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Abstract

In this paper, we construct a novel model of a universal quantum
Turing machine(QTM) which is free from the specific time for an input
data and efficiently simulates each step of a given QTM.

Deutsch [1] formulated a precise model of a quantum computer as quantum
Turing machine (QTM) and proposed a model of universal quantum Turing
machine which requires exponential time of ¢ to simulate any other QTM with
t steps. Bernstein and Vazirani[2] showed the existence of an efficient universal
QTM by slightly modifying Deutsch’s model. In [3] several issues related with
QTM and universal QTM are discussed. Nishimura and Ozawa gave another
proof of the existence of a universal QTM by using quantum circuit families [4].

In this paper, we construct a novel model of a universal QTM which does
not depend on time ¢ in an input data. Our universal QTM M simulates all
the steps of a target (stationary normal) QTM M for any accuracy € with a
slowdown F (as defined later) which is a polynomial function of ¢ and 1/e.
That is, M gives an outcome with the probability p’ such that [p — p'| < €
for t + F'(t,1/¢), where p’ is the probability to obtain the same outcome by its
simulated quantum Turing machine. )

We first review the definition of a quantum Turing machine (see e.g., [5]).
A Quantum Turing machine (QTM) M is represented by a quadruplet M =
(Q,%,H,U), where Q is a set of internal states, X is a set of finite alphabets
with blank symbol, H is a Hilbert space described below in (1) and U is a unitary
operator on the space H of the form described below in (2). Let C = @ X ¥* X Z
be the set of all classical configurations of a deterministic Turing machine M.
Since ©* represents a set of all the finite sequences of the characters in %, it
becomes a countable set. The Hilbert space H is spanned by the complex valued
functions on the set of configurations, ¢ : C —C satisfying
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That is, one has

H={¢|so=c-><c,zlso<c>12<oo}. (1)

CeC

According to the countability of the configuration C, the Hilbert space H
is naturally isomorphic to the Hilbert space {2, so that H becomes separable.
In order to set the unitary operator U we have to introduce H a special ba-
sis {ec} e Parametrized by classical configurations C' € C, which is called a
computational basis. We define the function ec : C —C as

. [1€Cc=C) . .
"’C(C)z{ vitcz0 OC€C

It can be easily seen that the set {ec} ¢ forms a basis of the Hilbert space
'H, so each function ¢ € ‘H can be expressed by

?(C) = 3 apen(0),
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where ap are proper complex numbers. Hereafter we will use the following
so-called Dirac notation

ec = |C>

Since a configuration C can be written as C = (g, A4, %), one can claim that
the set of functions {| ¢, A, >} makes a basis in the Hilbert space H, where
g€ @Q,i€Zand A is a finite sequence of elements of 2; A € ¥*. Let us denote
the Hilbert spaces spanned by {|q)},cq, {|A)}aex+ and {|¢)}icz by H1, Hs and
Hs, respectively. On can see that H = H; 0 Hs ¢ Hs holds.

As in the classical Turing machine, the dynamics of the quantum Turing
machine must be a local one, namely, having a condition imposing on the unitary
operator Us. We can state the condition by means of the computational basis

as follows: One requires that there is a function § : Q X E X Q@ x X xI' — &

taking its value in the field C of computable numbers such that the following
relation is satisfied: | «

Uslg, A,3) = »_ 6(g, A(i),p,b,0) |p, Abyi + 7). (2)
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Here the sum runs over the states p € @, the symbols b € £ and the elements
o € I' = {1,-1,0}. Since this is a finite sum, the function Al : 7 — ¥ is defined
as

L bifj=i,
Agm‘{ AG) i G 4.

The function 6 is called a quantum transition function, which plays a analo-
gous role as the transition function for the classical Turing machine. A quantum
Turing machine is determined by specifying a quantum transition function sat-
isfying the unitarity condition. The restriction to the computable number field
C instead of all the complex number C is needed since otherwise we can not

construct or design a quantum Turing machine.
Let E; (q), Ez (A) and Ej3 (3) be projections on the Hilbert space H, defined

as

Ei(g)=lg) (gl oIz 0015
Ey(A) =1, ® |A) (A| ® I3
E3 (i) =1, 0 Ix 0 q) (q] (3)

where I, I, and I3 are the identity operator on Hi, H; and ‘H3,respectively.
A QTM M = (Q,%,6) with a unitary operator Us is said to be station-
ary, if for every initial configurations cg, there exists some positive integer
t (which can be infinite) such that ||E3(0) E1 (q) U§ |co)||2 = 1 and it holds
IE1 (q7) U lco)||” = 0 for all s < t. A QTM M = (Q,%,6) is said to be in
normal form if 6 (qs,7,q0,0,1) = 1 for any o € £. We call a stationary and
normal form QTM a SNQTM.
Here, we state some results, proved in [2].

Lemma 1 (Dovetailing Lemma) If My and My are SNQTMs with the same
alphabet, then there exists a SNQTM M which carries out the computation of
M followed by the computation of M.

Lemma 2 (Branching Lemma) If My and My are SNQTMs with the same
alphabet, then there exists a multi-track SNQTM M such that M carries out
the computation of My on its first track if the second track is empty, and it
leaves the second track empty. If the second track has a special mark 1 in the
start cell, M carries out the computation of My on its first track and leaves the
spectal mark.

Theorem 3 (Synchronization Theorem) Let g be a map from strings to strings
can be computed in deterministic polynomial time, and such that the length of
g (z) depends only on the length of x. There exists a polynomial time SNQTM
which, for a given input x, produces output g (), and whose running time de-
pends only on the length of x.
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Suppose that M = (@,%,6) and M’ = (Q',¥',§’) are quantum Turing
machines with the unitary operators Us and Us/, respectively. Let ¢ be a positive
integer and € > 0, we say that a QTM M’ with its input ¢j simulates Af and
its input cg for ¢ steps with accuracy € and slowdown f which is a polynomial
function of ¢t and 1/e, if the following conditions are satisfied: Forallg € Q,T €
Y 1€ Z,

@ Tl U eo) P — @ 7, i 05 ) | (4)

Bernstein and Vazirani proved that there exists a normal form QTM Mpy
simulating any SNQTM M with any accuracy e for ¢ steps with slowdown
f (t, %) which can be computed in polynomial steps of ¢ and €. This QTM
Mpy is known as one of the models of universal QTM. The input data of
Mpy is a quadruplet (z,¢,t,c(M)) where z is an input of M, € is accuracy of
the simulation, ¢ is a simulation time and ¢ (M) is a code of M. Note that it is
necessary there to give a time t as an input of Mpy.

Now, we consider an another model of universal QTM whose input data is
(z,e,¢(M)), that is, we do not need a simulated time t as an input. It suggests
that we do not need to know when the given QTM halts. We prove the following
theorem.

Theorem 4 For any SNQTM M, there exists a SNQTM M which simulates
each step of M for an input data (z,e,c(M)) where x is an input of M, € is
accuracy of the simulation and ¢ (M) is a code of M.

Proof. By dovetailing Mgy, M =(Q, %, §) is constructed to have six two-
way tracks which moves as follows: The first track of M is used to represent
the result of computation of M. The second track contains a counter of ¢ for
Mpy. The third track is used to record the input of M. The fourth and fifth
tracks are used to record € and c (M), respectively. The sixth track is used as
a working track. Precisely, for (z,¢,c (M )) as an input data, M carries out the
following algorithm:

i) M transfers z, € and ¢ (M) to the fixed tracks.

ii) M sets the counter t = 1 and store the value of ¢t on the second track.

iii) M calculates 35 and transfers it to the fourth track.

iv) M carries out M gy with (z, 6¢/7%t%, ¢, c (M )), and write down the result
of Mpgy on the first track. The calculation of M is carried out on the sixth
track and M empties the work space finally.

vi) If the simulated result of M is the final state, then M halts, otherwise
M increases the counter by one and repeats iii) and iv).

Using the Synchronization theorem, we can construct SNQTMs which ex-
ecute steps i), ii) and iii), respectively, and by dovetailing them, QTM M is
obtained. We denote the time required to compute the steps from i) to vi)

by f’ (t, 1’—;—;—2—), which is polynomial of both variables. Let cps and cpq be the
initial configurations of M and M, respectively, we denote cpr = |gg) ® |z) ¢9|0)



and cyp = [qo) 0 |, #, 2,6, ¢ (M), #) % [0). Since Mpy simulates M for any
e, x and t, putting F (¢,1) = Y., f’ (2 ”;;2>, the simulation of ¢ steps of

M requires t + F (t, %) steps. For any ¢, i and T, the following inequality is
obtained

2 6¢e

t+F(t,é) .
b —_ 5
= (5)

{(q,T,z’|U§ |cM>|2 — |<q,T,z']U, leam)] | <

where Us and Uy are the unitary operator corresponding to M and M respec-
tively. m

Suppose that M halts at time ¢ and gives an outcome with probability p, M
gives the same outcome with probability p’ satisfying |[p—p'| < e by t+F(t,1/e).
In fact,

. 6e
!/
' —pl SZ;W%Q <e (6)
1=
holds.
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