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REGULARITY OF $D$-MODULES ASSOCIATED TO $\mathrm{A}$

SYMMETRIC PAIR: A CONJECTURE BY SEKIGUCHI

YVES LAURENT

1. JNTRODUCTION

Let $G_{\mathrm{R}}$ be a real semi-simple Lie group, $91\mathrm{R}$ its Lie algebra. A differential operator
on $G_{\mathrm{R}}$ is $\mathrm{b}\mathrm{i}$-invariant if it is invariant under the left and the right actions of $G_{\mathrm{R}}$

on itself. A distribution $T$ on $G_{\mathrm{B}}$ is an invariant eigendistribution if $T$ is invariant
under the adjoint action of $G_{\mathrm{R}}$ and $T$ is an eigenvalue of each $\mathrm{b}\mathrm{i}$-invariant operator
on $G_{\mathrm{B}}$ . The characters of irreducible representations of $G_{1\mathrm{R}}$ satisfy these properties.
A classical theorem of Harish-Chandra asserts:

Theorem LL Any invariant eigendistribution is $L_{lo\mathrm{c}}^{1}$ .

After transfer to the Lie algebra by the exponential map and conjugation by
a suitable function, $T$ is solution of a holonomic $D$-module $\mathcal{M}_{\lambda}$ defined on the
complexification 9 of $\mathfrak{g}_{\mathrm{J}\mathrm{R}}$ . In this paper, we will consider only complex Lie groups
and Lie algebras.

The module $AA_{\lambda}$ has been studied by R. Hotta and M. Kashiwara [2]. In partic-
ular, using a variant of Harish-Chandra theorem, they proved that this module is
regular holonomic. Let us recall that a $/D$-module is holonomic if its characteris-
tic variety is lagrangian while regularity is a generalization of Puchsian differential
equation. If $\mathcal{M}$ is holonomic regular, its formal solutions are convergent, its solu-
tions holomorphic outside a hypersurface are meromorphic and in the real domain,
hyperfunction solutions are distributions.

A natural extension of the action of a semi-simple Lie group on its Lie algebra
is a symmetric pair. If 9 is a reductive Lie algebra with an involution, it splits into
its even and odd part, $\mathfrak{g}$

$=\epsilon$ a $\mathfrak{p}$ . The Lie group If associated to $\not\in$ acts on $\mathfrak{p}$ and
we say that $(\mathfrak{g}, \mathfrak{p})$ is a symmetric pair. The module $\mathrm{V}_{\lambda}$ may still be defined in this
case.

J. Sekiguchi proved that Harish-Chandra’s theorem is not true in general and
defined a condition on symmetric pairs under which the theorem is true (for hyper-
functions and for distributions). He conjectured that the module is regular [9].

We want to show here that

Theorem 1.2. The module $\mathrm{U}_{\lambda}$ is holonomic regular for any symmetric space.

We will not give all the details of the proof which may be found in [7],

2. MICROCHARACTERISTIC VARIETIES AND REGULARITY

Let $X$ be a complex analytic manifold and $Y$ be submanifold of $X\iota$ We denote by
$p:T_{Y}Xarrow$t $X$ its normal bundle and by $\pi$ : $T_{\mathrm{Y}}^{*}Xarrow X$ its conormal bundle. Remark
that the duality between the fiber bundles $TyX$ and $T_{\mathrm{Y}}^{*}X$ defines an isomorphism
$T^{*}T_{Y}X\simeq$ T*TY*X. We will also denote $\mathrm{A}=T_{Y}^{*}X$ .
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Let $\mathrm{I}_{Y}$ be the ideal of $O_{X}$ defining $Y$ Kashiwara’s $V$-filtration [3] is defined on
differential operators by:

$V_{k}D_{X}=\{ P\in Dx |_{Y}| Il\in \mathbb{Z}_{i}P\mathrm{I}_{Y}^{l}\subset \mathrm{I}_{Y}^{l+k}\}$ (2.1)

with $\mathrm{I}_{Y}^{l}=Ox$ if $l\leq 0$ ) $.$

In local coordinates such that $Y=\{(x, t)\in X|t =0\}$ , the operators $x_{i}$ and
$\frac{\partial}{\partial x_{i}}$ are of order 0 for the V- filtration while operators $t_{\mathrm{j}}$ are of order -1 and $\frac{\partial}{\partial t_{j}}$

of order +1.
By definition, the associated graded ring gryVx $=\oplus V_{\mathrm{A}}.Dx/V_{k-1}D_{X}$ operates

on $\oplus \mathrm{I}_{Y}^{k}/\mathrm{I}_{Y}^{k-1}$

.
. Let $\mathcal{O}_{[T_{Y}X]}$ be the sheaf of holomorphic functions on $TyX$ which

are polynomial in the fibers of $p$ : $T_{Y}Xarrow X$ There is a canonical isomorphism
$\oplus \mathrm{I}_{Y}^{k}/\mathrm{I}_{Y}^{k-1}\simeq p_{*}\mathcal{O}_{[T_{Y}X]}$ which defines an identification of grvDx with $p_{*}D[T_{Y}X]$ ,

the sheaf of differential operators on $TyX$ with coefficients in $\mathcal{O}_{[T_{Y}X]}$ .
Let $P\in D_{X}$ be a differential operator on $X$ and denote by $\sigma_{Y}$ $(P)$ its image

in gryVx . As $\sigma_{Y}(P)$ is an operator on $7_{Y}$ X, its principal symbol $\sigma(\sigma_{Y}(P))$ is a
function on the cotangent bundle $T^{*}T_{Y}X$ hence as a function on $7” \mathrm{A}$ through the
isomorphism $T^{*}TYX\simeq T^{*}\Lambda$ (see [6] for the details).

Then we say that the differential operator $P$ is regular along $\Lambda=T_{Y}^{*}X$ if the
order of $\sigma_{Y}(P)$ is equal to the order of $P$ , (here the order is the usual order of
djfferential operators) and define:

$\sigma_{\mathrm{A}}(\infty,1)(P)=\{$

$\sigma(\sigma_{Y}(P))$ , if $\mathrm{P}$ is regular
0: otherwise.

(2.2)

Let I be a coherent ideal of $Dx$ and Ill be the Z)$X$ -module Z)$X/\mathrm{I}$ . As is well
known, the characteristic variety of $\mathcal{M}$ is given by

$Ch(\mathcal{M})$ $=$ { $(x,$ $5$ $)\in T^{*}X|\forall P\in$ I, $\sigma(P)(x,\xi)=0$ }
In the same way we define the microcharacteristic variety of $\mathcal{M}$ as the analytic

subset of $T^{*}\Lambda$ given by
$Ch_{\Lambda(\infty,1)}(\mathcal{M})=$ { $\mathrm{X}\in T^{*}\Lambda|\forall P\in$ I, $\sigma_{\Lambda}(\infty,1)(P)(\lambda)=0$ }

This definition may be extended to any coherent $D_{X}$-module $\mathcal{M}$ by means of a
bifiltration (see $[8][5][6]$ ) but we will not use this here.

Assume now that $\mathcal{M}$ is holonomic. Then its characteristic variety is lagrangian
and its irreducible components are generically the conormal to a submanifold of $X$ .

So if A is an irreducible component of the characteristic variety of $\mathrm{M}$ , we say that
$\mathcal{M}$ has regular singularities along A if $Ch_{\Lambda}(\infty,1)(\mathcal{M})=$ A on a dense open subset
of A. It has been proved in [5, Theorem 3.1.7.] that this definition is equivalent to

the original one given by Kashiwara-Kawai in [4, Definition 1.1.11.].

Definition 2.1. (Kashiwara-Kawai [4]) A holonomic $D_{X}$ -module $\mathcal{M}$ is regular if
it has regular singularities along each irreducible component of its characteristic
variety.

3. QUASI-HOMOGENEOUS MICROCHARACTERISTIC VARIETY

The definitions of section 2 are associated to the canonical action of $\mathbb{C}$ on the
fibers of $T_{Y}^{*}X$ . Here we will give similar definitions in a quasi-homogeneous case.
Intrinsic definitions have been given in [1] but for simplicity, we will give them here
in local coordinates.
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So let $Y=$ $\{(x_{1}, \ldots, x_{P}, t_{1}, \ldots t_{d})\in X|t=0\}$ , $(m_{1}, \ldots , m_{d})$ strictly positive
relatively prime integers and consider the vector field $\theta_{m}=\sum_{i=1}^{d}m_{i}t_{i}\frac{\partial}{\partial t}$. $\cdot$

We say that $P$ is quasi-homogeneous of degree $k$ if $[P, \theta_{m}]=kP$ and that $P$

i $\mathrm{s}$ of order $k$ for the $V^{\theta_{m}}$ -filtration if $P$ may be written as a (convergent) series
$\sum_{l\leq k}P_{l}$ with $P_{l}$ homogeneous of degree 1. Remark that if all $m_{i}$ are equal to 1,
this filtration is the ’-filtration (2.1).

If $P= \sum_{l<k}P_{l}$ with $P_{l}$ homogeneous of degree $l$ and $P_{k}\not\equiv 0,$ we denote $\sigma_{Y}(P)=$

$P_{k}$ and say $\mathrm{t}\overline{\mathrm{h}}\mathrm{a}\mathrm{t}P$ is quasi-regular along $Y$ if the order of $r_{Y}(P)$ is equal to the
order of $P$ . We define $\sigma_{\Lambda^{m}}^{\theta}(\infty,1)(P)$ by the formula (2.2) and the microcharacteristic
variety $Ch_{\Lambda}^{\theta_{m}}(\infty,1)(\mathcal{M})$ .

Let $\mathrm{M}$ $=$ $Dx/\mathrm{I}$ be a holonomic ’

$Dx$ -module. If A is an irreducible comp0-

nent of the characteristic variety of A $\mathrm{f}$ , we say that $!\mathrm{i}$ is quasi-regular along A if
$Ch_{\Lambda^{m}}^{\theta}$ $(\infty,1)(\mathcal{M})$ $=$ A on a dense open subset of A.

Theorem 3.1. [7, Corollary 1.4.4] A holonomic module is regular if it is regular
or quasi-regular along each irreducible component of its characteristic variety.

This theorem has been proved in [7] using a ramification map $(t_{1}, \ldots\dot{\prime}t_{d})\vdash+$

$(t_{1}^{m_{1}}$ , . . . , $t_{d}^{m_{d}}$ $)$ and the fact that regularity is preserved under inverse and direct
image (Kashiwara-Kawai [4]).

We will now show that, under suitable conditions, the microcharacteristic vari-
eties are preserved under inverse images. Let $\varphi$ : $Zarrow X$ be an analytic map. A
vector field $u$ on $Z$ is said to be tangent to the fibers of $\varphi$ if $u(f\mathrm{o}\varphi)=0$ for all $f$ in
$\mathcal{O}_{X}$ . A differential operator $P$ on $Z$ is said to be invariant under $\varphi$ if there exists
a differential operator $A$ on $X$ such that $P(f\circ\varphi)=A(f)0\varphi$ for all $f$ in $Ox$ . If
$\varphi$ has a dense range in $X$ , $A$ is uniquely determined by $P$ and we will denote by
$A=\varphi_{*}(P)$ the image of $P$ in $Dx$ under this ring homomorphism.

Let $Z=\mathbb{C}^{p+d}$ and $\varphi$ : $Zarrow X=\mathbb{C}^{d}$ defined by $(\varphi_{1}, \ldots, \varphi_{d})$ where $\mathrm{c}_{\mathrm{j}}$ is
homogeneous of degree $m_{j}$ . Let $E$ be the Euler vector field and $0= \sum$ with $\frac{\partial}{\partial t}\dot{.}$ .

Let $\mathrm{Z}$ be an ideal of $Dz$ which is generated by all the vector fields tangent to the
fibers of $\varphi$ and by a finite set $(P_{1}, . . , \}P_{t})$ of differential operators invariant under
$\varphi$ . Let $J$ be the ideal of $Dx$ generated by $(\varphi_{*}(P_{1}), \ldots, \varphi_{*}(P_{l}))$ . Let $\mathrm{M}$ $=$ $D\mathrm{z}/1$

and $/\mathrm{V}=r_{X}/\mathit{3}$ and put on A{ and $N$ the filtrations induced by $VD_{Z}$ and $V^{\theta}D_{X}$ .
The modules A4 and $\mathrm{A}/$ are also provided by the filtrations induced by the usual
filtrations (by the order) of $D_{Z}$ and $D_{X}$ , we say that they are bi-filtrated.

Theorem 3.2. [7, Proposition 2.3.2.] There exists a canonical morphism of Dz-
modules $\mathcal{M}arrow$ $\mathrm{p}’ \mathrm{A}$ which is a morphism of $b\prime i$-filtrated modules and an isomorphism
at the points where 7’ is a submersion.

Let $Y=\varphi^{-1}(\{0\})$ and $x$ be a point of $Y$ where $\varphi$ is a submersion. In a neigh-
borhood of $x$ , $Z$ is isomorphic to $X\cross Y$ and if we fix such an isomorphism, 0 which
is a vector field on $X$ may be considered as a vector field on $Z$ . Remark that 0
differ from $E$ by a vector field tangent to / $\cdot$ Then:

Corollary 3.3. The microcharacteristic variety $Ch_{Y}(\infty 1))(\mathcal{M})$ is equal to $Ch^{\theta}(\infty,1)(\mathcal{M})$

in a neighborhood of $x$ .
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4. SYMMETRIC PAIRS

Let $G$ be a complex reductive Lie group and 9 its Lie algebra. Then $\mathrm{g}$
$=\mathrm{c}\oplus$ [g. $\mathfrak{g}$]

where $\mathrm{c}$ is the center and $[\mathfrak{g}\dot, \mathrm{g}]$ is a semi-simple Lie algebra. For example, $\mathfrak{g}\mathfrak{l}_{n}(\mathbb{C})=$

$\mathbb{C}\oplus$ B $\mathfrak{l}_{n}(\mathbb{C})$ .
If $X\in$ g, $AdX$ is the endomorphism of 9 given by $Y\mathrm{k}arrow[X, Y]$ . The Killing

form on $[\mathrm{g}, \mathrm{g}]$ is defined by $\kappa 0(X, Y)=$ Trace(AdXAdY). Let us choose a non-
degenerate $G$-invariant symmetric bilinear form $\kappa$ on 9 such that its restriction to
$[\mathfrak{g}, \mathfrak{g}]$ is $\kappa_{0}$ . Let $\theta$ be an involutive automorphism on 9 preserving $\kappa$ , we define

$\not\in$ $=Ker(\theta-I)$ and $\mathfrak{p}$ $=Ker(\theta+I)$ .
Then $\mathfrak{g}$ $=$ f $\oplus \mathfrak{p}$ and the pair $(\mathrm{g}, \mathfrak{p})$ or $(\mathfrak{g}, \theta)$ is called a symmetric pair. Here $\epsilon$ is

a reductive Lie algebra and $K$ , the subgroup of $G$ associated to $\epsilon$ , acts on $\mathfrak{p}$ by the
adjoint action.

Example 4.1. (diagonal) If $G_{0}$ is a reductive Lie group, 90 its Lie algebra, $\mathfrak{g}$ $=90\oplus 90$

and $\theta(x, y)=(y_{1}x)$ , $K$ is equal to $G_{0}$ acting on its Lie algebra 90.

Example 4.2. If $G=$ gln(C) and $\mathfrak{g}$ $=$ $5/\mathrm{n}$ $(\mathbb{C})$ with $\mathrm{t}(\mathrm{A})=-tr(4)$ , we find that $\mathrm{t}$ is
the Lie algebra of antisymmetric matrices, and $K=SO_{n}(\mathbb{C})$ acts on $\mathfrak{p}$ the set of
symmetric matrices.

We will no$\mathrm{w}$ defines the holonomic $\mathrm{P}$-modules associated to a symmetric pair.
As $\mathfrak{p}$ is a vector space, $T\mathfrak{p}-\sim \mathfrak{p}$ /’ $\mathfrak{p}$ . Any $A\in\epsilon$ defines a vector field on $\mathfrak{p}$ tangent to
the orbits by the map $\tau(A)(X)=(X, [X, A])$ from $\mathfrak{p}$ to $T\mathfrak{p}$ $\simeq \mathfrak{p}$ $\cross \mathfrak{p}.$ The action of
$\mathrm{t}(\mathrm{A})$ on a function $f$ on $\mathfrak{p}$ is given by:

$\tau(A)(f)(X)=\frac{d}{dt}f(\exp(-tA).X)|_{t=0}$

The set $\tau(\mathrm{t})$ of all vector fields $\tau(A)$ for $A\in$ g generates the vector fields tangent
to the orbits.

Let $\mathfrak{p}^{*}$ the dual of $\mathfrak{p}$ (as a $\mathbb{C}$ vector space) , then an element $P$ of $\mathbb{C}[\mathfrak{p}^{*}]$ (polynomial
functions on $\mathfrak{p}^{*}$ ) defines a differential operator with constant coefficients on $\mathfrak{p}$ by
$P( \xi)-\succ P(\frac{\partial}{\partial x})$ . The set $\mathbb{C}[\mathfrak{p}^{*}]^{K}$ of polynomials on $\mathfrak{p}^{*}$ invariant under the action
of $K$ is very simple by Chevalley theorem: there are algebraically independent
invaria.nt polynomials $q_{1}$ , $\ldots$ , $q_{d}$ such that $\mathbb{C}[\mathfrak{p}^{*}]^{K}$ is equal to $\mathbb{C}[q_{1}, \ldots , q_{d}]$ , hence it
is isomorphic to the algebra of polynomials $C[t_{1}, \ldots, t_{d}]$ .

Example 4.3. In the case of $Gl_{n}$ the invariant functions are the polynomials in the
coefficients of the characteristic polynomial.

Let $F$ be a finite codimensional ideal of $\mathrm{t}_{\vee}^{\cap}[\mathfrak{p}^{*}]^{K}$ . For example, if $\lambda\in p’$
) then

$F_{\lambda}=\{P-P(\lambda)|P\in \mathbb{C}[\mathfrak{p}^{*}]^{K}\}$ is finite codimensional.

Definition 4.4. The module $\mathrm{A}\mathrm{i}_{F}$ is the quotient of $\mathrm{I})_{X}$ by the ideal generated by
$\tau(\mathrm{t})$ and $F$ .

Proposition 4.5. $\mathcal{M}_{F}$ is a holonomic $D_{\mathrm{p}}$ module

The characteristic variety of $\mathcal{M}$ is a subset of $T^{*}\mathfrak{p}$ which isomorphic to $\mathfrak{p}\cross \mathfrak{p}^{*}$ . If
$\mathfrak{p}^{*}$ is identified to $\mathfrak{p}$ by the non degenerate bilinear form $\kappa$ , the characteristic variety
may be defined as a subset of $\mathfrak{p}$

$\cross$ p. Let $\mathfrak{n}$ be the set of nilpotent elements of $\mathfrak{p}$ ,
then

$C$’ $h(\mathcal{M})\subset\{(X, Y)\in \mathfrak{p} \cross \mathfrak{p} |[X, Y]=0, Y\in\iota\iota\}$
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Proof. Let $B$ : $\mathfrak{p}$ $arrow$ $\mathfrak{p}$

’ the isomorphism given by $/\{(X, Y)=<X$ , $B(Y)>$ .
Let $(X, Y)\in Ch(\mathcal{M})$ , then for all $A\in$ t, $<[A, X]$ , $B(\mathrm{Y})>=0.$ So we have

$\kappa(A, [X, Y])$ $=\kappa([ 4, X], Y)=<[4, X]$ , $B(Y)>=0$ and as $\kappa$ is non degenerate on
\S , this implies $[X, Y]=0.$

O $\mathrm{n}$ th$\mathrm{e}$ other hand, the graduate of $F$ is $F_{0}$ the set of invariant polynomials
vanishing at 0 and the common roots of these polynomial are exactly the nilpotent

$\square$

elements.

Now our main theorem is

Theorem 4.6. The $D_{\mathrm{P}}$ module $\mathcal{M}_{F}$ is holonomic regular.

This shows in particular that all hyperfunctions solutions of this system of partial
differential equations are distributions.

A VERY SIMPLE EXAMPLE: $\mathrm{s}\mathrm{F}_{2}(\mathbb{C})$

$9=$ $\mathrm{p}[_{2}$ $(\mathbb{C})$ is the set of matrices $(\begin{array}{ll}x yz -x\end{array})$

regular orbits are given by $\{x^{2}1yz=a\}$ , $a\neq 0$ and there are 2 nilpotent orbits
$\{x^{2}+yz= 0, (x, y, z)\neq(0,0, 0)\}$ and $\{(0,0,0)\}$ .

$\mathbb{C}[\mathfrak{g}]^{G}$ is the set of functions $f(x^{9}. +yz)$

$\mathbb{C}[\mathrm{g}^{*}]^{G}$ is the set of functions $f(\xi^{2}+4\eta\zeta)$

$\tau(\mathfrak{g})$ is generated by the 3 vector fields
$u=2x \frac{\partial}{\partial y}-z\frac{\partial}{\partial x}$

$v=2x \frac{\partial}{\partial_{\vee}}$, $-y \frac{\partial}{\partial x}$

$Ej)$ $=y \frac{\partial}{\partial y}-z\frac{\partial}{\partial z}$

Then the module A $\mathrm{f}_{\lambda}$ is given by the equations

$u$ , $v$ , $w$ , $( \frac{\partial}{\partial x})^{2}+4\frac{\partial}{\partial y}\frac{\partial}{\partial z}-\lambda$

Its characteristic variety is the union of the zero section of T’9 and of the closure
of the conormal to the non-zero nilpotent orbit.

5. SKETCH OF PRO OF FOR THE MAIN THEOREM

We shall give here an idea of the proof of the main theorem, details may be

found in [7].
The first step is a reduction to the nilpotent points. Any $X\in \mathfrak{p}$ has a Jordan

decomposition, that is may be written in a unique way as $X=S+N$ where $S$ is
semi-simple, $N$ is nilpotent and $[S, N]=0$ . Then $\mathfrak{g}^{S}=\{Z\in \mathfrak{g} |[Z, 5] =0\}$ is $\mathrm{a}$

reductive Lie algebra and $(\mathrm{g}^{S}, \mathfrak{p}^{\mathit{8}})$ is a symmetric pair of dimension strictly lower

to the dimension of the initial pair if $S\neq 0.$

In a neighborhood of $S$ , $(\mathfrak{g}, \mathfrak{p})$ is isomorphic to the product of $(\mathfrak{g}^{S}, \mathfrak{p}^{S})$ by the

orbit of $S$ and $\mathcal{M}p$ is isomorphic to the product of a module $5^{(/_{F}}$ , of the same kind
on $\mathfrak{p}^{S}$ by holomorphic functions on the orbit.

By induction on the dimension, $N_{F’}$ is regular hence $\mathcal{M}_{F}$ is regular in a neigh-
borhood 0 of $S$ . As $\mathcal{M}_{F}$ is invariant under the action of $K$ , it is regular in a
neighborhood of the orbits which meet 0. The nilpotent orbits are conic hence $S$

i$\mathrm{s}$ in the closure of the orbit of $X$ and thus $\mathcal{M}_{F}$ is regular in a neighborhood of $X\iota$
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So we may now ass une that $\mathrm{S}$ $=0,$ that is that $X$ is nilpotent. We have to
prove that $AA$ is regular or quasi-regular along the nilpotent orbits and the second
step will be to consider the null orbit.

We consider the $V$-filtration associated to 0 that is given by the Euler vector
field of $\mathfrak{p}$ , $E= \sum x_{i}\frac{\partial}{\partial x_{i}}$ . Here all is linear hence $\Lambda=T_{\{0\}}^{*}$ p is identified to $\mathfrak{p}$ and
$T’\Lambda$ is identified to $T^{*}\mathfrak{p}=\mathfrak{p}$ $\cross \mathfrak{p}^{*}$ .

Let us calculate the symbol $\sigma_{\Lambda}(\infty,1)(\tau(P))$ for the operators of $\tau(\not\in)$ and $F$ :
a) If $A\in$ e, by definition $\mathrm{y}$

$(A)(f)( arrow \mathrm{t})=\frac{d}{dt}f(\exp(-tA).X)|_{t=0}$ and $E(f)(X)=$
$\frac{d}{dt}f(tX)|_{t=0}$ hence they commute. So $\tau(A)$ is homogeneous of order 0 for the V-
filtration and by definition $\sigma_{\Lambda}(\infty,1)(\tau(A))=\sigma(\tau(A))$ .

b) If $P$ is an operator with constant coefficients, the $V$-filtration at 0 is the usual
filtration and again $\sigma_{\Lambda}(\infty,1)(P)$ $=\sigma(P)$ . So we have

$Ch_{\Lambda}(\infty,1)(\mathcal{M})\subset\{(X, Y)\in \mathfrak{p} \cross \mathfrak{p} |[X, Y]= 0, Y\in \mathfrak{n}\}$ (5.1)

Remark that $T_{\{0\}}^{*}$ p is not a component of the characteristic of $\mathcal{M}$ (because there
are always some $Y$ which is not nilpotent) hence we do not have to verify that
$Ch_{\Lambda(\infty,1)}(\mathcal{M})\subset$ A.

Now we use inclusion (5.1) to show that $\mathcal{M}_{\lambda}^{F}$ is regular along the other nilp0-
tent orbits. A nilpotent orbit 6 is conic hence defined by homogeneous functions
$\varphi_{1,)}\ldots\varphi_{p}$ , $\varphi_{i}$ being homogeneous of degree $m_{i}$ .

In fact, it is known [9], that we can choose coordinates $(x, t)$ in a neighborhood
of $X\in \mathfrak{S}$ such that $\varphi_{i}=t_{i}$ and $\theta=\sum m_{i}t_{i}\mathit{5}$ is equal to $E$ modulo vector fields
tangent to the orbits.

Applying the inverse image theorem (corollary 3.3) we deduce that
$Ch^{\theta}(\infty,1)(\mathcal{M})=Ch_{\Lambda}(\infty,1)(\mathcal{M})\subset$ $\{ (X, Y)\in \mathfrak{p} \cross \mathfrak{p} | [X, Y]=0, Y\in \mathfrak{n}\}$

Suppose that $T_{\mathfrak{S}}^{*}\mathfrak{p}$ is an irreducible component of the characteristic variety $Ch(.t4_{F})$

and let $x^{*}$ be a generic point of $T_{\mathfrak{S}}^{*}\mathfrak{p}$ , that is a point which does not belong to
other irreducible components of $Ch(\mathcal{M}_{F})$ . We have $T_{\mathrm{t}5}^{*}\mathfrak{p}$ $\subset Ch(\mathcal{M}_{F})\subset(\mathfrak{p}$ $\cross$

$\mathrm{N}(\mathrm{P}))\cap C(\mathfrak{p})$ and as they have the same dimension, they are equal generically. So
$Ch^{\theta}(\infty,1)(\mathcal{M}F)=T_{\mathfrak{S}}^{*}\mathfrak{p}$ generically on 7 $\mathfrak{S}*\mathfrak{p}$ and $\mathcal{M}$ is quasi-regular along the orbit.
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