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Symbolic Structures on Corner Manifolds

D. Calvo, C.-I. Martin, and B.-W. Schulze

Abstract

Differential operators on a manifold M with singularities of order m are degenerate
in a natural way (in corresponding ‘stretched’ coordinates). We establish natural scales
of weighted cone and edge Sobolev spaces (with multiple weights) on such manifolds and
formulate principal symbolic hierarchies, consisting of m + 1 components. Moreover, we
illustrate the iterative way to pass from the singularity order m to m + 1.
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Introduction

Operators on a manifolds with higher (regular) corners, have a principal symbolic hierarchy
which is responsible for ellipticity and parametrices. As is known from the case of a manifold
with smooth edges, cf. [22] or [25], there is an edge symbolic structure which consists of families
of operators on an infinite model cone parametrised by the cotangent bundle (minus the zero
section) of the edge. For smooth edges the model cone X A = (Ry x X)/({0} x X) of local
wedges has a smooth base X, and r — oo can be interpreted as a conical exit to infinity (here
r € Ry is the axial variable). For higher singularities the base X is not smooth. In such a case
XA has edges and corners up to infinity.

The program of the calculus for smooth edges as well as for corners of different kind, cf.
[24], [27], [15], [17], shows that specific structures have to be developed for making the approach
iterative, cf. [26]. One of the main issues is to understand the higher analogues of the principal
edge symbolic structure, represented by operators in weighted Sobolev spaces on XA, In the
present paper we give a new definition of the higher spaces (elementary compared with the one
in [26]) which points out the aspect of manifolds with exits to infinity and non-smooth cross
section. The case of cross sections of singularity order 2 is treated in [3], while elements for the
higher case may be found in [18]. The present note gives an overview of a part of these results.

Our considerations are embedded into the general program to establish a satisfying analysis
on manifolds with singularities (stratified spaces). There is a vast variety of investigations in
the literature, devoted to the index of elliptic operators, cf. Teleman [30], [31], and Nistor [21],
Nazaikinskij, Savin, Schulze and Sternin [19], [20], Fedosov, Tarkhanov and Schulze [9], [8], Loya
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[16], to the nature of appropriate weighted function spaces, cf. Schulze [23}, Hirschmann [11],
Brasselet and Teleman [2], or to other specific problems, cf. Seiler [28], Gil and Mendoza [10],
Dines, Harutjunjan, and Schulze [4]. Concerning more references, also with respect to models
with singularities in the applied sciences, cf. Kapanadze and Schulze [12].

Higher corner spaces are also of interest in anisotropic form in connection with long-time
asymptotics of solutions to parabolic equations on a spatial configuration with singularities, cf.
Krainer and Schulze [14] and Krainer [13].

1 Manifolds with higher corners

Definition 1.1 By a manifold with corners of order m we understand a topological space M
which is equipped with a chain of subspaces

MoM oM >...oM™ (1)
(where M(©® := M, M(™+1) = @) such that
() MW\ MUt 45 ¢ C® manifold for j =0,...,m;
(i) MU is of order m — j (order 0 means C®) for j=1,...,m,
(iti) every y € MU\ MUY has a neighbourhood V modelled on a wedge
X2, xQ (2)
where X;_1 is a manifold of order j — 1, j=1,...,m, and Q& C R%Y open.

In addition we require some regularity of the transition maps between the local wedges, in-
ductively defined in terms of isomorphisms of such singular manifolds, cf. the constructions
below.

The homeomorphisms & : V = X JA_ 1 X © will also be referred to as singular charts on M.

Note that M(™) is a C° manifold, and M \ M{™) is of order m — 1. In the singular case the
notation ‘manifold’ is to be understood in a generalised sense. In fact, we are speaking about a
special category of stratified spaces. In future such spaces are assumed to be a countable union
of compact subsets.

Let M, denote the category of manifolds of singularity order m.

Because of the iterative process we mainly look at singular charts for the case j = m

o:V X5, xQ (3)

for a neighbourhood V of y € Y := M(™) in M (of course, the following observations are true

in analogous form for all j).
Every such « restricts to isomorphisms

Oreg :V\Y = XA_ xQ (4)
for X2 _; =Ry X Xp—1, © C R open, and
ad:VvnY 5 (5)
 is then a diffeomorphism. From (4) we obtain a splitting of variables

('“,33,!}) € R-{r- X Xm—1 X Q. (6)
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Example 1.2 (i) Let X be a C*° manifold, and set M = X A which is the infinite cone with
base X and vertex {v} (represented by {0} x X in the corresponding quotient space, cf.
the notation in the beginning). In this case we have m = 1 and M’ = {v}.

(ii) Let M be a C* manifold with boundary. We then have m = 1 and M' = OM. The local
model wedge in this case is the half-space with Ry (the inner normal to the boundary) as
the model cone.

(iii) Let M = {z e R™ : 0 < z; < 1l for j =1,...,m}. Then M is of singularity order m.
To save space we only describe the singular subspaces for m = 3. In this case M’ is the
surface of the cube, M" consists of the edges including corner points, and M" are the
corner points.

Remark 1.3 For convenience, in the constructions below we make some simplifying assump-
tions that are not really necessary. In general the manifolds X;_1 € M;_1 in (2) may depend
ony € MO\ MUHD, We will assume that X;-1(y) is D;_y-isomorphic to X;_1(¥) for all
v, 7 € MW\ MU+D) and for all j. This is the case, for instance, in Ezample 1.2 (i), (ii), (iii).

For M € M, we set
dimM =1+dim Xn_1)+ ¢m

for ¢, = dim M(™, assuming that the dimension is already defined on 9M,,—1. It follows that
dmM=1+ dimX(_,-_l) +q;

for ¢; = dim(M® \ MU*D), j = 1,...,m, and dim M = go = dim(M \ M’).

To a manifold with singularities we can form the so called stretched manifold. For instance,
the stretched manifold M to the cone M = X2 of Example 1.2 (i) is defined by M = Ry x X.

An interesting category are manifolds W with smooth edges Y. It this case we have m =1
and W’/ = Y. Apart from the general construction at the beginning they can alternatively be
introduced by first defining their stretched manifolds W.

W is given as a C™ manifold with boundary W, and OW is a bundle over Y the fibre
of which is a C'*® manifold X. In simplest cases X is closed and compact. If 7 : W = Y
denotes the bundle projection we can pass to the quotient space W := W/~ with respect to the
equivalence relation w ~ w <=> {7w = 7w’ when w,w’ € OW or w = w’ when w,w’ ¢ W}.

From the definition we obtain a continuous map

T W-—oW

(for simplicity, again denoted by ) such that 7|sw is just the bundle projection mentioned
before and 7|ipw the identity map on int W. We also set

Wreg = W \ aw, wsing = aw-

An isomorphism W — W between two stretched manifolds with edge is defined as a diffeomor-
phism between the respective C*° manifolds with boundary which restrict to bundle isomor-
phisms Wging — Wslng If W := W/~ and W = W/~ are the associated manifolds with edges,
a homeomorphism W — W is said to be an isomorphism if it is induced by an isomorphism
W — W between the associated stretched manifolds.

It is often convenient to interpret W as a submanifold of its double 2W (which is a C'*°
manifold) obtained by gluing together two copies Wy of W along their common boundary (we
then identify W, with W),
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In a similar manner we can proceed with an arbitrary manifold M with singularities of order
m. We interpret the C® manifold Y := M (™) as a ‘higher’ edge. The transition maps of the
local wedges (2) will be defined in such a way that they generate the structure of an X,,_;
bundle Mging over Y with the projection 7 : Mging — Y which belongs to 9,,—1. By induction
we assume that isomorphisms are already defined up to the order m — 1. Also R x M, as well
as R} X Ming belong to 9M,,—;. Observe that R,_ X Ming can be regarded as an Ry X Xp,—1-
bundle over Y, and there is then a quotient map R} x Msing = (R X Miing)/~ to an XA _,-
bundle over Y induced by the fibrewise maps Ry x X1 = XA_;.

In order to specify the above requirement (iii) on the local wedges we now assume (for the
case j = m) that Y = M(™) has a neighbourhood U in M such that there is a homeomorphism

U — (R4 X Maing)/~ (M
which restricts to an 9, _;-isomorphism (i.e., in the sense of the category M, _1)

and a diffeomorphism UNY — Y. Two homeomorphisms (7) are called equivalent if the
transition map Ry X Mging = Ry X Mg is the restriction of an 9M,,_;-isomorphism x : R x
Miing = RXMing to Ry X Miing such that x restricts to an isomorphism {0} xMsing — {0} xMiing
of X,,_1-bundles.

This allows us to attach Mging to M \ Y in an invariant manner, and we obtain in this way
the stretched manifold M := (M \ Y') U My,¢ associated with M. In this connection we set

Mieg := M\ Ming
which is 9,,_;-isomorphic to M \ Y. From the definition we immediately obtain a map
T MM

which restricts to the bundle projection Mging — Y and to an 9M,,_;-isomorphism Mg = M\Y.

Remark 1.4 For technical reasons we content ourselves with isomorphisms x : R x Mging — R X
Miing in the above description of transition maps such that there is ane > 0 with x(r,-) = x(0, -)
for all|r| < €.

The double 2M of M can be obtained by gluing together two copies My of M along the
common subset M. There is then a neighbourhood 2U of Ming in 2M which is My, —y-
isomorphic to R X Ming and such that this restricts to an isomorphism Mging — {0} X Mging in the
sense of X,,_1-bundles. In particular, this isomorphism restricts to a map Uy = (2U) "M —
R; x M;ing and to an 1somorph1sm of Ming to itself and factorises to (7).

An isomorphism M — M between two stretched manifolds belonging to objects M, M em,
is defined as the restriction of an 9, _;-isomorphism x : 2M — 2M to a map M — M such that
XIMuing : Msing — Msmg is an isomorphism between corresponding X, _1- and Xm—1-bundles. By

passing to the spaces M, M themselves we obtain the notion of an M,,- isomorphism M — M.
In this way we have the category 9, including isomorphisms, and we can start the procedure
again.

By a similar scheme we can inductively define morphisms in the category IM,,.
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2 Operators with symbolic hierarchies

If M is a manifold of singularity order m € N there is a subspace Diffﬁeg(M) of differential
operators A € Diff*(M \ M’) of order p defined as follows. By hypotheses we already have
Diffﬁeg(M \'Y) on M \'Y which is of singularity order m — 1. Then

A € Diff%, (M)

is characterised by the conditions

Almyy € Dift% (M \Y),

and, in the splitting of variables (rpm, Z,ym) € Rt X X;p—1 X Q near Y, Q,,, C R, (coming from
a localisation of (8) for a chart on Y') the operator A takes the form

A=r* Z aja(rm,ym)(—rm%)j ‘ (9)

J+lalLp

with coefficients ajq(rm,¥m) € C= (R4 x Qm,Diffg;g(jHaD (Xm-1)). One of the assumptions in

the iterative process to organise a calculus of operators on M is that up to the singularity order
m — 1 there is a principal symbol

o(Ay) = (0;(A\y)) =0, .m1-

oo(A|a\y) is nothing other than the standard homogeneous principal symbol of Alp\pmv. For
A € Diffy,, (M) itself we define

a(A) := (o(Almy), o (4))

where the extra component o4(A) is a family of operators

N A1) =77 Y 210(0,m) (= 7))

Jt+lal<u

acting in a scale of weighted Sobolev spaces on X\ _; = R} X X,,_; denoted by

K Xpe1), 7=, 1m) €RT, (10)

for ¥ € R™7!, 4, € R. One of the main aspects of this article is to give an impression on
the nature of these spaces and their iterative definition. As a result we then obtain a family of
continuous operators

OA(A) Ym, ) 2 K (X _y) = K*THT (X0 _y),

¥—pi= =ty Ym = 1)y YmsMm) € T*Qpyp \ 0, with many natural properties. The experience
with the calculus of (pseudo-) differential operators on (say, compact) manifolds M with corner
singularities up to order 2 (cf. [27]) is that A should be the upper left corner of an (m + 1) x
(m + 1)-block matrix operator

m m
A: @ HYM®)) > @0 H - (MY)
k=0 J=
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with specific weighted Sobolev spaces of smoothness s on the submanifolds MU) of M = M©),
cf. (1).

We do not develop the full story here; more details in that sense may be found in [26]. Let us
only note that there is a generalisation of oA(A) to a principal symbol oA (A) for the block matrix
A. In the elliptic case oA(A)(Ym,Tm)s Ym,Tm) € T*Y \ 0, has to be a family of isomorphisms
which is just an analogue of the Shapiro-Lopatinskij condition.

Note that the idea to associate block matrix operators with an elliptic operator A in the upper
left corner such that the resulting operator is Fredholm has a long history and is realised in many
specific theories, e.g., for Sobolev problems, cf. Sternin [29] (with the terminology boundary
and coboundary operators), ‘standard’ boundary value problems with the transmission property
at the boundary, cf. Boutet de Monvel [1] (with the terminology trace and Poisson operators),
pseudo-differential boundary value problems without the transmission property, cf. Vishik and
Eskin [32], [7], edge and corner operators [24], cf. Egorov and Schulze [6] (with the terminology
trace and potential operators), and in other contexts 5], [4].

Observe that Laplace-Beltrami operators belonging to specific Riemannian metrics are of
the form (9) for u = 2. For instance, consider (for the case m = 2) a Riemannian metric of the
form '

dr} + r3{dr} + rigx, (ri,y1,7m2,y2) + dyi} + dy3

for a C* manifold X; and a family of Riemannian metrics gx, or X; smoothy depending on
(rlaylyr2ay2) € R+ x £y X E_g. X Q3

(smooth up to r; =0, rp = 0), Q; C R% open, j = 1,2. The space M € MM in this case is given
by
M= {Ry x (X x 21)/({0} x (X£ x %))} x s,

M® =Q,, and M =Ry x (X2 x ) x Qg, 2M =R x (X x Q) x Q.

3 Corner Sobolev spaces of second generation

We now give a definition of spaces K*("m)(WA) for (y1,72) € R?, when W is a compact
manifold with smooth edges Y, cf. [3], knowing a corresponding definition of K*"(X") for a
closed C* manifold X. In order to motivative the construction we briefly recall the construction
of K#™(X"). First we have the scale of standard Sobolev spaces H*(X), s € R, on X. Let
L‘C‘I(X ;R') denote the space of all classical parameter-dependent pseudo-differential operators
on X of order 4 € R, with parameters A € R/. For every y € R there exists an element
R*(\) € L% (X;R') that induces isomorphisms

cl
RE()) : H (X) = H**(X)

for all A € R, s € R. Let H*(R x X) denote the completion of the space C°(R x X) with
respect to the norm

{/ ”Rs(”)Fp—wu)vlﬁ:Z(X)dv}1/2-

Here F,_,, is the one-dimensional Fourier transform on R and R*(v) € L(X;R,) is a corre-
sponding order reducing family of order s in the above-mentioned sense.

For the constructions below we refer to another equivalent definition of the cylindrical Sobolev
spaces H*(R x X), namely, as the space all u(p,-) € HZ (R x X) such that

(pu)o (1 x &~ ') € H*(R, x R})
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for every chart @ : U — R? on X and every ¢ € C§°(U).
Let us set (Sgu)(p) := e‘(%_ﬂ)pu(e“p), p € R, and

HoM (XN = (S, _2) " H (R x X)

w|s

for n = dim X. We now define K*7(X*) for (r1,-) € X" near r; = 0 by
w1 (KT (XY) = n (r)HE (X)

where w; is any cut-off function on the half-axis (i.e., w; € C°(R4), wy = 1 near r; = 0). In
remains to explain K* (X") for large rq.
Let us set B := {yo € R" : |yo| < 1} and

I':= {(r1,7190) € R™" :r1 € Ry, y0 € B}.
On X we consider a chart U —» B, £ — yo, and form the map
Bu : (r1,z) = (r1,r190) = (r1,%0),

Bu :Ry x U =T C R'™,
An element u € HE (R x X)|r, xx is said to belong to Hg,.(X") if for every chart U — B
with the associated map Sy we have

(1 —wi)puo ;' € H(RIFZ)

T1,%0

for every cut-off function w;(r;) and every ¢ € C§°(U).
We now define

e (XA) =w K" (XA) + (1 - wl) cone(XA)
for any choice of a cut-off function w (ry).

Remark 3.1 The spaces K*™"(X") can be endowed with scalar products in which they are
Hilbert spaces. Setting

(kau)(r1,2) = )\ﬂzﬂu()\rl, )

for X € Ry, we obtain a strongly continuous group {k} ecr, of isomophisms on the space
e (XM, for every s,y € R.

The K-spaces of second generation on the infinite cone W” 3 (ry, ) for a compact manifold
W with edge Y refer again to a construction near the tip r, — 0 and near the exit r; — oo.

For 7o — 0 we have a corner configuration, cf. [27], while for r, — co we have a manifold
with edge that has a conical exit to infinity.

An important tool are the abstract edge Sobolev spaces from [22].

Definition 3.2 Let H be a Hilbert space which is endowed with a strongly continuous group of

isomophisms
kx:H—-H, leR,.

Then W*(R?, H) for s € R is defined to be the completion of S(R?, H) with respect to the norm

<>2s —1'\ d 1/2
n ”"‘7(,,)“' i dn .
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Together with Remark 3.1 we obtain the spaces
ws (qu : e (XA))

for every s,71 € R. Then, if W is a (say, compact) manifold with smooth edges, we obtain
corresponding global spaces W*7 (W).

By corner Sobolev spaces of second generation we understand weighted spaces on a manifold
M of singularity order 2. Locally such a manifold M is modelled on

WA X Qz
for an open set Q; C R and a manifold W of singularity order 1, locally modelled on
XA x

for an open set Q; C R% and a C® manifold X. We assume here X to be closed compact and
W compact.

Similarly as before, in order to define spaces of the kind W*(M)(M), we need (here
weighted) cylindrical Sobolev spaces

Wn (R, x W), (11)

(p,-) € R x W, as well as a local analogue W7 (R x W) of (11) and weighted cone spaces of
the type
Weame(W?h), (12)

where v; € R denotes the weight that is connected with the axial variable r, € Ry for the local
model cone X2,

To define (11) we first recall that we have the spaces H*(R x 2W) from the discussion in
the beginning, using the fact that 2W is a closed compact C* manifold. Then W*" (R x W) is
defined to be the space of all v € HE (R x (W \ Y)) such that

(1)
(1 —wi)u € H*(R x 2W)|RxW.oq

for every cut-off function w; on W (that is equal to 1 near 9W and 0 outside a collar neighbour-
hood of dW);

(ii) for every singular chart a: V — X2 xR?% on W near apoint y €Y

(cf. the formula (3)) and the induced map
]-Xa'reg:R>< (V\Y)—)RXR.{. x X x R%,

(1 X aeg) : (py°) = (Py7r1,2,01),

we have

o(1 x a=l)*wiu € WA(R, x R%, K*M (X1))

reg

for every ¢ € C°(R%) and the cut-off function w; from (i). :
A slight modification of this definition gives us the space W' (R x W) of distributions u

that have the property ¢u € W*" (R x W) for every ¢ € CP(R;,).
In fact, it suffices to set

W (R x W) = {space of all locally finite sums Z%u;} (13)
el
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for arbitrary ¢, € C§°(R), u, € W*7(R x W); locally finite means that ¢,(p) # 0 only holds for
finitely many ¢ € I when p varies in a compact set C R.
In order to define the space Weine(W") we set B := {y; € R% : |y1]| < 1} and consider a

singular chart
V-+X%xB

on W near a point y € Y and the induced diffeomorphism U — B, y = y1, for U :=V NY.
Moreover, we set I' := {(r2,71) : 72 € Ry, 11 = rayh, 11 € B},
5U : (7'1,93,7‘2,3!) — (7'27‘1,93a7"2,7‘2y1) = (Fl’zarl’vgl)a
1+
Bu:(Ry x X) x (Ry xU) = X§  xTp, 5 C XE xR

The space W3 (W ") is defined to be the set of all u(rg, ) € W7 (R x W)|r, xw such that

ocC

(i) For every chart U — B, y — y; as mentioned before, we have

(1~ wo)gwruo 5t € W* (REZ, KM (X3 )

T2, Y1

for every ¢ € C§°(U) and cut-off functions wy (r1), w2 (rz);

(i)
(1 - wl)u € H:one((zw)/\)' ‘

Definition 3.3 We set

(i) -1
HH ) (W) = (S L (dim W)) W R x W);

Y2=—3
(if)
KO (W) = w0V (W) + (1~ w) WaTe (W)

for any cut-off function ws in the variable ro € Ry.

Remark 3.4 The spaces of Definiton 3.3 are independent of the choice of wy, and they are
14+dim W~

Hilbert spaces with natural scalar products. Setting (kyu)(re,*) := A" 2z u(Ary,-), A € Ry, we

obtain a strongly continuous group of isomorphisms

K :}Cs.('nm)(W/\) - K:s.(‘n.’vz)(WA)
for every s,v1,72 € R.

Theorem 3.5 Let

- 0 \i o
A=r" 2 @ja(r2, yz)( - 7‘287) (r2Dy,)
i+l 2

be an operator with coefficients a;, € C*° (R, x QZ,Diﬁ'S(;(H'aD(W)), Q, C R% open. Then
B} DN, o
O'A(A)(yz,ﬂz) =Ty # Z Qi (0, yz) ( - Tza—m') (7”2722)
Jtlelgp

s a family of continuous operators
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OA(A) (y2,m2)  KHOERN (W) — fomm =) (W)
for every s,v1,v2 € R, (y2,m2) € T*Q2\ 0, and we have

oA(A) (Y2, An2) = Akxoa(4) (2, m)R3
for all A e R;.
The proof of Theorem 3.5 is connected with a specific variant of operator-valued symbols. If

H is a Hilbert space, endowed with a strongly continuous group of isomorphisms k) : H = H,
X € Ry, such that k)5 = sk for all A, € R, we say that H is endowed with a group action.

Definition 3.6 Let H and H be Hilbert spaces with group actions {ka}rer, and {Er}rer,,
respectively. Then 5
SH(Q x R H, H)

for u =R, Q C RP open, denotes the space of all a(y,n) € C*(Q x RY, L(H, H)) such that

. <0
L(H,H)

-8]H=~-1 (o 8
sup (n)*~¥1|[RZH(D5 Dfaly, m) o

n€ERY

for all multi-indices € NP, § € N? and all K CC Q.

The proof of Theorem 3.5 is based on the continuity of pseudo-differential operators with
operator-valued symbols in abstract Sobolev spaces.

Another observation is the following relation. Assume that the coefficients oja(rz,y2) are
independent of r; for 7o > R for some R > 0. Then

- g \J N
a(yz,m) =r;" | Z aja(rz,yz)(-— rga—rz—) (rame)
Jtlel<u
is an element of S*(Qy x R%; H, H) for
H = ]CS»('n.’m)(W/\),fI — /Cs—u,('n—um—u)(wl\)

for every s,71,72 € R.
Applying Definition 3.2 and Remark 3.4 we can define edge spaces of second generation

Ws,(fyl,'yg)(W/\ x R2) := W* (qu’lcs.('n,'vz)(W/\)) (14)

and their global versions :
Hsl('Yls'Y?)(M) (15)

on every compact M € 9M,. In (15) do not employ notation like #, K or W, since these letters
are reserved for specific features of the spaces, as in Definition 3.3 or (14). Another reason for
the notation (15) is that we do not exclude edges of dimension 0. In this case the role of the
group action disappears because corners of that kind are modelled on cones with singular base
spaces.

10
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4 Constructions for higher corners

We now show how the constructions are iterative, i.e., admit the step from the singularity order
m to m + 1. To this end we summarise what we need as an input for the iteration. We start
from a manifold M € M., the associated stretched manifold M and the double 2M € IM,,_;.
We assume to have constructed the spaces

K (X)) for seR,y€eR™

with X,,—1 € 9M,,—1 being the base of the local model cones for M near M (m), We then need
the spaces

WA (R, x M), WST(R, x M) and WL (M"). (16)

The definition of W*"(R x M) employs that we already possess W*"'(R x 2M) for 7' =
(Y1, -+,Ym-1) Which is the case because R x 2M € 9M,,,_;. Then u € W*7(R x M) is defined
by the following conditions:

(i)
(1 - wm)u € W' (R x 2M) IR X Miyeg

for every cut-off function w,, in the axial variable r,, from the local model cone

XA

m

_y hear Y = M),
(ii) for every singular chart o : V — X2_ x R on M near Y,
m-—1

cf. the formula (3), and the induced map
1 X apeg :RXx (V\Y) 2 RxRy X Xpp1 x RI™,

1x Olreg © (P,) - (p)r'mawaym)a
we have
reg

(1 X agL)*wiu € W* (Rp X quvxs”y(Xr/r\z—l)>

for every ¢ € C$°(R™) and the cut-off function w; from (i).
A slight modification of this construction gives us the space W) (R x M) as the space of
locally finite sums 3, ; p.u,, ¢, € C(R) u, € WY(R x M), similarly to (13).
For the definition of the space Weehe (M”) we set B := {ym € R : |ym| < 1} and consider
a singular chart
VX2, xB

on M near a point y € Y := M(™ and the induced chart U = B, y = y,,, for U:=V NY. We
set [':= {(rm+1,Um) € R¥Im 1 1y € Ry, ¥m = T'ms1Ym, Ym € B} and form

Bu : (rmam,rm+1,y) — (Tm+1rm’xarm+l,rm+lym) = (;m,z,rm+11§m)7
. 14+gm
Bu: Ry X Xm—1) X Ry xU) = X2, - X Trp i C X, o xRS
The space Wesne(M?) is defined to be the set of all
u(rm+1,) € Wit (R x M)|R, xm

such that
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(i) for every chart U — B, y — Y, as mentioned before, we have

(1 - wm+1)tpwm’w o ﬁ[}l € W? (R1+qm~ }ICS,’Y(X;r\z—l)Fm,x)

Tm+1:Ym

for every ¢ € C$°(U) and cut-off functions wm (rm ), Wmt1(Tm+1);

(i) ,
(1 = wn)u € WELL(@M)")

for a cut-off function wpy, (rm).

Definition 4.1 For every s € R, (7, Ym+1) € R™! we set

(i) -1
%s:(’Yﬂﬂﬁl)(MA) = (S’Ym-q-l—%(dimM)) Ws"y(RP X M);

(ii) |
[0 43) (M) = i M) (M) o+ (1= w2 )W (M),

Remark 4.2 There is an anologue of Remark 3.4 with the group action

K :Ksy('Yv'Y‘Vn-f-l)(M/\) - K"sv(qtﬁm-}l)(MA), (17)
Kx: u(rman, ) = AT (Mg, ), A € Ry (18)

Clearly the factor A o be replaced by \® for any other § € R, but we employ {K}rer,
in the form (18) because of its role in the definition of higher edge spaces.

Theorem 4.3 Let

- 0 \J
A=rly Z aj,a(rm+1, ym+1)( ~rmt1g ) (rm+1Dypmyy)”
J+|el<p m+1

be an operator with coefficients a;o € C®° (R4 x Q, Diﬁ'g‘;(jﬂal)(M)), Q C R?+! open. Then

- d \J
UA(A) (Ym41s 1) = Tmil Z a'j,a(o,ym+l)(" "‘m+15——) (T‘m+177m+1)°’
: T'm+1
JtlalLpu
represents a family of continuous operators
UA(A)(ym+1,77m+1) :}Csu('Yy’Ym-H)(M/\) N K-"Hv('Y"“y'Ym+l—l-")(MA)
for every s € R, (7, Ym+1) € R™1, (Y1, Pm+1) € T*Q\ 0, and we have
TA(A) (Umt1s Mima1) = AKAOA(A) (Um 41, B 41) K5
forall A e R;.

More details may be found in [18].
Applying Definition 3.2 to H = Ko rtm+1)(MA) and g := gm+1 We obtain the higher edge
space

W1 rm+1) (MA x qu+1) =W (R9m+1’K:3v(“{(7m+1)(M/\))

and we can start the iteration procedure all over again.

12



34

References

[1] L. Boutet de Monvel. Boundary problems for pseudo-differential operators. Acta Math.,
126:11-51, 1971.

[2] A. Brasselet, J.-P. Legrand and N. Teleman. Hochschild homology of singular algebras.
K-Theory, 29:1-25, 2003.

[3] D. Calvo and B.-W. Schulze. Operators on corner manifolds with exits to infinity. (in
preparation).

[4] G.Dines, N. Harutjunjan and B.-W. Schulze. The Zaremba problem in edge Sobolev spaces.
Preprint 2003/13, Institut fiir Mathematik, Potsdam, 2003.

[5] N. Dines and B.-W. Schulze. Mellin-edge-representations of elliptic operators. Preprint
2003/18, Institut fiir Mathematik, Potsdam, 2003. Math. Meth. in the Appl. Sci.(to appear).

[6] Ju. V. Egorov and B.-W. Schulze. Pseudo-differential operators, singularities, applications,
volume 93 of Operator Theory, Advances and Applications. Birkhauser Verlag, Basel, 1997.

[7] G.I. Eskin. Boundary value problems for elliptic pseudodifferential equations, volume 52 of
Math. Monographs. Amer. Math. Soc., Providence, Rhode Island, 1980. Transl. of Nauka,
Moskva, 1973.

(8] B.V. Fedosov, B.-W. Schulze, and N.N. Tarkhanov. On the index of elliptic operators on a
wedge. J. Funct. Anal., 157:164-209, 1998.

[9] B.V. Fedosov, B.-W. Schulze, and N.N. Tarkhanov. Analytic index formulas for elliptic
corner operators. Ann. Inst. Fourier, 52(3):899-982, 2002.

[10] J.B. Gil and G. Mendoza. Adjoints of the elliptic cone operators. Amer. J. Math.,
125(2):357—408, 2003.

[11] T. Hirschmann. Functional analysis in cone and edge Sobolev spaces. Ann. Global Anal.
Geom., 8(2):167-192, 1990.

[12] D. Kapanadze and B.-W. Schulze. Crack theory and edge singularities. Kluwer Academic
Publ., Dordrecht, 2003.

[13] T. Krainer. On the inverse of parabolic boundary value problems for large times. Preprint
2002/12, Institut fiir Mathematik, Potsdam, Japanese J. Math. (to appear).

[14] T. Krainer and B.-W. Schulze. Long-time asymptotics with geometric singularities in the
spatial variables. Preprint 2000/17, Institut fiir Mathematik, Potsdam, 2000. Israel Math.
Conference Proceedings, Vol. 16, 2003, pp. 103-126.

[15] T. Krainer and B.-W. Schulze. The conormal symbolic structure of corner boundary value
problems. Preprint 2004/01, Institut fiir Mathematik, Potsdam, 2004.

[16] P. Loya. Index theory of Dirac operators on manifolds with corners up to codimension
two. In J. Gil, Th. Krainer, and 1. Witt, editors, Advances in Partial Differential Equations
(Aspects of boundary problems in analysis and geometry), Oper. Theory Adv. Appl., pages
131-169. Birkhduser Verlag, Basel, 2004.

13



35

[17) L. Maniccia and B.-W. Schulze. An algebra of meromorphic corner symbols. Bull. des
Sciences Math., 127(1):55-99, 2003.

[18] C.-I. Martin and B.-W. Schulze. Higher edge operators. (in preparation).

[19] V. Nazaikinskij, A. Savin, B.-W. Schulze, and B. Ju. Sternin. Elliptic theory on manifolds
with nonisolated singularities: IV. Obstructions to elliptic problems on manifolds with
edges. Preprint 2002/24, Institut fir Mathematik, Potsdam, 2002.

[20] V. Nazaikinskij, A. Savin, B.-W. Schulze, and B. Ju. Sternin. Elliptic theory on manifolds
with nonisolated singularities: V. Index formulas for elliptic problems on manifolds with
edges. Preprint 2003/02, Institut fiir Mathematik, Potsdam, 2003.

[21] P. Nistor. Higher index theorems and the boundary map in cyclic homology. Documenta,
2:263-295, 1997.

[22] B.-W. Schulze. Pseudo-differential operators on manifolds with edges. In Symposium “Par-
tial Differential Equations”, Holzhau 1988, volume 112 of Teubner-Texte zur Mathematik,
pages 259-287. Teubner, Leipzig, 1989.

[23] B.-W. Schulze. Pseudo-differential operators on manifolds with singularities. North-
Holland, Amsterdam, 1991.

[24] B.-W. Schulze. The Mellin pseudo-differential calculus on manifolds with corners. In Sym-
posium: “Analysis in Domains and on Manifolds with Singularities”, Breitenbrunn 1990,
volume 131 of Teubner-Texte zur Mathematik, pages 208-289. Teubner, Leipzig, 1992.

[25] B.-W. Schulze. Boundary value problems and singular pseudo-differential operators. J.
Wiley, Chichester, 1998.

[26] B.-W. Schulze. Operator algebras with symbol hierarchies on manifolds with singularities.
In J. Gil, D. Grieser, and Lesch M., editors, Advances in Partial Differential Equations
(Approaches to Singular Analysis), Oper. Theory Adv. Appl., pages 167-207. Birkhauser
Verlag, Basel, 2001.

[27] B.-W. Schulze. Operators with symbol hierarchies and iterated asymptotics. Publications
of RIMS, Kyoto University, 38(4):735-802, 2002.

[28] J. Seiler. Continuity of edge and corner pseudo-differential operators. Math. Nachr.,
205:163-182, 1999.

[29] B.Ju. Sternin. Elliptic and parabolic equations on manifolds with boundary consisting of
components of different dimensions. Trudy. Mosk. Mat. Obshch., 15:346-382, 1966.

[30] N. Teleman. Global analysis on PL-manifolds. Trans. A.M.S., 256:49-88, 1979.

[31] N. Teleman. Combinatorial Hodge theory and signature operator. Invent. Math., 61:227-
249, 1980.

[32] M.I. Vishik and G.I. Eskin. Convolution equations in bounded domains in spaces with
weighted norms. Mat. Sb., 69(1):65-110, 1966.

14




