\phi:(a)V_{\dot{l}}$ with $V_{\mathrm{i}}\in B(H)$ such that $\sum_{i}V_{i}$

’
$V_{i}\leq I_{H}$ ,
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where $\phi_{i}(a)=U_{i}^{*}aU_{i}$ is a unitary transfo$rm$ with a unitary $U_{i}$ on $H$ , but this

time the operator coefficients $V_{i}$ cannot be positive in general (cf. [11]). Our

motivation was to define an operator convexity for operations where unitary

transforms and conditional transforms are characterized as extreme elements

which would represent minimal interactions in physics.

For more general setting, we shall consider the set of all $\mathrm{C}\mathrm{P}$-maps ffom a $\mathrm{C}$’-

algebra $A$ to $B(H)$ , and denote it by $CP(A, B(H))$ . Then $\psi\in CP(A, B(H))$

is said to be a $CP$-convex combination of $\psi_{i}\in CP$ (A, $B(H)$ ) if it can be

decomposed as

$\psi=\sum_{i}S_{i}^{*}\psi_{i}S_{i}$ with $S_{i}\in B(H)$ such that $\sum_{i}\mathit{5}:S_{i}\leq I_{H}$
,

which will be abbreviated as

$\psi=CP-\sum_{i}S_{i}^{*}\psi_{i}S_{i}$ .

For example, we have seen above that every operation can be decomposed

into a $\mathrm{C}\mathrm{P}$-convex combination of unitary transforms, and it is also a CP-convex

combination of conditional transforms with positive operator coefficients. In

a series of works [5-11], we developed $CP$-convexity theory which “quantizes”

scalar convexity theory for state spaces for $\mathrm{C}^{*}$-algebras. In this note, we shall

define new entropy of $\mathrm{C}\mathrm{P}$-maps using the $\mathrm{C}\mathrm{P}$-coefficients, which vanishes at

the extreme elements in the sense of the above operator convexity.

2. Notations.

We prepare some basic results and notations for $\mathrm{C}\mathrm{P}$-maps. Recall that, by

the Stinespring representation theorem [17], every $\mathrm{C}\mathrm{P}$-map $\psi\in CP(A, B(H))$

can be represented as $\psi=V^{*}\pi V$ where $\pi$ is a representation of $A$ , and $V$

is a bounded linear operator from $H$ to $H_{\pi}$ . We denote by $p\psi$ the support

projection of $\psi$ (i.e., the support projection $s(V^{*}V)$ of $V^{*}V$), and then $H\psi$ $:=$

$p\psi H$ is the support of $\psi$ .
A $\mathrm{C}\mathrm{P}$-map $\psi\in CP(A, B(H))$ is called a $CP$-state if it is contractive, and

we denote by $Q_{H}(A)$ the set of all $\mathrm{C}\mathrm{P}$ state i.e.,

$Qh(A)=$ $\{\psi =V^{*}\pi V\in CP(A;B(H));||V||\leq 1\}$ .



$\epsilon\epsilon$

CP-CONVEXITY AND ENTROPY OF CP-MAPS

In particular, the set of all unital $\mathrm{C}\mathrm{P}$-states will be denoted by $S_{H}(A)$ , i.e.,

$S_{H}(A)=\{\psi =V^{*}\pi V;V^{*}V =I_{H}\}$ .

$\psi$ $\in CP(A:B(H))$ is pure in the cone $CP(A, B(H))$ iff $\pi$ is irreducible, and

we denote by $P_{H}(A)$ the set of all pure elements in $CP$ (A, $B(H)$), and by

$PSH\{A$) $=P_{H}(A)\cap S_{H}(A)$ the set of all unital pure CP-states.

Recall also that Rep(A : $H$) [resp. $Rep_{c}(A$ : $H)$ , $Irr(A$ : $H)$ ] represents

the set of all [resp. cyclic, irreducible] representations of $A$ on $H$ (i.e., whose

representation spaces are subspaces of $H$). Since every representation can be

decomposed into a direct sum of cyclic representations, we can show that

$Q_{H}(A)=CP$ cone $Rep_{c}(A : H)$ .

3. $\mathrm{C}\mathrm{P}$-extreme states.

The natural questions would be as follows. “What are the extreme CP-
maps in $\mathrm{C}\mathrm{P}$-convexity?” “How can a $\mathrm{C}\mathrm{P}$-map be decomposed into the extreme

elements?” The answer should generalizes the pure states $P(A)$ and Choquet

theory on the state space $\mathrm{S}(A)$ .
Recall that, in the example of the decomposition of operation, we saw two

types of $\mathrm{C}\mathrm{P}$-decompositions. Naturally, the definition of $\mathrm{C}\mathrm{P}$-extreme elements

is not unique, and this would be a difficult part of operator convexity, but it

will turn out to be an advantage of $\mathrm{C}\mathrm{P}$-convexity which alows us to deal with

both algebraic decomposition and statistical decomposition, (cf. [11])

Definition 1. A $\mathrm{C}\mathrm{P}$-state is defined to be $CP$ extreme if $!=CP$ - $\sum_{i}\mathrm{v}\mathrm{i}$ $j_{i}v_{S}$

then $\psi_{i}$ is unitarily equivalent to $\psi$ , i.e., there exists a partial isometry $\mathrm{L}\mathrm{L}_{i}$ with
$u_{i}^{*}u_{i}=p\psi$ and $ciui=p_{\psi:}$ such that $\psi_{i}=u_{i}\psi u_{i}^{*}$ and $v_{i}=ciui$ with $c_{i}\in \mathbb{C}$ for

all $i$ . We denote by $D_{H}(A)$ the set of all $\mathrm{C}\mathrm{P}$-extreme states.

Theorem 1.

(i) If $\dim H=\infty$ , then $D_{H}(A)=Irr(A:H)$ .
(ii) If $1<\dim H<\mathrm{o}\mathrm{o}$ , the $D_{H}(A)=Irr(A:H)\cup PS_{H}(A)$ .
(ii) If $\dim H=1,$ then $D_{H}(A)=P(A)$ .

In the case of operations, the extreme elements in the above sense are irre-

ducible representations of $B(H)$ on $H$ , which are exactly unitary transforms.
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This definition of $\mathrm{C}\mathrm{P}$-extreme elements are useful for algebraic arguments (cf.

[10] $)$ . On the other hand, we have another definition of $\mathrm{C}\mathrm{P}$-extreme states, re-
stricting the $\mathrm{C}\mathrm{P}$-coefficients to positive operators, which we shall call positive
$\mathrm{C}\mathrm{P}$-convex combination.

Definition 2. A $\mathrm{C}\mathrm{P}$-state is defined to be positively $CP$ extreme if $\psi$ $=$

$CP$ - $\sum_{i}v_{i}\psi_{i}v_{i}$ with $v_{i}\geq 0,$ then $\psi_{i}=\psi$ . We denote by $B_{H}(A)$ the set of

all positively $\mathrm{C}\mathrm{P}$-extreme states.

Theorem 2.

$E_{H}(A)=Irr(A:H)\cup PS_{H}(A)$

$=$ {$\psi=u^{*}\pi u\in P_{H}(A);u^{*}u=I_{H}$ or $uu’=p_{\pi}$ }.

Though the above definition and result are simple, in the case of operation

it cannot single out the conditional transforms as extreme elements. For this,

we shall give a weaker version of Definition 2.

Definition 2. A $\mathrm{C}\mathrm{P}$-state is defined to be conditionally $CP$-estrerne if $\psi=$

$CP-\mathit{5}i$ $v_{i}\psi_{i}v_{i}$ with $v_{i}\geq 0,$ then $s(v_{i})\psi_{i}s(v_{i})=\psi$ . We denote by $E_{H}^{c}(A)$ the

set of all conditionally $\mathrm{C}\mathrm{P}$-extreme states.

Theorem 2. $E_{H}^{\mathrm{c}}(A)=\{\psi=u^{*}\pi u\in P_{H}(A);u^{*}u=p\psi\}$ .

Thus conditional transforms are conditionally $\mathrm{C}\mathrm{P}$-extreme states, and they

are important in applications. For example, annihilation and creation in Fock

Hilbert space are conditionally $\mathrm{C}\mathrm{P}$-extreme, so minimal interactions as ex-
pected, where $\mathrm{C}\mathrm{P}$-coefficients include the information of correlation in quan-

tum information theory.

We note that the non-commutative version of Gelfand-Naimark theorem was

realized on the $\mathrm{C}\mathrm{P}$-extreme elements $Irr(A:H)$ for a sufficient large $H[10]$ .

Also, Choquet’s representation theorem was generalized for $\mathrm{C}\mathrm{P}$-convexity by

introducing $CP$-rneasure (operation valued measure) and its integration theory

(see [9] for details).

CP-Choquet theorem. Let A and H be separable. Then, for any CP-state
$\psi\in Q_{H}(A)$ , there exists a $CP$-measure $\lambda_{\psi}$ supported by $D_{H}(A)$ such that

$\psi(a)=\int_{Q_{H}(A)}$ \^ad) $p$ for all $a\in A.$
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4. Entropy of CP-states.

Assume that a $\mathrm{C}\mathrm{P}$ state $\psi$ $\in Q_{H}(A)$ is atomic (i.e., it has an atomic repre-

senting $\mathrm{C}\mathrm{P}$-measure $\lambda\psi$ ) and it is decomposed as

$\infty$

$/= \sum V_{i}^{*}\pi_{i}V_{i}$ where $\pi_{i}\in Irr(A : H)$ and $V_{i}\in B(H)$ , $\sum V_{i}$
’

$W\mathit{7}$ $\leq I_{H}$ .
$i=1$ $i=1$

If we set $V_{0}=(I_{H}- \sum Iii_{=1}V_{i}" V_{i})\#$ , then

$\psi=\sum_{i=0}^{\infty}V_{i}^{*}\pi_{i}V_{i}$ where $\pi_{i}\in Irr(A : H)$ and $V_{i}\in B(H)$ , $\sum_{i=0}^{\infty}V_{i}$

’
$V_{i}=I_{H}$ .

Now, how can we define an “entropy” of $\psi$ with the $\mathrm{C}\mathrm{P}$-coefficients $V_{i}$ which

vanishes at the extreme CP-maps?

As a first attempt, we can define an operator entropy $S(\psi)$ by

$S(\psi)=-E$ $V_{i}$’V$i\ln V_{i}^{*}V_{i}$ ,
$i$

however, this vanishes at any atomic representation $\pi=$ (iTi $= \sum_{i}p_{\pi}:^{\pi}:p_{\pi:}$

$(\pi_{i}\in Irr(A:H))$ which is not $\mathrm{C}\mathrm{P}$-extreme, and also the above definition de-

pends on the way of the decomposition. We also note that the scalar convexity

does not work here for the $\mathrm{C}\mathrm{P}$ state space $Q_{H}(A)$ , since any representation

$\pi\in$ Rep(A, $H$) of $A$ on $H$ is an extreme point of $Q_{H}(A)$ (cf. [9; Appendix]),

which may not be $\mathrm{C}\mathrm{P}$-extreme if it is not irreducible.

Let $\rho\in T(H_{\psi})_{1}^{+}$ be a normal state of $B(H_{\psi})$ , and consider an affine set
$S_{H}^{\psi}(A)_{\rho}$ in the cone $CP(A:B(H_{\psi}))$ (which may not be included in the CP-

state space $Q_{H_{\psi}}(A)$ defined by

$S_{H\psi}^{\psi}(A)_{\rho}=$ { $\varphi\in CP$ ($A:B(H_{\psi}));||\varphi||_{\rho}=||$tA $||$ ,}.

where $||\varphi||_{\rho}:=\rho(\varphi(1))$ . Then, $S_{H_{\psi}}^{\psi}(A)_{\rho}$ is a $\mathrm{B}\mathrm{W}$-compact convex set which

includes $\psi$ , so that $\psi$ can be decomposed into a scalar convex combination of

pure CP-maps

$\mathrm{A}$ $= \sum_{i=0}^{\infty}\lambda_{i}\psi_{i}$ with $\psi_{i}\in P_{H_{\psi}}(A)\cap S_{H_{\psi}}^{\psi}(A)_{\rho}(i\geq 1)$ and $\lambda_{i}>0$ , $\sum_{i=0}^{\infty}\lambda_{i}=1,$
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where $\lambda_{i}=\omega(V_{i}^{*}V_{i})$ for $i\geq 1$ and $\lambda_{0}=1-\sum_{i=1}^{\infty}\lambda_{i}$ , and $I_{0}$ $=0$ , $I_{i}$ $=$

$\lambda_{i}^{-1}$ Vi”Ti $Vi$ for $i\geq 1.$ We can then define

$S_{\rho}^{1}( \psi):=\inf\{-\sum_{i=0}^{\infty}\lambda_{i}\ln\lambda_{i}\}$,

where inf is taken over all possible atomic $\mathrm{C}\mathrm{P}$-extreme decomposition of $\psi$ .
In particular, let $\psi$ be a unital operation, and suppose

$\psi$

$= \sum_{\dot{l}}V_{i}^{*}\cdot V_{i}$
with $V_{i}\in B(H)$ ,

$\sum_{i}V_{i}’ V\mathit{4}=I_{H}$
,

and let $\rho\in T(H)_{1}^{+}$ be a faithful normal state. Then, Lindblad [15] defined an
entropy of $\psi$ with respect to $\rho$ by

$S_{\rho}^{2}(\psi):=$ 5(MP) where $[M_{\rho}]_{i,\mathrm{j}}=$ Tr $V_{i}\rho V_{j}^{*}-$

On the other hand, Alicki [1] showed that this is equivalent to

$S_{\rho}^{3}(\psi):=S(\rho_{\psi})$ where $\rho\psi=\sum_{i}(\cdot, V_{i})_{\rho}V_{i}\in T(H_{\rho})_{1}^{+}$

where $H_{\rho}$ is the GNS-representation space of $B(H)$ with respect to $\mathrm{b}\rho(\cdot)$ .

Lemma. If $\psi$ is a unital operation and $\rho \mathrm{E}$
$T(H)_{1}^{+}$ is faithfd, then

$S_{\rho}^{1}(\psi)=S_{\rho}^{2}(\psi)=S_{\rho}^{3}(\psi)$ .

Thus our entropy $S_{\rho}^{1}(\psi)$ is a generalization of the Lindblad entropy to non-

unital $\mathrm{C}\mathrm{P}$-states, and non-faithful $\rho$ E- $T(H_{\psi})_{1}^{+}$ , so that we shall call it the

Lindblad entropy of $\psi$ with respect to $\rho\in T(H_{\psi})$j , and denote it by $S_{\rho}^{L}(\psi)$ .

Now, one of our main theorem in [12] is stated as follows.

Theorem 3. Let $\psi\in Q_{H}(A)$ be an atomic $CP$-state, then $S_{\rho}^{L}(\psi)=0$ for all

$\rho\in T(H_{\psi})_{1}^{+}$ iff $\psi$ is a conditionally $CP$-extreme state.

5. Entropy of operations.

Let $\omega$ $\in(B(H)\otimes B(H))_{*}$ be a normal atomic composite state of the tensor

product $B(H)\otimes B(H)$ , and so it is decomposed as

$\omega$

$= \sum_{i}\lambda_{i}\omega_{i}$
where $\omega_{i}$ is pure, $\lambda_{:}>0$ ,

$\sum_{i}\lambda_{\dot{\mathrm{t}}}=1.$
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Then the entanglement of formation $S^{E}(\omega)$ of $\omega$ is defined by

$S^{E}( \omega):=\inf\{\mathrm{I} )_{i}\hat{S}(\mathrm{u}_{i})\}$ with $\hat{S}(\omega_{i})$ $=S(\omega_{i}(1\otimes\cdot))$ ,
$i$

where inf is taken over all possible pure decompositions (cf. [16], [12]). We

note that $S^{E}(\omega)=0$ if and only if $\omega$ is a separable state, i.e., $\omega$ is of the form
$\omega=$ $\mathrm{g}i\mu_{i}p_{i}\otimes q_{i}$ where $p_{i}$ and $q_{i}$ are pure states of $B(H)$ , and $\mu_{i}>0$ , $\sum_{i}\mu_{i}=$

1.

On the other hand, we have one to one correspondence between $\omega\in(B(H)\otimes$

$B(H))_{*}$ and $\varphi_{\omega}\in CP(B(H),T(H))_{n}$ (where $n$ represents the normal part)

such that

$\varphi,$ $=5$ $\lambda_{i}\varphi_{\mathrm{J}d:}$ with $\varphi$,$:=V_{\dot{*}}$
’

$($ . $)V_{i}\in P_{H}(B(H))\cap CP(B(H),\mathrm{B}(\mathrm{H})\mathrm{y}$

$i$

where the correspondence is given by $\omega(a\otimes b)=$ It( $\varphi$,(a) $tb$) for $a$ , $b\in B(H)$ .

Definition. $\varphi$ $\in CP(B(H), T(H))_{n}$ is called a tracial operation, and suppose
that

$\=\sum_{i}V_{i}^{*}$
. $V_{i}$ with $\varphi(1)=\sum_{i}V_{i}^{*}V_{i}\in T(H)_{1}^{+}$

.

We then define the entanglement of formation $S^{E}(\varphi)$ of $\varphi$ by

$S^{E}(\varphi):=$ inf
$\sum_{i}\lambda_{i}S(\lambda_{i}^{-1}V_{i}^{*} \mathit{7})$

with $\lambda_{i}=$ $\mathrm{i}\mathrm{t}\mathrm{y}$

’
$V_{\dot{l}}$

and the entropy $S(\varphi)$ of ? by

$S(\varphi):=$ inf$\{-\sum_{i}\mathrm{T}\mathrm{r}(V_{\dot{l}}’ 14\ln V_{i}’ V_{i})\}$

where inf is taken over all possible decompositions above.

We note here that

$- \mathrm{I}^{\mathrm{T}\mathrm{r}}(V_{i}" V_{i}\mathrm{l}\mathrm{n}\mathrm{v}\mathrm{i}^{\mathrm{I}}’ i)$ $=-\mathrm{I}^{\lambda_{\mathrm{i}}}\ln\lambda i+1^{\lambda_{\mathrm{i}}}S(\lambda_{\mathrm{i}}\mathrm{l}\mathrm{z}’ \mathrm{v})$,

so if we define $\omega_{\varphi}(a\otimes b)=\mathrm{R}(\varphi(a){}^{t}b)$ for $a,b\in B(H)$ , then the above defined

entropy of a tracial operation $\varphi$ measures how far the corresponding composite

state $\omega_{\varphi}$ is from pure and separable states. We can then show the following

results.
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Theorem 4. Let $\psi\in CP(B(H), T(H))_{n}$ be a tracial operation. Then we

have

(i) $S(\varphi)$ a $S(\omega_{\varphi})+S^{E}(\varphi)$ $\mathit{2}0$ .
(ii) $\mathrm{S}(\mathrm{p})=0$ iff $\omega_{\varphi}$ is a separable pure state.

Let $\psi$ be an operation and let $\rho\in T(H)_{1}^{+}$ , then $\rho^{\tau}\psi\rho \mathrm{z}11\in CP(B(H),T(H))_{n}$

defines a tracial operation, so the above defined entropy of tracial operations

can be applied to define an entropy of operations.

Definition. We define the entropy $S_{\rho}(\psi)$ of an operation $\psi$ with respect to

$\rho\in$ $T(H_{\psi})+1$ by

$S_{\rho}(\psi):=S(\rho^{\S}\psi\rho^{\mathrm{S}})-S(\rho)$

Our another main result can be stated as follows.

Theorem 5. Let $\psi$ be an operation. Then we have

(i) Sp(ip) $\geq S_{\rho}^{L}(\psi)+S_{\rho}^{E}(\psi)-$ $\mathrm{S}(\mathrm{p})$ $\geq 0$ for all $\rho\in T(H\psi)_{1}^{+}$ .
(ii) $S_{\rho}(\psi)=0$ for all $\rho\in T(H_{\psi})$j iff $\psi=\omega I_{\psi}$ with $\omega\in P(B(H))$ or $\psi$ is a

conditional transform.

In [12], more detailed properties of the above entropy will be discussed. We

hope that the entropies of $\mathrm{C}\mathrm{P}$-maps will be useful for quantum dynamical en-

tropy, which was initiated by $\mathrm{G}.\mathrm{G}$ . Emch $[3, 4]$ and A. Connes and E. $\mathrm{S}\mathrm{t}\phi \mathrm{r}\mathrm{m}\mathrm{e}\mathrm{r}$

$[2]$ , and the Lindblad entropy was defined for this purpose ([15], see also [1]).

There are many references on this subject, so we just mention the most recent

work by A. Kossakowski, $\mathrm{M}$ Ohya and N. Watanabe [13]
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