Propagation of microlocal solutions near a hyperbolic fixed point

東北大学大学院理学研究科 藤家雪朗 (Setsuro Fujiié) Joint work with Jean-François Bony, Thierry Ramond and Maher Zerzeri

1 Introduction

This is a partial report of the work in progress with Jean-François Bony, Thierry Ramond and Maher Zerzeri about the quantum monodromy operator associated to a homoclinic trajectory. A major part of the results here was already reported by one of the collaborators in [3].

The notion of monodromy operator was introduced by J. Sjöstrand and M. Zworski in [4] for a periodic trajectory. It consists in continuing microlocal solutions of the semiclassical Schrödinger equaiton

$$-h^2 \Delta u + V(x)u = Eu \tag{1}$$

along a Hamilton flow H_p on $p^{-1}(E)$ of the corresponding classical mechanics:

$$H_p = \sum_{j=1}^d \left(\frac{\partial p}{\partial \xi_j} \frac{\partial}{\partial x_j} - \frac{\partial p}{\partial x_j} \frac{\partial}{\partial \xi_j} \right), \quad p(x,\xi) = \xi^2 + V(x). \tag{2}$$

Recall briefly the notion of microlocal solution according to [4]. If $dp \neq 0$ at a point $(x^0, \xi^0) \in p^{-1}(E)$, there exists a local canonical transformation κ defined in a neighborhood of (x^0, ξ^0) with $\kappa(x^0, \xi^0) = (0, 0)$, and a semiclassical microlocal Fourier integral operator U associated to κ , such that $p = \kappa^* \xi_1$ and $UPU^{-1} = hD_{x_1}$. We can then define the space of microlocal solution at (x^0, ξ^0) by

$$\ker_{(x^0,\xi^0)}(P) = U^{-1}(\ker(hD_{x_1})), \quad \ker(hD_{x_1}) = \{u \in \mathcal{D}'(\mathbb{R}^d) : hD_{x_1}u = 0\}$$

Since ker (hD_{x_1}) is identified with $\mathcal{D}'(\mathbb{R}^{d-1})$, so is ker $_{(x^0,\xi^0)}(P)$. If $(x^1,\xi^1) = \exp TH_p(x^0,\xi^0)$ is another point on this flow, we can naturally define the propagator of microlocal solutions from ker $_{(x^0,\xi^0)}(P)$ to ker $_{(x^1,\xi^1)}(P)$ as operator on $\mathcal{D}'(\mathbb{R}^{d-1})$.

Here we study the case where $\exp tH_p(x^0,\xi^0)$ tends to a hyperbolic fixed point (0,0) as t tends to $+\infty$. To such a point associate the stable and unstable Lagrangian manifolds Λ_- and Λ_+ , on which Hamilton flows tend to (0,0) as t tends to $+\infty$ and $-\infty$ respectively. Moreover, any point close to Λ_+ comes from a point close to Λ_- . We expect, therefore, that a microlocal solution at a point on Λ_+ is determined by that on Λ_- .

The purpose of this report is to study this correspondence of microlocal solutions from Λ_{-} to Λ_{+} . After preparing the geometrical setting in section 2, we state a uniqueness theorem in section 3, which says that if a solution to (1) is microlocally exponentially small on Λ_{-} , it is also microlocally exponentially small on Λ_{-} , it is also microlocally exponentially small on Λ_{+} for E away from a discrete subset $\Gamma(h)$. In section 4, based on an idea in [2], we construct a solution with a given microlocal data at a point (x^0, ξ_{-}^0) on Λ_{-} , as superposition of time-dependent WKB solutions via Fourier transform with respect to E, and formally calculate its microlocal output at the corresponding point (x^0, ξ_{+}^0) on Λ_{+} . Section 5 is an appendix about the notion of expandible symbol, which is used repeatedly for the study of the large time behavior of both classical and quantum objects.

2 Symplectic geometry

Let $p(x,\xi) = \xi^2 + V(x)$ be the Hamitonian associated to the semiclassical Schrödinger operator $-h^2\Delta + V(x)$ in \mathbb{R}^d . Here, we use the following notations:

$$x = (x_1, \dots, x_d), \quad \xi = (\xi_1, \dots, \xi_d), \quad \xi^2 = \sum_{j=1}^d \xi_j^2, \quad \Delta = \sum_{j=1}^d \frac{\partial^2}{\partial x_j^2}$$

Suppose that the potential V(x) is real and analytic in a neighborhood of x = 0, and that x = 0 is a non-degenerate minimum of V(x), so that $(x,\xi) = (0,0)$ is a saddle point of the Hamiltonian $p(x,\xi)$. After a change of variables, we can assume that $p(x,\xi)$ is of the form

$$p(x,\xi) = \xi^2 - \sum_{j=1}^d \frac{\lambda_j^2}{4} x_j^2 + O(|x|^3), \quad (x \to 0),$$

where $\{\lambda_j\}_{j=1}^d$ are positive numbers which we assume $0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_d$.

Let H_p be the Hamilton vector field associated to p. In the (x, ξ) coordinates, the linearized vector field F_p of H_p at (0,0) is simply

$$F_p = d_{(0,0)}H_p = \begin{pmatrix} 0 & I \\ L^2 & 0 \end{pmatrix},$$
(3)

where L is the $d \times d$ matrix defined as $L = \text{diag}(\lambda_1, \ldots, \lambda_d)$. The eigenvalues of F_p are the λ_j 's and the $-\lambda_j$'s.

Associated to the hyperbolic fixed point, we have thus a natural decomposition of $T^*_{(0,0)}\mathbb{R}^d = \mathbb{R}^{2d}$ in a direct sum of two linear subspaces Λ^0_+ and Λ^0_- , of dimension d, associated respectively to the positive and negative eigenvalues of F_p . These spaces Λ^0_{\pm} are given by

$$\Lambda_{\pm}^{0} = \{(x,\xi); \, \xi_{j} = \pm \frac{\lambda_{j}}{2} x_{j}, \, j = 1, \dots, d\}.$$
(4)

The stable/unstable manifold theorem gives us the existence of two Lagrangian manifolds Λ_+ and Λ_- , defined in a vicinity Ω of (0,0), which are stable under the H_p flow and whose tangent space at (0,0) are precisely Λ^0_+ and Λ^0_- . In particular, we see that these manifolds can be written as

$$\Lambda_{\pm} = \{ (x,\xi) \, ; \, \xi = \nabla \phi_{\pm}(x) \}, \tag{5}$$

for some smooth functions ϕ_+ and ϕ_- , which can be chosen so that

$$\phi_{\pm}(x) = \pm \sum_{j=1}^{d} \frac{\lambda_j}{4} x_j^2 + o(x^2).$$
(6)

We shall say that Λ_+ is the outgoing Lagrangian manifold and Λ_- the incoming Lagrangian manifold associated to the hyperbolic fixed point. Indeed Λ_+ (resp. Λ_-) can be charactarized as the set of points $(x,\xi) \in \Omega$ such that $\exp tH_p(x,\xi) \to (0,0)$ as $t \to -\infty$ (resp. as $t \to +\infty$): Take a point $x^0 \in \mathbb{R}^d$ near 0. Then there exist unique $\xi^0_+ \in \mathbb{R}^d$ and $\xi^0_- \in \mathbb{R}^d$ such that $(x^0, \xi^0_\pm) \in \Lambda_\pm$. Let $\gamma_{\pm}(t) = \exp tH_p(x^0, \xi^0_{\pm})$ be the Hamilton flow emanating from (x^0, ξ^0_{\pm}) . Then, we know from Proposition 10 in Appendix that $\gamma_{\pm}(t)$ are expandible, i.e.

$$\gamma_{\pm}(t) \sim \sum_{k=1}^{\infty} e^{\pm \mu_k t} \gamma_{\pm,k}(t), \qquad t \to \mp \infty,$$
(7)

45

where $\gamma_{\pm,k}(t)$ are vectors whose elements are polynomials in t ($\gamma_{\pm,1}$ is constant) and $0 < \mu_1 < \mu_2 < \cdots$ are the various non-vanishing linear combinations over N of the λ_j 's. In particular, $\mu_1 = \lambda_1$. If we assume

(A1)
$$\lambda_1 < \lambda_2$$
,

then there exists a constant $\gamma_1 = \gamma_1(x^0)$ such that

$$\gamma_{\pm}(t) = \gamma_1 e^{\pm \lambda_1 t} \times {}^t (1, 0, \dots, 0, \pm \lambda_1/2, 0, \dots, 0) + O(e^{\pm \mu_2 t}), \quad (t \to \pm \infty).$$
(8)

We see that $\gamma_{\pm}(t)$ is tangential to the (x_1, ξ_1) -plane if $c \neq 0$.

3 Uniqueness

We begin this section by introducing the notion of *microsupport* of solutions.

For $u \in L^2(\mathbb{R}^n)$, the Bargman transform (or global FBI transform) is defined by

$$Tu(x,\xi;h) = c_d(h) \int_{\mathbb{R}^d} e^{i(x-y)\cdot\xi/h - (x-y)^2/2h} u(y;h) dy.$$

 $Tu(x,\xi;h)$ belongs to $L^2(\mathbb{R}^{2d}_{x,\xi})$ and $c_d(h)$ is taken so that T be an isometry from $L^2(\mathbb{R}^d)$ to $L^2(\mathbb{R}^{2d})$. It is seen that by this transform, the function u is localized in x by a Gaussian up to $O(\sqrt{h})$ when h is small. Moreover, it is localized also in ξ up to $O(\sqrt{h})$. Indeed we have an identity

$$Tu(x,\xi;h) = e^{ix\cdot\xi/h}T\hat{u}(\xi,-x;h),$$

where \hat{u} is the semiclassical Fourier transform

$$\hat{u}(\xi) = (2\pi h)^{-d/2} \int_{\mathbb{R}^d} e^{-x \cdot \xi/h} u(x) dx.$$
(9)

A (*h*-dependent) function $u \in L^2$ is said to be zero at a point (x^0, ξ^0) in the phase space iff there exists a neighborhood U of (x^0, ξ^0) and a positive number ϵ such that

$$Tu(x,\xi;h) = O(e^{-\epsilon/h})$$

as $h \to 0$ uniformly in U. The complement of such points is called *microsupport* of u and denoted by MS(u). Microsupport is a closed set. Two functions u and v are identified near (x^0, ξ^0) if $(x^0, \xi^0) \notin MS(u-v)$.

Microsupport has the following properties: Let u be a solution of Pu = E(h)u in a domain $\Omega \subset \mathbb{R}^n$, where E(h) = O(h), and assume that $||u||_{L^2(\Omega)} \leq 1$.

- The microsupport of u is included in the energy surface $p^{-1}(0)$.
- The microsupport of u propagates along a simple Hamilton flow in $p^{-1}(0)$.
- The microsupport of a WKB solution $u = e^{i\psi(x)/h}b(x,h)$, $b(x,h) = O(h^{-N})$ for some $N \in \mathbb{R}$ as h tends to 0, is included in the Lagrangian submanifold $\{(x,\xi); \xi = \partial_x \psi(x)\}$.

Now we come back to our problem near the hyperbolic fixed point. Let $\Gamma(h)$ be the discrete subset of \mathbb{C} defined by

$$\Gamma(h) = \{ E_{\alpha} = -ih \sum_{j=1}^{d} \lambda_j (\alpha_j + \frac{1}{2}); \ \alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}^d \}.$$
(10)

Notice that for $E = E_{\alpha}$, the functions

$$u_{\alpha} = \prod_{j=1}^{d} H_{\alpha_{j}} \left(e^{-\pi i/4} \frac{\sqrt{\lambda_{j}}}{\sqrt{2h}} x_{j} \right) \exp \left(i \sum_{j=1}^{m} \frac{\lambda_{j}}{4h} x_{j}^{2} \right),$$

where H_n is the Hermite polynomial, satisfy the equation

$$-h^2\Delta u_lpha - \sum_{j=1}^m rac{\lambda_j^2}{4} x_j^2 u_lpha = E_lpha u_lpha.$$

These functions are of WKB form and, by the above third property, the microsupport of u_{α} is Λ^{0}_{+} .

Let us assume

(A2) $|E(h)| \leq Ch$ in \mathbb{C} with C > 0, and there exists $\delta > 0$ such that $d(E(h), \Gamma(h)) > \delta h$ for all small h.

The following theorem says that the solution of (1) is uniquely determined microlocally in a neighborhood of (0,0), modulo microlocally small functions, by its data on $\Lambda_- \setminus (0,0)$ if E(h) is away from the exceptional set $\Gamma(h)$.

Theorem 1 Assume (A2). If an h-dependent function $u \in L^2(\mathbb{R}^d)$ with $||u||_{L^2} \leq 1$ satisfies

$$MS((P - E(h))u) = \emptyset, \quad MS(u) \cap \{\Lambda_{-} \setminus (0, 0)\} = \emptyset,$$

in a neighborhood of (0,0), then $(0,0) \notin MS(u)$.

4 Integral representation of the solution

In order to study the correspondence of microlocal solutions from Λ_{-} to Λ_{+} , we fix a point (x^{0}, ξ^{0}_{-}) on Λ_{-} sufficiently close to the origin and consider solutions of (1) whose microsupport on Λ_{-} is included in a neighborhood of $\exp t H_{p}(x^{0}, \xi^{0}_{-})$ (recall that the microsupport is invariant by the Hamilton flow). Then, under the assumption (A2), the solution u is uniquely determined in a full neighborhood of the origin, in particular on Λ_{+} , if a microlocal data u_{0} is given at (x^{0}, ξ^{0}_{-}) . We study in this section the map \mathcal{I}_{S} which associates u_{0} to the microlocal solution u at (x^{0}, ξ^{0}_{+}) , which we call here propagator (it is called singular part of the monodromy operator in [3]).

The symbol p is of principal type at $(x^0, \xi_-^0) \in \Lambda_-$ and the space of microlocal solutions $\ker_{(x^0, \xi_-^0)}(P)$ is identified with $\mathcal{D}'(\mathbb{R}^{d-1})$. If we assume

(A3)
$$\gamma_1(x^0) \neq 0$$
,

where $\gamma_1(x^0)$ is defined in (8), a microlocal solution $u_0 \in \ker_{(x^0, \xi_-^0)}(P)$ can be considered as distribution on

$$H_0 = \{ x \in \mathbb{R}^d; x_1 = x_1^0 \},\$$

since (the projection of) the Hamilton flows are tangential to the x_1 axis at the origin.

Let $u_0(x') \in \mathcal{D}'(\mathbb{R}^{d-1})$ be such that $\hat{u}_0(\eta)$, the semiclassical Fourier transform of u_0 (see (9)), is supported in a small neighborhood of ξ_0' .

Following an idea of Helffer and Sjöstrand [2], we write the solution u in the form

$$u(x,h) = \frac{1}{(2\pi h)^{d/2}} \int_{\mathbb{R}^{d-1}} \int_0^{+\infty} e^{i\phi(t,x,\eta)/h} a(t,x,\eta,h) \hat{u}_0(\eta) dt d\eta,$$
(11)

with

$$\{\frac{h}{i}\frac{\partial}{\partial t}+P(x,hD)-E(h)\}(e^{i\phi/h}a)=O(h^{\infty}).$$

If a and the energy E(h) have classical asymptotic expansions with respect to h:

$$a(t,x,\eta,h)\sim \sum_{l=0}^{\infty}a_l(t,x,\eta)h^l,\quad E(h)\sim \sum_{l=0}^{\infty}E_lh^{l+1},$$

(recall here that E(h) is assumed to be of O(h) in (A2)) then ϕ and a should satisfy the eikonal and transport equations respectively:

$$\partial_t \phi + p(x, \nabla_x \phi) = 0, \qquad (12)$$

l

$$\partial_t a_0 + 2\nabla_x \phi \cdot \nabla_x a_0 + (\Delta \phi - iE_0)a_0 = 0, \tag{13}$$

$$\partial_t a_l + 2\nabla_x \phi \cdot \nabla_x a_l + (\Delta \phi - iE_0)a_l = i\Delta a_{l-1} + i\sum_{m=1}^{l} E_m a_{l-m} \quad (l \ge 1).$$
(14)

The phase function ϕ will be constructed as generating function of the evolution $\Lambda_t^{\eta} = \exp t H_p(\Lambda_0^{\eta})$ of a suitably chosen Lagrangian manifold Λ_0^{η} transverse to Λ_- at (x^0, ξ_-^0) . Let us fix η sufficiently close to $\xi_-^{0'}$, and look at the integral in (11) with respect to t. It will be shown that, for x close to x^0 , there exsists a unique critical point $t = t(x, \eta)$. On the other hand, the Lagrangian manifold Λ_t^{η} tends to Λ_+ as $t \to +\infty$, which means that $\partial_t \phi$ tends to ϕ_+ . Thus we will have microlocally

$$\int_{0}^{+\infty} e^{i\phi(t,x,\eta)/h} a(t,x,\eta,h) dt \sim \begin{cases} e^{i\psi(x,\eta)} b(x,\eta,h) & \text{near } (x,\xi) = (x^{0},\xi^{0}_{-}), \\ e^{i\theta(x,\eta)} c(x,\eta,h) & \text{near } (x,\xi) = (x^{0},\xi^{0}_{+}), \end{cases}$$

with $\psi(x,\eta) = \phi(t(x,\eta), x, \eta)$ and $\theta(x,\eta) = \phi_+(x) + \tilde{\psi}(\eta)$ for some $\tilde{\psi}$.

We require that u is equal to u_0 on H_0 microlocally near (x^0, ξ^0) , which is satisfied if

$$\psi(x,\eta) = x' \cdot \eta, \quad b(x,\eta,h) = 1 \quad \text{on } H_0. \tag{15}$$

We will see in the following that it is possible to construct ϕ and a so that ψ and b satisfy the condition (15) and to calculate θ and c. Then we will write \mathcal{I}_S as Fourier integral operator.

4.1 The phase function

Since γ_{-} is a simple characteristic for the operator p, by the usual Hamilton-Jacobi theory we have first the

Lemma 2 For all $\eta \in \mathbb{R}^{d-1}$ close enough to $\xi^{0'}$, there is a unique function $\psi_{\eta} = \psi(x, \eta)$, defined in a neighborhood ω_0 of x_0 such that

$$\left\{egin{array}{ll} p(x,
abla\psi_\eta(x))=0 & ext{in} \quad \omega_0, \ \psi_\eta(x)=x'\cdot\eta & ext{on} \quad H_0\cap\omega_0. \end{array}
ight.$$

We denote by Λ_{ψ}^{η} the corresponding Lagrangian manifold

$$\Lambda_{\psi}^{\eta} = \{ (x,\xi) \in T^* \mathbb{R}^d, \ x \in \omega_0, \ \xi = \nabla \psi_{\eta}(x) \}.$$

$$(16)$$

Lemma 3 The Lagrangian manifolds Λ_{-} and Λ_{ψ}^{η} intersect along an intergral curve γ^{η} for H_{p} , and the intersection is clean. In particular, $\gamma^{\xi^{0'}} = \gamma_{-}$.

Let $(x^{0}(\eta), \xi^{0}(\eta))$ be the intersection of γ^{η} and $H_{0} \times \mathbb{R}^{d}_{\xi}$. The curve γ^{η} is parametrized as $\gamma^{\eta}(t) = \exp t H_{p}(x^{0}(\eta), \xi^{0}(\eta))$, and it has the asymptotic property like (8);

$$\gamma^{\eta}(t) \sim \gamma_1(\eta) e^{-\lambda_1 t} \times {}^t(1, 0, \dots, 0, -\lambda_1/2, 0, \dots, 0) \quad (t \to +\infty), \qquad (17)$$

with a non vanishing constant $\gamma_1(\eta)$ for η close to $\xi^{0'}$.

Let Γ_0^{η} be the level set of ψ_{η} passing by $x^0(\eta)$:

$$\Gamma_{0}^{\eta} = \{ (x,\xi) \in \Lambda_{\psi}^{\eta}, \psi_{\eta}(x) = \psi_{\eta}(x^{0}(\eta)) \}.$$
(18)

Lemma 4 For any η close enough to $\xi^{0'}$, one can find a Lagrangian manifold Λ_0^{η} such that

- 1. Λ_0^{η} intersects cleanly with Λ_{ψ}^{η} along Γ_0^{η} ,
- 2. for any $t \geq 0$, the projection $\Pi : \Lambda_t^{\eta} = \exp(tH_p)(\Lambda_0^{\eta}) \to \mathbb{R}_x^d$ is a diffeomorphism in a neighborhood of $\gamma^{\eta}(t) \in \Lambda_t^{\eta}$.

The Lagrangian manifold $\Lambda_t^{\eta} = \exp(tH_p)(\Lambda_0^{\eta})$ is then represented by a generating function $\phi(t, x, \eta)$:

$$\Lambda_t^{\eta} = \{(x,\xi); \xi = \nabla_x \phi(t,x,\eta)\}.$$
(19)

and $\phi(t, x, \eta)$ satisfies the eikonal equation (12) for every η .

Now we fix η and define

$$\Gamma_t^{\eta} = \Lambda_t^{\eta} \cap \Lambda_{\psi}^{\eta} \quad (= \exp(tH_p)\Gamma_0^{\eta}). \tag{20}$$

If $(x,\xi) \in \Gamma_t^{\eta}$, then $\xi = \nabla_x \phi(t,x,\eta)$ and $p(x,\xi) = 0$ $(\Lambda_{\psi}^{\eta} \subset p^{-1}(0))$. Together with (12), we get that t is a critical point for the function $t \mapsto \phi(t,x,\eta)$ if and only if $x \in \prod_x \Gamma_t^{\eta}$. More precisely, we have **Proposition 5** For each x close enough to γ^{η} , there is a unique time $t = t(x, \eta)$ such that $x \in \prod_x \Gamma_t^{\eta}$. Moreover, it is the only critical point for the function $t \mapsto \phi(t, x, \eta)$ and it is non-degenerate, $\partial_t^2 \phi(t(x, \eta), x, \eta) > 0$.

As a consequence, we obtain

$$\nabla_x \psi_\eta(x) = \nabla_x(\phi(t(x,\eta),x)), \tag{21}$$

so that $x \mapsto \psi_{\eta}(x)$ and $x \mapsto \phi(t(x), x)$ are equal up to constant. We choose ϕ so that

$$\phi(t(x,\eta),x,\eta) = \psi_{\eta}(x). \tag{22}$$

Finally we observe the asymptotic behavior of the phase function $\phi(t, x, \eta)$ when t tends to $+\infty$.

Proposition 6 The phase function $(t,x) \mapsto \phi(t,x,\eta)$ is expandible uniformly with respect to η :

$$\phi(t, x, \eta) - (\phi_+(x) + \tilde{\psi}(\eta)) \sim \sum_{j \ge 1} e^{-\mu_j t} \phi_j(t, x, \eta).$$
(23)

Here $\tilde{\psi}$ is a generating function of the d-1 dimensional Lagrangian submanifold $\Lambda_{-} \cap (H_0 \times \mathbb{R}^d_{\xi})$, i.e.

$$\{(y',\eta)\in T^*\mathbb{R}^{d-1}; \eta=\nabla_{y'}\phi_{-}(x_1^0,y')\}=\{(y',\eta)\in T^*\mathbb{R}^{d-1}; y'=\nabla_{\eta}\tilde{\psi}(\eta)\},\$$

and so

$$\tilde{\psi}(\eta) \sim -\sum_{j=2}^{d} \frac{1}{\lambda_j} \eta_j^2, \quad (\eta \to 0).$$

Moreover, the function ϕ_1 does not depend on t, and

$$\phi_1(x,\eta) = -2\lambda_1 \gamma_1(\eta) x_1 + O(x^2), \tag{24}$$

where $\gamma_1(\eta)$ is defined in (17).

4.2 Transport equations

We study the transport equations (13), (14), using the informations about the phase function $\phi(t, x, \eta)$ obtained in the previous subsection. We want to solve these equations under the condition

$$a(t(x,\eta), x, \eta, h)|_{H_0} = e^{-\pi i/4} \sqrt{\partial_t^2 \phi(t(x,\eta), x, \eta)},$$
(25)

so that the right hand side of (11), after the stationary phase method applied to the integration with respect to t at the critical point $t = t(x, \eta)$, reduces to u_0 on H_0 . Notice that the initial condition (25) determines uniquely the solutions of (13), (14) on the hypersurface $\{(t, x); t = t(x, \eta)\}$, since this hypersurface is invariant under the flow of the vector field $\partial_t + 2\nabla_x \phi \cdot \nabla_x$.

As for the asymptotic behavior as $t \to +\infty$, we recall that ϕ is expandible and

$$\nabla_x \phi \cdot \nabla_x = \sum_{j=1}^d \left(\frac{\lambda_j}{2} x_j + O(x^2) \right) \frac{\partial}{\partial x_j}, \quad \Delta \phi = \sum_{j=1}^d \frac{\lambda_j}{2} + O(x) \quad (x \to 0).$$

Then again by Proposition 10 applied to $e^{St}a_j$, where

$$S = \frac{1}{2} \sum_{j=1}^d \lambda_j - iE_0,$$

we have the following asymptotic expansion.

Proposition 7 For each l, $a_l(t, x, \eta)$ is expandible and has an asymptotic expansion as $t \to \infty$

$$a_l(t, x, \eta) \sim e^{-St} \sum_{k=0}^{\infty} a_{l,k}(t, x, \eta) e^{-\mu_k t},$$
 (26)

which is uniform with respect to η . Here μ_0 is defined to be 0, and $a_{0,0}$ is independent of t.

4.3 Asymptotics of the propagator

Let us fix η close to $\xi^{0'}$ and x close to γ_{η} . Then there are two t's which contribute in the semiclassical limit to the integration with respect to t of

the expression (11). One is $t = t(x, \eta)$, which is the unique critical point, and the other is $t = +\infty$. They correspond to the Lagrangian manifolds $\Lambda^{\eta}_{t(x,\eta)}$ and Λ_{+} respectively.

Since the contribution from $t = t(x, \eta)$ reproduces the given data $u_0(x')$ on H_0 after integration with respect to η , we will obtain the propagator \mathcal{I}_S in the form of Fourier integral operator after calculating the contribution from $t = +\infty$.

Lemma 8 Suppose $b \in \mathbb{R}$, $\lambda > 0$ and $\rho > 0$. Then as $h \to 0$, we have

$$\int_{0}^{\infty} \exp\{ibe^{-\lambda t}/h - \rho t\}dt - \frac{1}{\lambda} \left(\frac{ih}{b}\right)^{\rho/\lambda} \Gamma\left(\frac{\rho}{\lambda}\right)$$
$$\sim \frac{e^{ib/h}}{\lambda} \sum_{n=0}^{\infty} \left(\frac{\rho/\lambda - 1}{n}\right) n! \left(\frac{ih}{b}\right)^{n+1}$$

Let us compute the contribution from $t = \infty$ of the integral

$$\int_0^\infty e^{i\phi(t,x,\eta)/h}a(t,x,\eta,h)dt.$$

If we substitute $\phi_+(x) + \tilde{\psi}(\eta) + e^{-\lambda_1 t} \phi_1(x,\eta)$ to $\phi(t,x,\eta)$ and $a_{0,0}(x,\eta) e^{-St}$ to $a(t,x,\eta,h)$ according to (23), (26), we get

$$\int_0^\infty e^{i\phi/h} a dt = e^{i(\phi_+ + \bar{\psi})/h} a_{0,0} \int_0^\infty \exp\{i\phi_1 e^{-\lambda_1 t}/h - St\} dt$$

Applying Lemma 8 with $b = \phi_1$, $\lambda = \lambda_1$ and $\rho = S$, we get

$$\int_{0}^{\infty} e^{i\phi/h} a dt \sim e^{i(\phi_{+} + \tilde{\psi})/h} a_{0,0}$$
$$\times \left\{ \frac{1}{\lambda_{1}} \Gamma\left(\frac{S}{\lambda_{1}}\right) \left(\frac{ih}{\phi_{1}}\right)^{S/\lambda_{1}} + \frac{e^{i\phi_{1}/h}}{\lambda_{1}} \frac{ih}{\phi_{1}} + O(h^{2}) \right\} \quad (h \to 0).$$

The leading term of the left hand side changes according to the real part of S/λ_1 :

$$\operatorname{Re} S/\lambda_1 > 1 \iff \operatorname{Im} E_0 > \left(\lambda_1 - \sum_{j=2}^d \lambda_j\right)/2.$$

Theorem 9 The propagator \mathcal{I}_S can be written in the form

$$\frac{1}{\sqrt{2\pi h}^{d-1}}\int_{\mathbb{R}^{d-1}}e^{i\theta(x,\eta)}c(x,\eta,h)\hat{u_0}(\eta)d\eta,$$

microlocally near (x^0, ξ^0_+) with

$$\theta(x,\eta) = \phi_+(x) + \tilde{\psi}(\eta),$$

and if $\operatorname{Im} E_0 < (\lambda_1 - \sum_2^d \lambda_j)/2$

$$c(x,\eta,h) \sim \frac{1}{\sqrt{2\pi h}\lambda_1} \Gamma\left(\frac{S}{\lambda_1}\right) \left(\frac{ih}{\phi_1(x)}\right)^{S/\lambda_1} a_{0,0}(x,\eta),$$

if $\operatorname{Im} E_0 > (\lambda_1 - \sum_2^d \lambda_j)/2$

$$c(x,\eta,h) \sim \frac{1}{\sqrt{2\pi\hbar\lambda_1}} e^{i\phi_1(x)/h} \frac{ih}{\phi_1(x)} a_{0,0}(x,\eta),$$

and if Im $E_0 = (\lambda_1 - \sum_2^d \lambda_j)/2$

$$c(x,\eta,h) \sim \frac{1}{\sqrt{2\pi h}\lambda_1} \left(\Gamma\left(\frac{S}{\lambda_1}\right) \left(\frac{ih}{\phi_1(x)}\right)^{S/\lambda_1} + e^{i\phi_1(x)/h} \frac{ih}{\phi_1(x)} \right) a_{0,0}(x,\eta),$$

where $\tilde{\psi}(\eta)$ and $\phi_1(x)$ are given in Proposition 6 and $a_{0,0}$ is given in Proposition 7.

5 Appendix - Expandible symbols

Here we recall from [2] the notion of expandible symbol.

We denote by $(\mu_j)_{j\geq 0}$ the strictly growing sequence of linear combinations over N of the λ_j 's. We have for example $\mu_0 = 0$, $\mu_1 = \lambda_1$ and $\mu_2 = 2\lambda_1$ or $\mu_2 = \lambda_2$, whether $2\lambda_1 < \lambda_2$ or not.

First we introduce a convenient notation for error terms. We shall write, with $\mu \in \mathbb{R}^+$, $M \in \mathbb{N}$,

$$w(t,x) = \tilde{\mathcal{O}}(e^{-\mu t}|x|^M)$$
(27)

if, for every $\epsilon > 0$, we have

$$w(t,x) = O(e^{-(\mu-\epsilon)t}|x|^M).$$
(28)

Definition 1 ([2], Definition 3.1) Let ω be a neighborhood of 0 in \mathbb{R}^d . A smooth function $u : [0, +\infty[\times\omega \to \mathbb{R} \text{ is expandible if there exists a sequence } (u_k) of smooth functions on <math>[0, +\infty[\times\omega, \text{ which are polynomials in } t, \text{ such that for any } n, N \in \mathbb{N}, \alpha \in \mathbb{N}^d$

$$\partial_t^n \partial_x^\alpha \left(u(t,x) - \sum_{j=0}^N u_k(t,x) e^{-\mu_k t} \right) = \tilde{\mathcal{O}}(e^{-\mu_{N+1} t}) \tag{29}$$

If (29) holds, we write simply

$$u(t,x) \sim \sum_{k\geq 0} u_k(t,x) e^{-\mu_k t}.$$
 (30)

Proposition 10 ([2], Theorem 3.8) Let A(t, x) be a real smooth expandible matrix with $A(0,0) = \text{diag}(\lambda_1, \ldots, \lambda_d)$. Then, if v(t,x) is expandible, the solution u(t,x) to the problem

$$\begin{cases} \partial_t u + A(t, x) x \cdot \partial_x u = v, \ t \ge 0, x \in \omega, \\ u_{|_{t=0}} = 0, \end{cases}$$
(31)

is expandible.

References

- [1] Amar-Servat, E., Bony, J.-F., Fujiié, S., Ramond, T., Zerzeri, M. : A formal computation of resonances associated with an homoclinic orbit,
- Helffer, B., Sjöstrand, J. : Multiple wells in the semiclassical limit III, Math. Nachrichten 124 (1985), pp. 263-313.
- [3] Ramond, T.: Quantum Monodromy for a Homoclinic Orbit, 2ème Colloque Tuniso-Français d'Equations aux Dérivées Partielles, Hammamet, Tunisie, (2003) (http://www.math.u-psud.fr/ ramond).
- [4] Sjöstrand, J., Zworski, M. : Quantum monodromy and semiclassical trace formulæ, J. Math. Pure Appl. 81 (2002), 1-33.