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REGULARITY OF D-MODULES ASSOCIATED TO A
SYMMETRIC PAIR: A CONJECTURE BY SEKIGUCHI

YVES LAURENT

1. INTRODUCTION

Let Gg be a real semi-simple Lie group, gg its Lie algebra. A differential operator
on Gg is bi-invariant if it is invariant under the left and the right actions of Gg
on itself. A distribution T on Gg is an invariant eigendistribution if T is invariant
under the adjoint action of Gg and T is an eigenvalue of each bi-invariant operator
on Gr. The characters of irreducible representations of G satisfy these properties.
A classical theorem of Harish-Chandra asserts:

Theorem 1.1. Any invariant eigendistribution is L,loc.

After transfer to the Lie algebra by the exponential map and conjugation by
a suitable function, T is solution of a holonomic D-module M) defined on the
complexification g of gg. In this paper, we will consider only complex Lie groups
and Lie algebras.

The module M has been studied by R. Hotta and M. Kashiwara [2]. In partic-
ular, using a variant of Harish-Chandra theorem, they proved that this module is
regular holonomic. Let us recall that a D-module is holonomic if its characteris-
tic variety is lagrangian while regularity is a generalization of Fuchsian differential
equation. If M is holonomic regular, its formal solutions are convergent, its solu-
tions holomorphic outside a hypersurface are meromorphic and in the real domain,
hyperfunction solutions are distributions.

A natural extension of the action of a semi-simple Lie group on its Lie algebra
is a symmetric pair. If g is a reductive Lie algebra with an involution, it splits into
its even and odd part, g = ¥ @ p. The Lie group K associated to ¢ acts on p and
we say that (g, p) is a symmetric pair. The module M may still be defined in this
case.

J. Sekiguchi proved that Harish-Chandra’s theorem is not true in general and
defined a condition on symmetric pairs under which the theorem is true (for hyper-
functions and for distributions). He conjectured that the module is regular [9].

We want to show here that

Theorem 1.2. The module M), s holonomic regular for any symmetric space.

We will not give all the details of the proof which may be found in [7].

2. MICROCHARACTERISTIC VARIETIES AND REGULARITY

Let X be a complex analytic manifold and Y be submanifold of X. We denote by
p: Ty X — X its normal bundle and by 7 : T3y X — X its conormal bundle. Remark
that the duality between the fiber bundles Ty X and 73 X defines an isomorphism
T*Ty X ~ T*Ty X. We will also denote A =Ty X.



Y. Laurent

Let Zy be the ideal of Ox defining Y. Kashiwara’s V-filtration [3] is defined on
differential operators. by:

ViDx = { P € Dxly |Vl € Z, PT}, C TJ*} (2.1)

(with T, = Ox if 1 < 0).

In local coordinates such that Y = {(z,t) € X | { = 0}, the operators z; and
5% are of order 0 for the V- filtration while operators t; are of order —1 and 5‘%
of order +1.

By definition, the associated graded ring gryDx = @ ViDx/Vi-1Dx operates
on @Z,’”, /Zlkfl. Let Oz, x] be the sheaf of holomorphic functions on Ty X which
are polynomial in the fibers of p : Ty X — X. There is a canonical isomorphism
DIE /Zf,_l ~ p.O[r, x] which defines an identification of grvDx with p.Dipy x7,
the sheaf of differential operators on Ty X with coefficients in Oz, x].

Let P € Dx be a differential operator on X and denote by oy (P) its image
in gryDx. As oy (P) is an operator on Ty X, its principal symbol o(oy(P)) is a
function on the cotangent bundle 7*Ty X hence as a function on T*A through the
isomorphism T*Ty X ~ T*A(see [6] for the details). ‘

Then we say that the differential operator P is regular along A = Ty X if the
order of oy (P) is equal to the order of P, (here the order is the usual order of

djfferential operators) and define:

o(oy (P)), if P is regular; )
, oaleo)(P) = { 0,( v(P) otherwiseg. (2:2)
Let Z be a coherent ideal of Px and M be the Dx-module Dx/Z. As is well
known, the characteristic variety of M is given by

Ch(M) ={(z,8) e T*X |VP € Z,0(P)(z,£) =0}

In the same way we define the microcharacteristic variety of M as the analytic
subset of 7" A given by

Cha(eo)(M) = {A € T*A | VP € T, 04(c0)(P)(A) = 0}

This definition may be extended to any coherent D x-module M by means of a
bifiltration (see [8][5][6]) but we will not use this here.

Assume now that M is holonomic. Then its characteristic variety is lagrangian
and its irreducible components are generically the conormal to a submanifold of X.
So if A is an irreducible component of the characteristic variety of M, we say that
M has regular singularities along A if Chp(,1)(M) = A on a dense open subset
of A. It has been proved in [5, Theorem 3.1.7.] that this definition is equivalent to
the original one given by Kashiwara-Kawai in [4, Definition 1.1.11.].

Definition 2.1. (Kashiwara-Kawai [4]) A holonomic Dx-module M is regular if
it has regular singularities along each irreducible component of its characteristic
variety.

3. QUASI-HOMOGENEOUS MICROCHARACTERISTIC VARIETY

The definitions of section 2 are associated to the canonical action of C on the
fibers of Ty X. Here we will give similar definitions in a quasi-homogeneous case.
Intrinsic definitions have been given in [1] but for simplicity, we will give them here
in local coordinates.
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Solet Y = {(z1,...,2p,t1,...14) € X |t =0}, (m1,...,ma) strictly positive
relatively prime integers and consider the vector field 6, = >_,_; mit; 6‘2

We say that P is quasi-homogeneous of degree k if [P,6,] = kP and that P
is of order k for the V9= _filtration if P may be written as a (convergent) series
S <k B with P, homogeneous of degree I. Remark that if all m; are equal to 1,
this filtration is the V-filtration (2.1).

If P =3, P with P, homogeneous of degree [ and P # 0, we denote oy (P) =
Py, and say that P is quasi-regular along Y if the order of oy (P) is equal to the
order of P. We define G'im(oo,l)(P) by the formula (2.2) and the microcharacteristic
variety ChS™ (o0,1)(M).

Let M = Dx/Z be a holonomic Px-module. If A is an irreducible compo-
nent of the characteristic variety of M, we say that M is quasi-regular along A if
Ch%™(c0,1)(M) = A on a dense open subset of A.

Theorem 3.1. [7, Corollary 1.4.4] A holonomic module is regular if it is regular
or quasi-reqular along each irreducible component of its characteristic variety.

This theorem has been proved in [7] using a ramification map (t1,...,ta) >
(t""1 ,t7%) and the fact that regularity is preserved under mverse and dlrect

image (I\ashlwara.—Kawal [4]).

We will now show that, under suitable conditions, the microcharacteristic vari-
eties are preserved under inverse images. Let ¢ : Z — X be an analytic map. A
vector field u on Z is said to be tangent to the fibers of p if u(fop) =0 for all fin
Ox. A differential operator P on Z is said to be invariant under ¢ if there exists
a differential operator A on X such that P(foy) = A(f)op for all f in Ox. If
@ has a dense range in X, A is uniquely determined by P and we will denote by
A = ¢, (P) the image of P in Dx under this ring homomorphism.

Let Z = CP*4 and ¢ : Z — X = C¢ defined by (1,...,04) where p; is
homogeneous of degree m;. Let E be the Euler vector field and § = mitigari-

Let Z be an ideal of Dz which is generated by all the vector fields tangent to the
fibers of ¢ and by a finite set (Py, ..., P;) of differential operators invariant under

. Let J be the ideal of Dx generated by (pu(P1), ..., 2«(P)). Let M =Dz/Z
and N =Dx/J and put on M and N the filtrations induced by VD7 and ViDx.
The modules M and N are also provided by the filtrations induced by the usual
filtrations (by the order) of Dz and Dx, we say that they are bi-filtrated.

Theorem 3.2. [7, Proposition 2.3.2.] There erists a canonical morphism of Dz-
modules M — ©* N which is a morphism of bi-filtrated modules and an isomorphism
at the points where ¢ is a submersion.

Let Y = ¢~1({0}) and z be a point of Y where ¢ is a submersion. In a neigh-
borhood of z, Z is isomorphic to X x Y and if we fix such an isomorphism, § which
is a vector field on X may be considered as a vector field on Z. Remark that @
differ from E by a vector field tangent to . Then:

Corollary 3.3. The microcharacteristic variety Chy (co,1)(M) is equal to Cho(oo,l)(M)

in a neighborhood of x.
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4. SYMMETRIC PAIRS

Let G be a complex reductive Lie group and g its Lie algebra. Then g = ¢® g, g]
where ¢ is the center and [g, g] is a semi-simple Lie algebra. For example, gi,(C) =
Ceo sl (C).

If X € g, AdX is the endomorphism of g given by ¥ — [X,Y]. The Killing
form on [g,g] is defined by ko(X,Y) = Trace(AdX AdY). Let us choose a non-
degenerate G-invariant symmetric bilinear form « on g such that its restriction to
[g,8] is ko. Let ¥ be an involutive automorphism on g preserving x, we define
t= Ker(¥—1I)and p = Ker(J+1I).

Then g = ¢ @ p and the pair (g, p) or (g,9) is called a symmetric pair. Here ¥ is
a reductive Lie algebra and K, the subgroup of G associated to €, acts on p by the
adjoint action.

Ezample 4.1. (diagonal) If Gy is a reductive Lie group, go its Lie algebra, g = go®go
and ¥(z,y) = (y,z), K is equal to Gy acting on its Lie algebra go.

Ezample 4.2. 1f G = S1,,(C) and g = s, (C) with J(A4) = —tr(A), we find that ¥ is
the Lie algebra of antisymmetric matrices, and K = SO, (C) acts on p the set of
symmetric matrices.

We will now defines the holonomic D-modules associated to a symmetric pair.
As p is a vector space, Tp ~ p X p. Any A € t defines a vector field on p tangent to
the orbits by the map 7(A)(X) = (X, [X, A]) from p to Tp ~ p x p. The action of
7(A) on a function f on p is given by:

HA))(X) = 2 Flexp(~t4).X)li=o

The set (&) of all vector fields 7(A) for A € € generates the vector fields tangent
to the orbits.

Let p* the dual of p (as a C-vector space), then an element P of C[p*] (polynomial
functions on p*) defines a differential operator with constant coefficients on p by
P() — P(;%). The set C[p*]¥ of polynomials on p* invariant under the action
of K is very simple by Chevalley theorem: there are algebraically independent
invariant polynomials ¢1, ..., g4 such that C[p*]¥ is equal to Clg1,. .., ¢a], hence it
is isomorphic to the algebra of polynomials C[t,...,%4].

Ezample 4.3. In the case of Gl,, the invariant functions are the polynomials in the
coeflicients of the characteristic polynomial.

Let F be a finite codimensional ideal of C[p*]X. For example, if A € p*, then
F\={P—P()) | P €C[p*]*¥ } is finite codimensional.

Definition 4.4. The module MF is the quotient of Dx by the ideal generated by
7(¢) and F.

Proposition 4.5. Mg is a holonomic Dy-module

The characteristic variety of M is a subset of 7*p which isomorphic to p x p*. If
p* is identified to p by the non degenerate bilinear form «, the characteristic variety
may be defined as a subset of p x p. Let n be the set of nilpotent elements of p,
then

ChM) C{(X,Y)epxp|[X,Y]=0,Y €n}

59




60

Regularity of a D-modules associated to a symmetric pair

Proof. Let B :p — p* the isomorphism given by &(X,Y) = <X, B(Y)>.

Let (X,Y) € Ch(M), then for all 4 € ¥, <[4, X],B(Y)> = 0. So we have
k(4,[X,Y)) = ([4, X],Y) = <[4, X], B(Y)> = 0 and as « is non degenerate on
¢, this implies [X,Y] = 0.

On the other hand, the graduate of F is F, the set of invariant polynomials
vanishing at 0, and the common roots of these polynomial are exactly the nilpotent
elements. d

Now our main theorem is

Theorem 4.6. The Dy-module MF is holonomic regular.

This shows in particular that all hyperfunctions solutions of this system of partial
differential equations are distributions.

A VERY SIMPLE EXAMPLE: 5l3(C)

g = sl3(C) is the set of matrices ( ‘: _}ll >

regular orbits are given by {z?+yz =a}, a ;ﬁ 0 and there are 2 nilpotent orbits
{2? + yz = 0, (2,y,2) # (0,0,0)} and {(0,0,0)}.

C[g]€ is the set of functions f(z? + yz)

C[g*]€ is the set of functions (€% +4n¢)

7(g) is generated by the 3 vector fields

u= 21:6% — z?%

v=2zr gf’; -y

w= y-é-&- - Z-“a—z-

Then the module M, is given by the equations

u, v, W, (6—m—)2 +4—-—"=)
Its characteristic variety is the union of the zero section of 7*g and of the closure
of the conormal to the non-zero nilpotent orbit.

5. SKETCH OF PROOF FOR THE MAIN THEOREM

We shall give here an idea of the proof of the main theorem, details may be
found in [7].

The first step is a reduction to the nilpotent points. Any X € p has a Jordan
decomposition, that is may be written in a unique way as X = S+ N where S is
semi-simple, NV is nilpotent and [S,N] = 0. Then g° = {Z €g|[Z,S5]=0}isa
reductive Lie algebra and (g°,p°®) is a symmetric pair of dimension strictly lower
to the dimension of the initial pair if S # 0.

In a neighborhood of S, (g,p) is isomorphic to the product of ( g°,p5) by the
orbit of S and Mp is isomorphic to the product of a module NFg of the same kind
on p° by holomorphic functions on the orbit.

By induction on the dimension, A is regular hence Mp is regular in a neigh-
borhood Q of S. As Mp is invariant under the action of K, it is regular in a
neighborhood of the orbits which meet Q. The nilpotent orbits are conic hence S
is in the closure of the orbit of X and thus M is regular in a neighborhood of X.
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So we may now assume that S = 0, that is that X is nilpotent. We have to
prove that M is regular or quasi-regular along the nilpotent orbits and the second
step will be to consider the null orbit.

We consider the V-filtration associated to 0, that is given by the Euler vector
field of p, F = ing‘;’;—i. Here all is linear hence A = T{"O}p is 1dentified to p and
T*A is identified to T*p = p x p*.

Let us calculate the symbol o (c0,1)(7(P)) for the operators of 7(¥) and F':

a) If A € &, by definition 7(A)(f)(X) = £ f(exp(—tA).X)|t=0 and E(f)(X) =
gt-f(tX)[tzo hence they commute. So 7(A) is homogeneous of order 0 for the V-
filtration and by definition o (c0,1)(7(A)) = o(7(4)).

b) If P is an operator with constant coefficients, the V-filtration at 0 is the usual
filtration and again o4 (c0,1)(P) = o(P). So we have

Chp(eo)(M) C{(X,Y) Epxp|[X,Y]=0,Y €n} (5.1)

Remark that Tfo}p is not a component of the characteristic of M (because there
are always some Y which is not nilpotent) hence we do not have to verify that
ChA(oo,l)(M) CA.

Now we use inclusion (5.1) to show that Mf is regular along the other nilpo-
tent orbits. A nilpotent orbit & is conic hence defined by homogeneous functions
®1,---,%p, p; being homogeneous of degree m;.

In fact, it is known [9], that we can choose coordinates (z,t) in a neighborhood
of X € & such that ¢; =t; and 6 = 5 m,-tia—aﬁ is equal to E modulo vector fields
tangent to the orbits.

Applying the inverse image theorem (corollary 3.3) we deduce that

Che(oo,l)(M) = ChA(wnl)(M) - {(X)Y) EpXPp I [Xa Y} = 01Y € n}

Suppose that T&p is an irreducible component of the characteristic variety Ch(MpF)

and let z* be a generic point of Tgp, that is a point which does not belong to
other irreducible components of Ch(Mp). We have Tgp C Ch(Mp) C (p x
N(p)) N C(p) and as they have the same dimension, they are equal generically. So
Ch® (c0,1)(MF) = T&yp generically on Tgp and M is quasi-regular along the orbit.
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