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We dedicate this paper to

Professor Louis Boutet de Monvel

with our sincerest congratulations on his being a warded Prix de VEtat (Academie des
Science).

One of the central issues of this article is the introduction of the notion of virtual
tu rning points for higher order Painlevi equations, and trvo of the authors (Kawai
and $Takei)_{f}$ together with T. Aoki, fondly remember the stimula tlng and comfort-
able conference (Algebraic analysis of singular perturbations, 1991), which Profes-
sor Boutet de Monvel, together with Professor M. Sato, organized, and where the
notion of a $v\dot{z}\hslash ual$ turning point for linear ordinary differential equations was first
made public (under the modest name ‘la new turning point”). The notion of virtual
turning points is one of the most important gifts to the exact $WKB$ analysis from
microlocal andysis, and hence we believe this article to be most appropriate to ded-
icate to Professor Boutet de $Monvel_{\mathit{3}}$ who has made substantial contributions to the
development of microlocal analysis and asymptotic analysis.

1 Introduction
As was first discovered numerically by Nishikawa [Nl, N2], Stokes curves of higher
order Painlev6 equations cross in general and some degeneracy of Stokes geometry
of the underlying Lax pair is often observed along a curved ray emanating from
such a crossing point of Stokes curves (”Nishikawa phenomenon ). To analyze this
intriguing phenomenon we investigated in [KKNT] several properties of the curved
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ray, which we named a “new Stokes curves , by making full use of the underlying Lax
pair. The analysis done in [KKNT] tells us that introduction of new Stokes curves is
inevitable to obtain a complete description of the global Stokes geometry of higher
order Painlev6 equations. In this report, using the results of [KKNT], we discuss
how to obtain the “complete Stokes geometry” of higher order Painleve’ equations.

Similar phenomena, that is, crossing of Stokes curves and the necessity of in-
troducing new Stokes curves, were first observed by Berk-Nevins-Roberts [BNR] for
a third order linear ordinary differential equation. Later Aoki-Kawai-Takei [AKT]
pointed out that such a new Stokes curve for a higher order linear equation can be
interpreted as a Stokes curve emanating from a “virtual turning point” (it was called
a “new turning point” in [AKT] $)$ . In this report we introduce the notion of a virtual
turning point for a higher order Painlev6 equation and, using virtual turning points
and new Stokes curves emanating from them, we present an explicit procedure for
determining the complete Stokes geometry of higher order Painleve’ equations.

For the sake of definiteness we restrict our consideration here to the first Painlev\’e
hierarchy (“Painlev\’e-I hierarchy” or “Pj-hierarchy”): We recall the formulation of
the $7_{\mathrm{I}^{-}}$hierarchy in 52 and review the definition of its Stokes geometry in \S 3. In
\S 4 we explain (an example of) the Nishikawa phenomenon in the case of the fourth
order Painlev\’e-I equation. After these preparations we define a virtual turning point
in \S 5 and finally in \S 6 we discuss the complete description of the Stokes geometry
for the $P_{\mathrm{I}}$ hierarchy

2 $P_{\mathrm{I}}$ hierarchy
The $P_{\mathrm{I}}$-hierarchy with a large parameter $\eta$ is the following family of systems of first
order nonlinear differential equations:

Definition 1. Pi-hierarchy with a large parameter q)

$(ffl)_{m}$ $\{$

$\frac{du_{j}}{d\mathrm{t}}=2\eta v_{j}$ (1.a)

$\frac{dv_{j}}{dt}=27(u_{\mathrm{j}+1}+u_{1}u_{j}\mathit{4}w_{j})$ (1.b)

$(j=1, \ldots,m)$ , where $n_{j}$ and )
$j$ are unknown functions (we conventionally assume

$u_{m+1}\equiv 0)$ and $w_{j}$ is a polynomial of $u_{k}$ and $v_{l}(1\leq k, l\leq j)$ determined by the
following recursion formula:

(2) $w_{j}= \frac{1}{2}(\sum_{k=1}^{j}u_{k}u_{j+1-k})+\sum_{k=1}^{j-1}u_{k}w_{j-k}-\frac{1}{2}(\sum_{k=1}^{j-1}v_{k}v_{j-k})+c_{j}+\delta_{jm}t$

$(j=1, \ldots, m)$ . Here $c_{j}$ is a constant and $\delta_{jm}$ stands for Kronecker’s delta.
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The $P_{\mathrm{I}}$-hierarchy was first introduced by Kudryashov ([K], [KS]) through the
reduction of the $\mathrm{K}\mathrm{d}\mathrm{V}$ hierarchy, and studied by Gordoa and Pickering ( $[\mathrm{G}\mathrm{P}]\mathrm{J}$ and
by Shimomura ([SI, S2, S3]) from different points of view respectively. The above
expression is a slight modification of the formulation of Shimomura [S2, S3], where
the $P_{\mathrm{I}}$-hierarchy is derived from the most degenerate Gamier system.

Remark 1. (i) $(P_{\mathrm{I}})_{1}$ is equivalent to the following equation that $u_{1}$ satisfies:

(3) $u_{1}’=\eta^{2}(6u_{1}^{2}+4c_{1}+4t)$ .

Thus $(P_{\mathrm{I}})_{1}$ can be reduced to the traditional Painlev6 I equation with a large pa-
rameter $\eta$ (in the notation of [KT1, $\mathrm{K}\mathrm{T}2]$ etc.).
(ii) $(P_{\mathrm{I}})_{2}$ is equivalent to

(4) $u_{1}^{\prime\prime//}=\eta^{2}(20u_{1}u_{1}’+10(u_{1}’)^{2})-\eta^{4}(40u_{1}^{3}+16c_{1}u_{1}-16c_{2}-16t)$ .

(iii) $(ffl)_{3}$ is equivalent to

(5) $t_{1}=\eta^{2}((6)28u_{1}u_{1}^{(4)}+ 56\mathrm{t}\mathrm{z}7u_{1}^{(3)}+42(u_{1}’)^{2})$ $-\eta^{4}(280u_{1}^{2}u_{1}’+$ $280u_{1}(u_{1}’)^{2}$

$+16c_{1}u_{1}^{\prime/})+\eta^{6}(280u_{1}^{4}+96c_{1}u_{1}^{2}-64c_{2}u_{1}-32c_{1}^{2}+64c_{3}+64t)$ .

As is confirmed in [KKNT], $(P_{\mathrm{I}})_{m}$ describes the compatibility condition of the
following 2 $\mathrm{x}2$ system of linear differential equations ( “Lax pair”):

$(L_{\mathrm{I}})_{m}$ $\{\begin{array}{l}\psi=0\psi=0\end{array}$ $(6.\mathrm{b})(6.\mathrm{a})$

with

(7) $A=(_{(2x^{m+1}-xU(x)+2W(x))/4}V(x)/2$ $-V(x)U(x)/2)$ ,

(8) $B=(_{u_{1}+}0x[2$ $02)$

Here $U(x)$ etc. denote the following polynomials in $x$ with coefficients $u_{j}$ etc.

(9) $U(x)=x^{m}- \sum_{j=1}^{m}u_{j}x^{m-j}$ ,

(10) $V(x)= \sum_{j=1}^{m}v_{j}x^{m-j}$ ,

(11) $W(x)= \sum_{j=1}^{m}n_{j}x^{m-j}$ .
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3 Stokes geometry of $(fl)_{m}$

Each member $(ffl)_{m}$ of the Painlev\’e-I hierarchy admits the following formal solution
$(\hat{u}_{j},\hat{v},\cdot)$ called “0-parameter solution” :

(12) \^u,$\cdot$ (t, $\eta$) $=\hat{u}_{j}$,o(t) $+\eta^{-1}\hat{u}_{j,1}(t)+\cdot$ . $\mathrm{f}$ .,
(13) $\hat{v}_{j}(t,\eta)=\hat{v}_{j}$, $\mathrm{o}(t)+\eta^{-1}ti_{j,1}$ $(t)+\cdot\cdot$ $1$ ,

where $\hat{v}_{j,0}\equiv 0(1\leq j\leq m),\hat{u}_{1}$ ,0 is algebraically determined, and the other $\hat{u}_{j}$ ,) ’s
($k=0$ and $2\leq j\leq m,$ or $k\geq 1$ ) and $\hat{v}_{j}$,)’s $(k\geq 1)$ are uniquely determined in a
recursive manner once (the branch of) $\hat{u}_{1}$ ,0 is fixed. (See [KKNT] for the details.)
Using this 0-parameter solution, we define the Stokes geometry (i.e., a turning point
and a Stokes curve) of $(P_{\mathrm{I}})_{m}$ in the following way (cf. [KKNT, Section 2.1]): We
first consider the linearized equation of $(ffl)_{m}$ at $(\hat{u}_{j},\hat{v}_{j})$ (sometimes called $” \mathrm{F}\mathrm{r}6\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{t}$

derivative” for short), that is, the linear part in $(\Delta u_{j}, \Delta \mathrm{z},\cdot)$ after the substitution
uj=\^uj $+\Delta uj$ and $vj=\hat{v}j+\Delta vj$ in $(ffl)_{m}$ .

$(\Delta P_{\mathrm{I}})_{m}$ $\{$

$\frac{d}{dt}Au_{j}$ $=2\eta\Delta v_{j}$ , (14 a)

$\frac{d}{dt}\Delta v:$ . $=27(\Delta u_{j+1}+\hat{u}_{1}\Delta u_{j}+\hat{u}_{j}\Delta \mathrm{u}_{1}+\Delta w_{j})$ , (14.b)

$(j=1, \ldots, m)$ , where $\Delta w_{\mathrm{j}}$ denotes

(15) $\Delta w_{j}=\sum_{k=1}^{j}(\frac{\partial w_{j}}{\partial u_{k}}|_{\mathrm{u}=\hat{\mathrm{u}},v=\hat{v}}\Delta u_{k}+\frac{\partial w_{j}}{\partial v_{k}}|_{\mathrm{u}=\mathrm{f}\mathrm{i}_{2}v=\hat{v}}\Delta v_{k})$

Note that $(\Delta P_{\mathrm{I}})_{m}$ is a system of first order linear ordinary differential equations for
$(\Delta u_{j}, \Delta v_{j})$ . The Stokes geometry of $(P_{\mathrm{I}})_{m}$ is then defined as follows:

Definition 2. A turning point (resp., Stokes curve) of $(P_{\mathrm{I}})_{m}$ is, by definition, a
turning point (resp., Stokes curve) of $(\Delta P_{\mathrm{I}})_{m}$ .
If we write $(\Delta ffl)_{m}$ as

(16) $\frac{d}{dt}$ $(\begin{array}{l}\Delta u\Delta v\end{array})=\eta C$(t, $\eta$ ) $(\begin{array}{l}\Delta u\Delta v\end{array})$

(where $\Delta u=t(\Delta u_{1}, . . . , \Delta u_{m})$ and $\Delta v$ are $m$-vectors and $C(t, \eta)$ is a formal power
series (in $\eta^{-1}$ ) with coefficients of $(2m)\mathrm{x}(2m)$ matrices), and if we let $C_{0}(t)$ denote
the top order part (i.e., the part of order 0 in q) of $C(t, \eta)$ , Definition 2 means that
a turning point of $(P_{\mathrm{I}})_{m}$ is a zero of the discriminant of the characteristic equation
$\det(\nu-C_{0}(t))=0,$ i.e., a turning point is a point where two characteristic roots
$\nu_{k}(t)$ and $\nu_{k’}(t)$ of $C_{0}(t)$ merge, and that a Stokes curve of $(P_{\mathrm{I}})_{m}$ emanating from a
turning point $\mathrm{r}$ is given by

(17) ${\rm Im} 7^{t}(\nu_{k}-\nu_{k’})dt=0$
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where $\nu_{k}(t)$ and $\nu_{k’}(t)$ are two characteristic roots of $C_{0}(t)$ that merge at $t=\tau$ .
To $\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{i}6^{r}$ which characteristic roots are relevant, we sometimes call a Stokes curve
defined by (17) “Stokes curve of type $(k, k’)$” and, furthermore, it is called $\zeta$‘of type
$k>k’$” when ${\rm Re}$ $7_{\tau}{}^{t}(\nu_{k}-\nu_{k’})dt>0$ holds on it.

It is proved in [KKNT, Proposition 2.1.3] that the characteristic equation $\det(\nu-$

$C_{0}(t))=0$ is always a polynomial of $\nu^{2}$ i $\mathrm{n}$ $\nu$ , i.e., it is of the form $f(\nu^{2}, t)$ where
$f=f(z, t)$ is a polynomial of degree $m$ in 2. Hence there are two kinds of turning
points for $(ffl)_{m}$ :

(i) A turning point where the degree 0 part (in $z$ ) of $f$ vanishes.

(ii) A turning point where the discriminant (with respect to $z$ ) of $f$ vanishes.

We call the former one a “turning point of the first kind”, and the latter one a
“turning point of the second kind”.

As is verified in [KKNT, Section 2.1], the Stokes geometry of $(P_{\mathrm{I}})_{m}$ thus defined
has close relationship with that of its underlying Lax pair $(L_{\mathrm{I}})_{m}$ (particularly of
its first equation (6.a) $)$ . Since this relationship between the two Stokes geometries
plays a crucially important role in the following discussions, let us review its core
part here.

We first substitute a 0-parameter solution $(\hat{u}_{j},\hat{v}_{j})$ of $(P_{\mathrm{I}})_{m}$ into the coefficients
$A$ and $B$ of its underlying Lax pair $(L_{\mathrm{I}})_{m}$ . Then they are accordingly expanded in
powers of $\eta^{-1}$ like

(18) $A=A_{0}+\eta^{-1}A_{1}+\cdots$ :

(19) $B=B_{0}+\eta^{-1}B_{1}+\cdot\cdot \mathrm{r}$

Similarly $U(x)$ , $V(x)$ and $W(x)$ given respectively by (9), (10) and (11) are also
expanded in powers of $\eta^{-1}$ ; we let $U_{l}(x, t)$ , $V_{l}(x, t)$ and $W_{l}(x, t)$ denote the coefficients
of $\mathrm{r}\mathrm{y}^{-1}$ in the expansion. After substituting the 0-parameter solution we now consider
the Stokes geometry of the underlying Lax pair $(L_{\mathrm{I}})_{m}$ , which is defined in terms of
the top order parts of these expansions. In particular, for the Stokes geometry of
the first equation (6.a) of $(L_{\mathrm{I}})_{m}$ we find the following

Proposition 1. (Cf. [KKNT, Proposition 2.1.1])
If we write the characteristic equation of $A_{0}$ as $\det$ (A $-A_{0}$ ) $=\lambda^{2}-Q_{0}(x, t)$ , then
the following holds

(20) $Q_{0}(x,t)(=- \det A_{0})=\frac{1}{4}(x+2\hat{u}_{1,0}(t))U_{0}(x,\mathrm{t})^{2}$ .

Proposition 1 implies that (the first equation of) the Lax pair $(L_{\mathrm{I}})_{m}$ has the
following two types of turning points;

$\mathrm{r}$ one simple turning point $x=-2\hat{u}_{1,0}(t)$ , which will be denoted by $r=a$(t) in
what follows,
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$\mathrm{o}$ $m$ double turning points given by roots of $U_{0}(x, t)$ $=x^{m}$ $-\text{\^{u}}_{1}$ , $\mathrm{o}(t)x^{m-1}-\cdots-$
$\hat{u}_{m}$, $\mathrm{o}(t)=0,$ which will be denoted by $x=b_{1}(l)$ , ... , $x=b_{m}(t)$ in what follows.

These turning points $x=a(t)$ and $x=b_{j}(\mathrm{t})$ of $(L_{\mathrm{I}})_{m}$ relate its Stokes geometry to
that of $(P_{\mathrm{I}})_{m}$ in the following manner: First, we can verify that $\pm 2\sqrt{x+2\hat{u}_{1,0}(t)}|_{x=b_{j}(t)}$

gives a characteristic root of $C_{0}$ , the top order part of the coefficient matrix of
$(\Delta P_{\mathrm{I}})_{m}$ , for $j=1,$ . . . , $m$ (cf. [KKNT, Proposition 2.1.3]). In what follows we label
the characteristic roots of $C_{0}$ by $(j, \pm)$ , i.e., a combination of the index 7 and the
sign, so that the relations

(21) $\nu_{j,\pm}=\pm 2\sqrt{x+2\hat{u}_{1,0}(t)}|_{ae=b_{j}(t)}$

may be satisfied. Note that $\nu_{j,+}+\nu_{j,-}=0$ holds for every $j$ . Then the main relations
between the two Stokes geometries can be stated in the following propositions.

Proposition 2. ([KKNT, Proposition 2.1.4])
(i) Let $t=\tau^{\mathrm{I}}$ $be$ a turning point of the first kind of $(ffl)_{m}$ . Then at $t=\tau^{\mathrm{I}}$ a double
trrrning point $x$ $=b_{j}(t)$ merges with the simple turning point $x=a$ (t) in the Stokes
geometry of (6.a). Consequently the two characteristic roots $\nu_{j,\pm}$ of $C_{0}$ merge and
vanish at $t=\tau^{\mathrm{I}}$ . $h\hslash hermore$ the following relation holds:

(22) $\frac{1}{2}\int_{\tau^{1}}^{t}(\nu_{j,+}-\nu_{j,-})dt=2\int_{a}’ \mathrm{j}_{)}^{(}$

’
$\sqrt{Q_{0}(x,t)}$dx.

(ii) Let $t$ $=\tau^{\mathrm{I}\mathrm{I}}$ $be$ a tu ning point of the second kind of $(ffl)_{m}$ . Then at $t=\tau^{\mathrm{I}\mathrm{I}}a$

double tu ning point $x=b_{j}(t)$ merges with another double rurning point $x$ $=b_{j^{l}}(t)$ .
Consequently two characteristic roots $\nu_{j,+}$ and $\nu_{j’,+}$ of $C_{0}$ merge at $t$ $=\tau^{\mathrm{I}\mathrm{I}}$ , and so
do $\nu_{j}$,-and $l_{j’,-}$ . Furthermore the following relation holds:

(23) $\int_{\tau^{\mathrm{I}1}}^{t}(\nu_{j,+}-\nu_{j’,+})d\mathrm{t}=-\int_{\tau^{\mathrm{I}1}}^{t}(\nu_{j,-}-\nu_{j’,-})dt=2\int_{b_{j}}^{b}$,:is$)\sqrt{Q_{0}(x,t)}$dx.

As an immediate consequence of the relations (22) and (23) we also obtain

Proposition 3. ([KKNT, Proposition 2.1.5])
If $t$ lies on a Stokes curve of $(P_{\mathrm{I}})_{m}$ emanating from a turning point $t=\tau^{\mathrm{I}}$ (resp.
$\mathrm{t}=\tau^{\mathrm{I}\mathrm{I}})$ of the first (resp. second) kind, trno turning points $x=b_{j}$ (t) and $x=a(t)$
(resp. $x=b_{j}(t)$ and $x=b_{j’}(t)$ ) are connected by a Stokes curve of (6.a).

4 Nishikawa phenomena and new Stokes curves
In this section, taking the fourth order Painleve-I equation $(P_{\mathrm{I}})_{2}$ as an example, we
review the Nishikawa phenomena.
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Example 1. (4th order Painlev&I equation)

$(ffl)_{2}$ $u^{\prime/\prime/}=\eta^{2}(20uu’’+10(u’)^{2})-\eta^{4}(40u^{3}+16cu-16t)$ .

(In (4) we put $c_{2}=0$ and omit the suffix of $u_{1}$ and $c_{1}$ for the sake of simplicity.) In
this case the Fr\’echet derivative is given by

$(\Delta P_{\mathrm{I}})_{2}$ $(\Delta u)^{\prime//\prime}=20\eta^{2}(\text{\^{u}}(\Delta \mathrm{t}\mathrm{t})" + \mathrm{i}’(\Delta \mathrm{t}\mathrm{z})’ + \text{\^{u}}’’\Delta \mathrm{t}\mathrm{g})$ $-\eta^{4}(120\hat{u}^{2}+16c)\Delta \mathrm{t}\mathrm{Z}$ .

Hence the characteristic equation (of the top order part with respect to $\eta^{-1}$ ) of
$(\Delta ffl)_{2}$ becomes

(24) $\nu^{4}-20\hat{u}_{0}\nu^{2}+(120\hat{u}_{0}^{2}+16c)=0$

where $\hat{u}_{0}$ satisfies an algebraic equation

(25) $40\hat{u}_{0}^{3}+16c\hat{u}_{0}-16t=0.$

Turning points and Stokes curves of $(P_{\mathrm{I}})_{2}$ can be computed by using (24) and (25)
with the aid of a computer. Figure 1 describes the configuration of Stokes curves
of $(ffl)_{2}$ for $c=1-$ 1.7i. Note that the coefficients of (24) contain the algebraic
function $\hat{u}_{0}$ and hence such configuration should be drawn on the Riemann surface
$R$ of $\mathrm{j}_{0}$ : Figure $1(j)(j= 1, 2, 3)$ shows the configuration on the $\mathrm{j}$-th sheet of 72.
(The wiggly lines in Figure 1 designate the cuts to describe the global structure of
$/\mathrm{Z}$ . The branch points of $\mathrm{Z}$ are coincident with the turning points of the first kind,
since both of them are given as the zeros of the discriminant of (25).)
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$\ovalbox{\tt\small REJECT}$

Figure 1: Stokes curves of $(l*)_{2}$ on the first sheet (1), on the second sheet (2),
and on the third sheet (3) of 72.

In this case, if we take $u=\hat{u}_{0}$ itself as a local parameter of 72, we then readily
find that this choice of parameters globally uniformizes $R$ (cf [NT]). Thus all of
the three figures Figure 1(j) $(j=1,2, 3)$ can be drawn just in one sheet, i.e., in
the $u$-plane: Figure 2 describes the configuration of Stokes curves of $(ffl)_{2}$ in the
tz-plane.

Figure 2: Stokes curves of $(P_{\mathrm{I}})_{2}$ in the w-plane:

One can observe that there are several crossing points of Stokes curves in Figure
1 (or equivalently in Figure 2). As is discussed in [KKNT, Sections 3 and 4], a new
Stokes curve emanates from each crossing point of Stokes curves (since in the case
of $(ffl)_{2}$ every crossing point is “Lax-adjacent” in the terminology of [KKNT] $)$ : This
is the Nishikawa phenomena for $(P_{\mathrm{I}})_{2}$ .
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In [KKNT] we interpreted the Nishikawa phenomenon as the occurrence of de-
generacy of Stokes geometry of the underlying Lax pair on the new Stokes curve in
question. For example, let us take a crossing point $T$ of a Stokes curve emanating
ffom $\tau_{1}^{\mathrm{I}}$ with another Stokes curve emanating from $\tau_{2}^{\mathrm{I}\mathrm{I}}$ i $\mathrm{n}$ Figure 1(2), i.e., on the
second sheet of $\mathcal{R}$ (cf. Figure 3).

$\tau_{1}^{\mathrm{I}}$ ’

$\prime\prime\prime$

$\tau_{2}^{\mathrm{I}\mathrm{I}}$

$T$

Figure 3: Crossing point $t=T$ of two Stokes curves on the second sheet and a
new Stokes curve emanating from $T$ .

Here the Stokes curve emanating from $\mathrm{y}\mathrm{i}$ is of type $(1, +)>(1, -)$ and defined by

(26) Irn $\int_{\tau_{1}^{\mathrm{I}}}^{t}(\nu_{1,+}-\nu_{1,-})dt=0,$

and the Stokes curve emanating from $\tau_{2}^{\mathrm{I}\mathrm{I}}$ is of type $(2, +)>$ $(1, +)$ and $(1,$ $-)$ >
(2, -), defined by

(27) ${\rm Im} \int_{\tau_{2}^{11}}^{t}(\nu_{2,+}-\nu_{1,+})dt={\rm Im}\int_{\tau_{2}^{11}}^{t}(\nu_{1,-}-\nu_{2,-})dt=0.$

(Concerning Stokes curves emanating from a turning point of the second kind, two
Stokes curves sit on one and the same curve in general.) Since $t$ $=T$ lies on the
Stokes curve (26) and

(28) 2 ${\rm Im}$ $\int_{a(t)}^{b_{1}}$

(’
$\sqrt{Q_{0}(x,t)}dx=\frac{1}{2}{\rm Im} 7_{1}^{t}\mathrm{I}(\mathrm{J}_{1,+}-\nu_{1,-})dt=0$

holds there thanks to (22), we find a simple turning point $x=a(t)$ and a double
turning point $x=b_{1}(t)$ are connected by a Stokes curve of $(L_{\mathrm{I}})_{2}$ at $t=T,$ Similarly,
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since $t=T$ lies on the Stokes curve (27) and

(29) 2 ${\rm Im} \int_{b_{1}(t)}^{b_{2}(t)}\sqrt{Q\mathrm{o}(x,t)}dx$

$={\rm Im} \int_{\tau_{2}^{11}}^{t}(\nu_{2,+}-\nu_{1,+})dt={\rm Im}\int_{\tau_{2}^{11}}^{t}(\nu_{1_{1}-}-\nu_{2,-})$dt

$=0$

holds there, the double turning point $r=b_{1}(t)$ and another double turning point $x=$

$b_{2}(t)$ are connected by a Stokes curve at $t=T.$ Thus, if we draw the configuration
of Stokes geometry of (the first equation (6.a) of) the underlying Lax pair $(L_{\mathrm{I}})_{2}$ at
$t$ $=T,$ we should find that the three turning points $x=a(t)$ , $x=b_{1}(t)$ and $x=b_{2}(t)$

are simultaneously connected by Stokes curves of $(L_{\mathrm{I}})_{2}$ . Actually, with the help of a
computer, we find the following Figure 4 which describes the configuration of Stokes
curves of $(L_{\mathrm{I}})_{2}$ at $t=T$ The new Stokes curve emanating from $T$ is then defined

$\underline{|}$

$a$

$b_{1}$

$b_{2}$

$\backslash$

Figure 4: Stokes curves of $(L_{\mathrm{I}})_{2}$ at $t=T.$

as a curve on which the two ‘distant’ turning points $x=a(t)$ and $x=b_{2}(t)$ are
connected by a Stokes curve of $(L_{\mathrm{I}})_{2}$ . As a matter of fact, the relation

(30) 2 ${\rm Im} \int_{a(t)}^{b_{2}(}$

’
$\sqrt{Q_{0}(x,t)}dx=$ $\mathrm{r}$ ${\rm Im} \int_{T}^{t}(\nu_{2,+}-\nu_{2,-})$dt

holds (cf. [KKNT, Theorem 4.1]) and hence on the new Stokes curve in question we
have

(31) ${\rm Im} \int_{a(}^{b}2\mathrm{j}’)$ $\sqrt{Q_{0}(x,\mathrm{t})}dx=0,$

as the definition of the new Stokes curve is given by vanishing of the right-hand side
of (30). (See [KKNT, Section 4] for details.)
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5 Virtual turning points
In this section we discuss a new Stokes curve from the viewpoint of virtual turning
points; we first introduce the notion of a “virtual turning point” for $(ffl)_{m}$ and
consider a new Stokes curve as a Stokes curve emanating from a virtual turning
point.

For the illustration of our discussion let us continue discussing the fourth order
Painlev\’e-I equation $(ffl)_{2}$ and particularly the new Stokes curve of it passing through
the crossing point $T$ of Stokes curves on the second sheet. We first recall that, as
was explained in the preceding section, the new Stokes curve in question is defined
by (31). Note that (22) and (23) (cf. (28) and (29) also) lead to

(22) 2 $76t7^{(t)} \sqrt{Q_{0}(x,t)}dx=2\int_{a(t)}^{b_{1}}(’$ $\sqrt{Q_{0}(x,t)}dx+2\int_{b_{1}(t)}^{b_{2}(t)}\sqrt{Q_{0}(x,t)}dx$

$=2$ $\int_{\tau_{1}^{1}}^{t}(\nu_{1,+}-\nu_{1,-})dt+\int_{\tau_{2}^{\mathrm{I}\mathrm{I}}}^{t}(\nu_{2,+}-\nu_{1,+})dt$

$= \frac{1}{2}(\int_{\tau_{2}^{11}}^{t}(\nu_{2,+}-\nu_{1,+})dt+\int_{\tau_{1}^{1}}^{\mathrm{t}}(\nu_{1,+}-\nu_{1,-})d\mathrm{t}+\int_{\tau_{2}^{\mathrm{I}1}}^{t}(\nu_{1,-}-\nu_{2,-})$ dt)
Letting $I(t)$ denote the quantity in the most right-hand side of (32), we now pick
up a point $t=\omega$ satisfying

(33) 2 $\int_{a(}^{b}$ij’) $\sqrt{Q_{0}(x,\omega)}dx=I(\omega))=0.$

(The existence of such a point $\mathrm{t}=\omega$ has been already discussed in [KKNT, Remark
4.1].) Then we obtain

(34) 2 $\int_{a(t)}^{b_{2}(t)}\sqrt{Q_{0}(x,t)}dx$

$=I(t)-I(\omega)$

$= \frac{1}{2}(\int_{\omega}^{t}(\nu_{2,+}-\nu_{1,+})dt+\int_{\omega}^{t}(\nu_{1_{\mathrm{I}}+}-\nu_{1,-})d\mathrm{t}+\int_{\mathrm{t}d}^{t}(\nu_{1,-}-\nu_{2,-})dt)$

$= \frac{1}{2}\int_{1d}^{t}(\nu_{2,+}-\nu_{2,-})$dt.

Hence the new Stokes curve passing through $T$ can be described also by

(35) ${\rm Im} \int_{\omega}^{t}(’ 2,+-\nu_{2,-})dt=0,$

showing that it is a Stokes curve emanating fiom $t=\omega!$
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Remark 2. The point $t=\omega$ can be regarded as a virtual turning point of the
$\mathrm{R}6\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{t}$ derivative $(\Delta P_{\mathrm{I}})_{2}$ in the following sense:

For a higher order linear ordinary differential operator with a large parameter $\eta$

a virtual turning point is defined as (the projection onto the space of independent
variable, i.e., the $t$-space in the case of $(\Delta P_{\mathrm{I}})_{2}$ , of) a self-intersection point of the
bicharacteristic curve of its Borel transform with respect to the large parameter $\eta$

(cf. [AKT]). In the case of $(\Delta P_{\mathrm{I}})_{2}$ , if we ignore the singularities in the lower order
terms of $(\Delta P_{\mathrm{I}})_{2}$ , the bicharacteristic curve is locally given by

(36) $\{(t, y)\in G;y=\int^{t}\nu_{g,*}|d\mathrm{t} \}$ ($j=1,2$ and $*=\pm$)

(cf. $[\mathrm{T}$ , Section 3.2]). Note that the $y$-component of the bicharacteristic curve is
determined only up to an additive constant. Now at the turning point $\tau_{1}^{\mathrm{I}}$ two
branches

(37) $(t, \int_{\tau_{1}^{1}}^{t}\nu_{1,+}d\mathrm{t})$ and $( \mathrm{t}, \int_{\tau}i \nu_{1,-}dt)$

of the bicharacteristic curve meet as $\tau_{1}^{\mathrm{I}}$ is a simple turning point of $(\Delta ffl)_{2}$ . (To be
more precise, the two branches form a cusp near 4, while the bicharacteristic strip,
i.e., the lift of the bicharacteristic curve to the cotangent space, defines a smooth
curve there.) These two branches (37) are prolonged to a neighborhood of the other
turning point $\tau_{2}^{\mathrm{I}\mathrm{I}}$ and have the following expression there:

(38) $(t, \int_{\tau_{1}^{1}}^{\tau}"\nu_{1,+}dt+\int_{\tau_{2}^{\mathrm{I}1}}^{t}\nu_{1,+}dt)$ and $(t, \int_{\tau_{1}^{1}}^{\tau \mathrm{I}^{1}}\nu_{1,-}dt+\int_{\tau_{2}^{\mathrm{I}1}}^{t}\nu_{1,-}dt)$ .

Then, by a similar reasoning, we find that the two branches (38) respectively meet
the following branches at $\tau_{2}^{\mathrm{I}\mathrm{I}}$ :

(39) $( \mathrm{t}, \int_{\tau}i^{2}11 \nu_{1,+}dt +\int_{\tau}i_{1} \nu_{2,+}d\mathrm{t})$ and $(t, \int_{\tau}"\nu_{1,-}clt+\int_{\tau_{2}^{1\mathrm{t}}}^{t}\mathrm{i}’ \mathrm{i},-dt)$ .

Now we consider a crossing point of the two branches given by (39) (cf. Figure 5).
Such a crossing point (i.e., a self-intersection point of the bicharacteristic curve) is
determined by

(40) $\int_{\tau_{1}^{1}}^{\tau_{2}^{11}}\nu_{1,+}dt+\int_{\tau_{2}^{11}}^{t}\nu_{2,+}dt$ $= \int_{\tau_{1}^{1}}^{\tau_{2}^{\mathrm{I}\mathrm{I}}}\nu_{1,-}dt+\int_{\tau_{2}^{1\mathrm{I}}}^{t}\nu_{2,-}dt,$

which is equivalent to $I(t)=0.$ Hence the point $t=\omega$ can be regarded as a a virtual
turning point of $(\Delta P_{\mathrm{I}})_{2}$ .
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Figure 5: Schematic illustration of the bicharacteristic curve of $(\Delta P_{\mathrm{I}})_{2}$ . (The
symbol $(1, +)$ etc. designate the branch given by (36) with $(j, \mathrm{c})$ $=(1, +)$ etc.)

In view of Remark 2, it is appropriate to call the point $t=\omega$ to be a ”virtual
turning point” of $(P_{\mathrm{I}})_{2}$ . One important point here is that $t=\omega$ is defined not only
by $I(\omega)=0$ but also by the equation 2 $\int_{a(\omega)}^{b_{2}(\omega)}\sqrt{Q_{0}(x,\omega)}dx=0$ which is equivalent
to $I(\omega)=0,$ that is, $t=\omega$ is defined in terms of the integral associated with the
underlying Lax pair $(L_{\mathrm{I}})_{2}$ . Having this fact in mind, we define a virtual turning
point of $(P_{\mathrm{I}})_{m}$ by using the underlying Lax pair $(L_{\mathrm{I}})_{m}$ in the following manner:

Definition 3. Let $*_{k}(t))(k=1,2)$ be arbitrarily chosen two turning points of (the
first equation (6.a) of) the Lax pair $(L_{\mathrm{I}})_{m}$ (i.e., *7(t) $=a$ (t) or $b_{j}(t)$ ), and let $C_{t}$ be
an arbitrarily chosen path (in the $x$-space) connecting $*$a(t) and $*_{2}(t)$ . Then a point
$t=\omega$ satisfying

(41) $\int_{*_{2(\{v)}}^{*_{1}(\omega}$

,

$)$

along
$c_{\omega}\sqrt{Q_{0}(x,\omega)}dx=0$

is called a virtual turning point of $(P_{\mathrm{I}})_{m}$ .
Remark 3. In the case of the Painlev6-I hierarchy, as there exists only one simple
turning point, the number of possible paths $C_{t}$ in (41) is finite. Furthermore, since
$\sqrt{Q_{0}(x,t)}$ can be explicitly integrated (with respect to $x$ ) like

(42) $\int^{x}\sqrt{Q_{0}}dx=$ (a polynomial in $x$ ) $\cross\sqrt{x-a(t)}$

in view of (20), for each choice of $C_{t}$ (the square of) (41) becomes of the form

(43) $F(b_{j}, \mathrm{i}_{1,0})$ $=0$ or $G(b_{j}, b_{j’},\hat{u}_{1,0})$ $=0$

according as $(*_{1}(t), *_{2}(t))=(b_{j}(\mathrm{t}), a(t))$ or $(b_{j}(t), b_{\mathrm{j}’}(t))$ , where $F(X,u)$ and $G(X, \mathrm{Y}, u)$

are polynomials of $(X, u)$ and (X% $\mathrm{Y},$ $u$ ) respectively. Recalling that $b_{j}(t)$ is a root of
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$U_{0}(x, t)=0$ (or, more precisely, a root of $U_{0}(x,\hat{u}_{1,0})$ $=0$ since the $t$-dependence of
$U_{0}$ comes only from its $\hat{u}_{j}$,0-dependence) , we thus find that, in order to seek for a vir-
tual turning point of $(P_{\mathrm{I}})_{m}$ , it is sufficient to solve the following system of algebraic
equations

(44) $F(X, u)=U_{0}(X, u)=0$ or $G(X, \mathrm{Y}, u)=U_{0}(X, u)=U_{0}(\mathrm{Y}, u)=0$

(where we put $X=b_{j}$ , $\mathrm{Y}=b_{j’}$ and $t$) $=\hat{u}_{1,0})$ . Such a system can be algebraically
solved by using the resultant. Hence we conclude that there exist finitely many
virtual turning points in the case of $(P_{\mathrm{I}})_{m}$ .

We also define a new Stokes curve emanating from a virtual turning point as
follows:

Definition 4. Let $t=\omega$ be a virtual turning point of $(P_{\mathrm{I}})_{m}$ .
(i) When $\omega$ is defined by (41) with $*_{1}$ $(t)=b_{j}(t)$ and *2(t) $=a(\mathrm{t})$ , we define a new
Stokes curve emanating from $\omega$ by

(45) ${\rm Im} 7^{t}(\nu_{j,+}-\nu_{j,-})dt=0.$

(ii) When $\omega$ is defined by (41) with 11 $(t)=b_{j}(t)$ and *2(t) $=b_{j’}(t)(j\neq j’)$ , we
define a new Stokes curve emanating from $\omega$ by

(46) ${\rm Im} \int_{\omega}^{t}(\nu_{j,+}-\nu_{j’,\pm})dt={\rm Im}\int_{\omega}$

’

$(\nu_{j’,\mp}-\nu_{j,-})dt=0,$

where we take $+$ sign in the first term and – sign in the second term (resp. – sign
in the first term and $+$ sign in the second term) if $C_{\omega}$ does not cross (resp. does
cross) a cut to define $\sqrt{Q_{0}(x,\omega)}$ .

A new Stokes curve defined by (45) (resp. (46)) is called a new Stokes curve of
type $(j, +;j, -)$ (resp. of type ($j,$ $+$ ; $j’,$ $\pm$ ) and $(j$ , -; $j’,$ $\mp)$ ). (The type of a virtual
turning point is defined in a similar manner.)

In parallel with Proposition 2, we then obtain the following Proposition 4, a
counterpart of the relations (22) and (23), for a virtual turning point and a new
Stokes curve emanating from it:

Proposition 4. Let $t=\omega$ be a virtual turning point of $(P_{\mathrm{I}})_{m}$ . Then we have the
following relations:
(i) When $\omega$ is defined by (41) $with*_{1}(t)=b_{j}(t)$ and*2(t) $=a(t)$ ,

(47) $\frac{1}{2}\int_{\omega}^{\mathrm{t}}(l_{j,\mathit{4}}-\nu_{j,-})dt=2\int_{a(}^{b}$3z$(t)\sqrt{Q_{0}(x,t)}dx$
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holds, where the integral of the right-hand side of (47) should be taken along the path
$C_{t}$ that appears in the definition of $\omega$ .
(ii) When $\omega$ is defined by (41) $with*_{1}(t)$ $=b_{j}(t)$ and*2 $(t)=b_{j’}(t)(j\neq j’)$ ,

(48) $\int_{\omega}^{t}(\nu_{j,+}-\nu_{j’,\pm})dt=\int_{\omega}^{t}(\nu_{j’,\mp}-\nu_{j,-})dt=2\int_{b_{j},t)}^{b_{j}(t)}.\sqrt{Q_{0}(x,t)}$dx,

holds, where the integral of the right-hand side should be taken along the path $C_{t}$ as
in $(i)_{f}$ and the sign $\mathrm{f}$ and $\mathrm{F}$ are chosen in the same way as in Definition 4, (ii).

Proof The proof is essentially the same as that of Proposition 2 (cf. [KKNT, PropO-
sition 2.1.4]); to prove (i), let us consider the $t$-derivative of the right-hand side of
(47). Since both endpoints $x=b_{j}(t)$ and $x=a(t)$ of the integral are zeros of $Q_{0}$ ,
we find

(49) $\frac{\partial}{\partial \mathrm{t}}(2\int_{a(}^{b}$j
$)$

(’
$\sqrt{Q_{0}(x,t)}$dx) $=2 \int_{a(t)}^{b_{j}(t)}\frac{\partial}{\partial \mathrm{t}}ndx$ .

Here, as is proved in [KKNT, Proposition 2.1.2],

(50) $\frac{\partial}{\partial t}\sqrt{Q_{0}(x,t)}=\frac{\partial}{\partial x}\sqrt{x+2\hat{u}_{1,0}}$

holds. It then follows from (21) that

(51) $\frac{\partial}{\partial t}(2\int_{a(t)}^{b_{f}(t)}\sqrt{Q_{0}(x,t)}dx)=2\int_{a(t)}^{b_{j}(t)}\frac{\partial}{\partial x}\sqrt{x+2\hat{u}_{1,0}}dx$

$=2\sqrt{x+2\hat{u}_{1,0}}|_{x=b_{j}(t)}$

$= \nu_{j,+}=\frac{1}{2}(’ j,+-\nu_{j,-})$ .

As $\int_{a(\omega)}^{b_{f}(\{d)}\sqrt{Q_{0}}dx=0$ holds by the definition of $\omega$ , integrating (51) from $\omega$ to $\mathrm{t}$ verifies
(47). In a similar manner we can prove (ii) also. $\square$

Remark 4. In labeling the characteristic roots $\nu_{j,\pm}$ of $C_{0}$ , we implicitly used the
Riemann surface of $\sqrt{Q_{0}}$, or cuts to define $\sqrt{Q_{0}}$. (See (21) and compare it with
(20).) Intuitively speaking, each characteristic root $\nu_{j,\pm}$ is attached to a double
turning point $r=b_{j}(t)$ on the Riemann surface of $\sqrt{Q_{0}}$ . (Thus it may be better
to use the notation $” x=b_{j,\pm}(t)$” from this viewpoint.) If in Definition 4 (ii) we
consider $C_{\omega}$ to be a path on the Riemann surface of $\sqrt{Q_{0}}$ connecting two such
double turning points $b_{j,\pm}$ and $b_{j’,\pm}$ , the choice of the sign in (46) is consistent with
this identification between $\nu_{j,\pm}$ and $b_{j,\pm \mathrm{i}}$ for example, if $C_{\omega}$ does not cross a cut to
define $\sqrt{Q_{0}}$, it connects $b_{j,+}(t)$ and $b_{j’,+}(t)$ (and simultaneously $b_{j,-}$ (t) and $b_{j’,-}(t)$ ).
Then the choice of the sign in (46) immediately follows ffom the above identification.
Note that, from this point of view, the ‘true’ path in Definition 4 (i) is not $C_{\omega}$ , but
rather its double cover $\tilde{C}_{\omega}$ , i.e., double cover (on the Riemann surface of $\cap Q_{0}$ of
$C_{\omega}$ that connects $b_{j,+}(\omega)$ and $b_{j,-}(\omega)$ and passes through $a(\omega)$ .
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6 Complete description of the Stokes geometry
In the preceding section we gave the definition of virtual turning points and new
Stokes curves emanating from them. As is exemplified by $(P_{\mathrm{I}})_{2}$ , we have to take
such virtual turning points and new Stokes curves into account to obtain the correct
global Stokes geometry for $(P_{\mathrm{I}})_{m}$ . On the other hand, Definitions 3 and 4 have given
us sufficiently many virtual turning points and new Stokes curves in the following
sense: If we add all the virtual turning points and new Stokes curves given by
Definitions 3 and 4 to the ordinary turning points and Stokes curves, we then obtain a
“saturated Stokes geometry”. Here we say that a Stokes geometry, i.e., the collection
of (ordinary and virtual) turning points and (ordinary and new) Stokes curves, is
saturated (in the sense that all the possibilities are exhausted) if every crossing point
of (ordinary $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ new) Stokes curves in the Stokes geometry in question belongs
to one of the following three types: (In the description below the indices $j$ , $k$ , $l$ and
$m$ are assumed to be mutually distinct.)

yp$\mathrm{e}$ (a) (“two 1st & two 2nd” )
A type (a) crossing point (or a “two 1st & two 2nd crossing point” ) is a crossing

point of the following four Stokes curves:

$\{$

a 1st kind Stokes curve of type $(j, +;j, -)$ ,
a 1st kind Stokes curve of type $(k, +;k,-)$ ,
a 2nd kind Stokes curve of type $(j, +;k, +)$ and $(j, -;k,-)$ ,
a 2nd kind Stokes curve of type $(j, +\mathrm{i}k, -)$ and $(j, -;k, +)$ .

$\underline{t|}$

$(j,+j,+)\ (j,-jk,-)$ $\underline{x|}$

$(k,+j,-)$
$f^{\prime’}$

$a(t)$ . $b_{j}(t)$

$(j,+j,-)\ (j,-jk,+)$

$(j,+;j,-)$
$b_{k}(t)$ .

Figure 7: Paths in the rc-spaceFigure 6: Type (a) crossing point. associated with Stokes curves in Figure 6.

Type (b) ( “three 2nd” )
A type (b) crossing point (or a “three 2nd crossing point”) $)$ is a crossing point of

the following three Stokes curves:

$\{$

a 2nd kind Stokes curve of type $(j, +;k, +)$ and $(j, -;k,-)$ ,
a 2nd kind Stokes curve of type $(k, +;l, +)$ and $(k, -;l,-)$ ,
a 2nd kind Stokes curve of type $(j, +;l, +)$ and $(j, -;l,-)$ ,



80

(or the pattern where the sign $\pm$ associated with an index, say, I is interchanged
like “type $(j, +;k, +)$ and $(j, -;k, -)$ , type $(k, +;l, -)$ and $(k, -;l, +)$ , and type
$(j, +;l, -)$ and $(j, -;l, +)$” ).

$\underline{t}|$

$\underline{x|}$

$(k,+jl,+)\ (k,-l,-)$ $b_{k}(t)$. $.\dot{b}_{j}.(t)$

$(j,+jk_{1}+)\ (j,-k,-)$

$b_{l}(t)$ .
Figure 9: Paths in the z-spaceFigure 8:Type (b) crossing point. associated with Stokes curves i$\mathrm{n}$ Figure 8.

Type (c) $(” \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{j}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}")$

A type (c) crossing point (or a “disjoint crossing point”) is a crossing point of
the following two Stokes curves:

ype (c-1)

$\{$

a 1st kind Stokes curve of type $(j, +;j,-)$ ,
a 2nd kind Stokes curve of type $(k, +;l, +)$ and $(k, -;l_{3} -)$ ,

’
$l$ $x$ . $t$

$t$

Figure 11 :Paths associated with StokesFigure 10 : Type (c-1) crossing point. curves in Figure 10.
yp$\mathrm{e}$ (c-2)

$\{$
a2nd kind Stokes curve of type $(j, +;k, +)$ and $(j, -;k,-)$ ,
a2nd kind Stokes curve of type $(l, +;m, +)$ and $(m, -;l,-)$ ,

(or the pattern(s) where the sign $\mathrm{g}$ associated with $k\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}m$ is interchanged).
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$\underline{t|}$

$\underline{x|}$

- $\cdot$ $b_{j}$ $(t)$

$k$ $b_{k}(t)$

$\prime\prime\prime\nu\wedge$
$b_{l}(t)$

$b_{m}(t)$ .
Figure 13:Paths associated with StokesFigure 12 : Type (c-2) crossing point. curves in Figure 12.

Let us explain the reason why we obtain a saturated Stokes geometry if we
consider all the virtual turning points and new Stokes curves together with the
ordinary turning points and Stokes curves. A key point is that the above local data
near a crossing point of Stokes curves in the $t$-space can be translated into the global
data in the $x$-space. In fact, as is claimed in Proposition 2 or 4, a path (in the x-
space) connecting two turning points of the underlying Lax pair $(L_{\mathrm{I}})_{m}$ is associated
with each (ordinary or new) Stokes curve of $(P_{\mathrm{I}})_{m}$ via the integral relations like (22),
(23) $)$

$(47)$ or (48). Thus, if we take a crossing point of two (ordinary $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ new)
Stokes curves, we are given two such paths in the $x$-space associated with them and
four turning points of $(L_{\mathrm{I}})_{m}$ being endpoints of these two paths. Then, concerning
the combination of the four endpoints, we have the following three cases:

(1) The two paths share one endpoint and consequently we are given three end-
points, among which a simple turning point is included.

(2) The two paths share one endpoint and consequently we are given three end-
points, all of which are double turning points.

(3) The four endpoints (turning points) are mutually disjoint.
The case (1) corresponds to a type (a) crossing point: At such a crossing point three
turning points $a(t)$ , $b_{j}$ (t) and $b_{k}(t)$ are relevant in the $\mathrm{z}$-space. Then, as a path of
integration for $\sqrt{Q_{0}}$ connecting two of them, we may consider four possible paths,
as is shown in Figure 7. (Note that $\sqrt{Q_{0}}$ is holomorphic at a double turning point,
while a simple turning point is a square-root type singular point of !.) Since the
imaginary part of the integral of $\sqrt{Q_{0}}$ along two of such four possible paths vanishes
by the assumption that the point in question is a crossing point of two Stokes curves,
the imaginary part of the integral along all of these four paths should vanish. As
we have exhaustively taken into account all the possible paths in defining virtual
turning points and new Stokes curves, this means that four Stokes curves must cross
at the point in question and hence we conclude that such a crossing point is a type
(a) crossing point. By a similar argument we can also confirm that the case (2)
(resp. (3)) corresponds to a type (b) (resp. (c)) crossing point. Thus, if we consider
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all the (ordinary and virtual) turning points and (ordinary and new) Stokes curves,
only the three types of crossing points of Stokes curves may appear.

Remark 5. For $(P_{\mathrm{I}})_{2}$ neither type (b) nor type (c) crossing points appear, since the
underlying Lax pair $(L_{\mathrm{I}})_{2}$ has just two double turning points. Similarly type (c-2)
crossing points do not appear for $(P_{\mathrm{I}})_{3}$ .

In this way, by adding virtual turning points and new Stokes curves, we obtain
a saturated Stokes geometry of $(ffl)_{m}$ . However, to obtain a “complete Stokes ge-
ometry” of $(ffl)_{m}$ , i.e., its correct global Stokes geometry, we still need to discuss
the “effectiveness” or “activity” of Stokes curves. That is, on each portion of Stokes
curves we have to check whether the degeneracy of Stokes geometry of the under-
lying Lax pair $(L_{\mathrm{I}})_{m}$ does really occur or not. (On each Stokes curve we have the
relation

(52) ${\rm Im} 7_{1}^{*}2_{t}\mathrm{j}$

’
$\sqrt{Q_{0}}dx=0$

with some turning points $*_{1}(t)$ and *2(l) of $(L_{\mathrm{I}})_{m}$ , but (52) does not necessarily
imply the degeneracy of Stokes geometry of $(L_{\mathrm{I}})_{m}$ . See [AKT, p.80] and [KKNT,
Remark 4.1].)

Concerning the problem of activity of Stokes curves, we first note the following

Proposition 5. A nern Stokes curve is not active near a virtual turning $point_{f}$ that
is, no degeneracy of the Stokes geometry of $(L_{\mathrm{I}})_{m}$ occurs on a nern Stokes curve near
a virrual turning point.

Proof. Assume that a virtual turning point $t=\omega$ is not an ordinary turning point
and that it is defined by

(53) $\int_{*}i$

’
$\sqrt{Q_{0}}\mathrm{b}$ $=0$

with some turning points $*_{1}$ and $*_{2}$ of $(L_{\mathrm{I}})_{m}$ . If the degeneracy of Stokes geometry
of $(L_{\mathrm{I}})_{m}$ were to occur on a new Stokes curve emanating from $t=\omega$ , the turning
points $*_{1}$ and $*_{2}$ should be connected by a Stokes curve 7 of $(L_{\mathrm{I}})_{m}$ at $t=\omega$ . Since

(54) $\int_{*_{2}}^{x}\sqrt{Q_{0}}\mathrm{r}x$

is a real-valued monotone function (of $x$ ) on $\gamma$ , it then follows bom (53) that $*1$

should coincide with $*_{2}$ . This means that $t–$ \mbox{\boldmath $\omega$} should be an ordinary turning
point, contradicting the assumption. $\square$

Hence, as in the case of higher order linear equations, the portion of a new
Stokes curve of $(P_{\mathrm{I}})_{m}$ containing a virtual turning point should be ignored in the
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Stokes geometry (i.e., be drawn by a dotted line). On the other hand, in view of
Proposition 2, we should keep solid the portion of an ordinary Stokes curve near an
ordinary turning point. Thus the activity of Stokes curves is completely determined
near turning points.

Note that the degeneracy of Stokes geometry of $(L_{\mathrm{I}})_{m}$ , i.e., the existence of a
Stokes curve connecting two turning points, may be resolved only when another
turning point of $(L_{\mathrm{I}})_{m}$ comes across the Stokes curve in question. Since such a
phenomenon occurs only at a crossing point of Stokes curves of $(ffl)_{m}$ , we find that
the activity of a Stokes curve of $(P_{\mathrm{I}})_{m}$ changes only at a crossing point of Stokes
curves. Thus, from now on, we consider classification of all the ’admissible’ patterns
for the activity of Stokes curves at each type of crossing points. Let us first discuss a
type (a) (i.e., two 1st & two 2nd) crossing point of Stokes curves. At such a crossing
point three turning points $a(t)$ , $b_{j}(t)$ and $b_{k}(t)$ of $(L_{\mathrm{I}})_{m}$ are relevant in the z-space
(cf. Figure 7). Concerning the occurrence of degeneracy of the Stokes geometry of
$(L_{\mathrm{I}})_{m}$ , we have the following three cases:

(i) No pair of the three turning points is connected by a Stokes curve of $(L_{\mathrm{I}})_{m}$ .
(ii) Only two of them are connected by a Stokes curve of $(L_{\mathrm{I}})_{m}$ .
(iii) All of them are connected by (two) Stokes curves of $(L_{\mathrm{I}})_{m}$ .

In Case (i) all Stokes curves of $(ffl)_{m}$ passing through the crossing point in question
are inactive (i.e., should be drawn by a dotted line), while only one Stokes curve is
active and the others are inactive in Case (ii). Case (iii) can be further classified
into the following three subcases:

Case (iii-l) Case (iii-2)

$\underline{x|}$ $\underline{x|}$
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Case (iii-3) $\underline{x|}$

Figure 14 : Stokes geometry of $(L_{\mathrm{I}})_{m}$ in Case (iii).

All of these three subcases have already been discussed in [KKNT, Section 4];
Cases (iii-l) and (iii-2) are Lax-adjacent crossing points and Case (iii-3) is non-Lax-
adjacent. The corresponding admissible patterns for the activity of Stokes curves of
$(ffl)_{m}$ will be given in Figure 15 below. Thus the classification of all the admissible
patterns at a type (a) crossing point is now completed.

In a similar manner we can classify all the admissible patterns also at type (b)
and (c) crossing points. The following is a list of all the admissible patterns for the
activity of Stokes curves at each type of crossing points:

List of the admissible patterns for the activity of Stokes curves at each
type of crossing points

Type (a) (“two 1st & two 2nd” )

(i) All curves are dotted.
(ii) Only one curve is solid, the others are dotted.
(iii) (See below.)

Case (iii-l) Case $(\mathrm{i}\mathrm{i}\mathrm{i}- 1)’$

$\underline{t|}$

$\lambda_{1}^{k}k$

$\underline{t|}$

$\chi$



E15

Case (iii-2) Case (iii-3)

$\underline{t|}$

$*_{\iota}’/$

$*1//$

$k2$

$\underline{t|}$

$|$

Figure 15 : Admissible patterns at a type (a) crossing point (in Case (iii)).

$\mathrm{y}\mathrm{p}\mathrm{e}$
$(\mathrm{b})$ $($ $(” \mathrm{t}\mathrm{h}\mathrm{r}\mathrm{e}\mathrm{e} 2\mathrm{n}\mathrm{d}")$

(i) All curves are dotted.
(ii) Only one curve is solid, the others are dotted.
(iii) (See below.)

Case (iii-l) Case (iii-2)

$\underline{t|}$ $\underline{t|}$ $(j_{1}+|.l,+)\ (j,-;l,-)|$

$k$

$k$

$|$ $|$

Figure 16 : Admissible patterns at a type (b) crossing point (in Case (iii)).

Type (c) $(” \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{j}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}")$

(i) All curves are dotted.
(ii) Only one curve is solid, the others are dotted.
(iii) Both curves are solid.

Remark 6. As in the description of each type of crossing points, i.e., as in Figures
6, 8, 10 and 12, the combination of the types of Stokes curves is not completely
listed and some interchange of the sign $\pm$ is allowed in Figures 15 and 16. In these
figures the placement of Stokes curves is not specified, either.

By the same reasoning as in [KKNT, Remark 4.1] we can verify that a point
$t$ $=\mathrm{t}_{0}$ where the degeneracy of Stokes geometry of $(L_{\mathrm{I}})_{m}$ is observed should lie on
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an ordinary or new Stokes curve of $(P_{\mathrm{I}})_{m}$ . Hence the “complete Stokes geometry”
of $(P_{\mathrm{I}})_{m}$ , i.e., the collection of points where the degeneracy of Stokes geometry
of the underlying Lax pair $(L_{\mathrm{I}})_{m}$ is observed, should consist of the (ordinary and
virtual) turning points and the (ordinary and new) Stokes curves. Furthermore, in
the complete Stokes geometry the pattern of the activity of Stokes curves at each
crossing point should necessarily belong to the above list. Thus, as the procedure for
determining the complete Stokes geometry of $(P_{\mathrm{I}})_{m}$ , we can propose the following:

Procedure for determining the complete Stokes geometry

1’) Draw the Stokes curves emanating from ordinary turning points.

2’) Locate all the virtual turning points and draw the new Stokes curves emanating
from them.

3’) The portion of a new Stokes curve containing a virtual turning point should
be ignored in the Stokes geometry (i.e., be drawn by a dotted line).

4’) The portion of an ordinary Stokes curve adjacent to an ordinary turning point
should be kept solid.

5’) We determine the activity of each portion of Stokes curves so that, in addition
to $3^{\mathrm{o}}$ ) and 4’), the pattern of the activity at every (type (a), (b) or (c)) crossing
point of Stokes curves may belong to the above list.

$6^{\mathrm{o}})$ The complete Stokes geometry is then given by the collection of the turning
points and solid (active) portions of Stokes curves determined by $5^{\mathrm{o}}$ ).

If the activity of each portion of Stokes curves is uniquely determined in a globally
consistent manner by 5’), the Stokes geometry thus obtained is nothing but the
complete Stokes geometry. For example, as we shall see in what follows, we can
obtain the complete Stokes geometry of $(P_{\mathrm{I}})_{2}$ and that of $(P_{\mathrm{I}})_{3}$ by following the
above Procedure.

Example 1 (revisited). In the case of the 4th order Painlev\’e-I equation $(ffl)_{2}$ ,
if we add virtual turning points and new Stokes curves to ordinary turning points
and ordinary Stokes curves, we obtain Figure 17. (In Figure 17 (and in Figures 18,
20 and 21 below as well) virtual turning points are denoted by small dots, while
ordinary turning points are denoted by large dots.) Furthermore, using $3^{\mathrm{O}}$ ), $4^{\mathrm{o}}$ ) and
$5^{\mathrm{o}})$ of the above Procedure, we can uniquely determine the activity of each portion of
Stokes curves, as is shown in Figure 18. Thus Figure 18 gives a complete description
of the global Stokes geometry for $(P_{\mathrm{I}})_{2}$ .
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Figure 17 : Saturated Stokes geometry of $(P_{\mathrm{I}})_{2}$ in the w-plane.
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Figure 18 : Complete Stokes geometry of $(P_{\mathrm{I}})_{2}$ in the w-plane.
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Example 2. (6th order Painlev\’e-I equation)

$(P_{\mathrm{I}})_{3}$ $u^{(6)}=\eta^{2}(28uu^{(4)}+56u’u^{(3)}+42(u’’)^{2})-\eta^{4}(280u^{2}u’’+$ $280\mathrm{t}\mathrm{z}(u’)^{2}$

$+16c_{1}u’’)+\eta^{6}(280u^{4}+96c_{1}u^{2}-64c_{2}u-32c_{1}^{2}+64t)$ .

Similarly to the case of $(P_{\mathrm{I}})_{2}$ we can take $u=\hat{u}_{0}$ as a globally uniformizing parameter
of its Riemann surface II (cf. [NT]). Figure 19 describes the configuration of ordinary
Stokes curves of $(ffl)_{3}$ in the u-plane.

Just like $(ffl)_{2}$ , adding virtual turning points and new Stokes curves to Figure 19
and using 3’), $4^{\mathrm{o}}$ ) and 5’) of the above Procedure to determine the activity of each
portion of Stokes curves, we obtain Figure 20 and Figure 21. Thus Figure 21 gives
a complete description of the global Stokes geometry for $(P_{\mathrm{I}})_{3}$ .

Figure 19 : Stokes curves of $(ffl)_{3}$ (in the u-plane).

Remark 7. The procedure for determining the complete Stokes geometry can be
applied in principle to other (hierarchies of) higher order Painlev! equations, as
long as their underlying Lax pairs are 2 $\mathrm{x}2$ linear systems. There are, however,
some diiBculties to obtain a complete description of the global Stokes geometry for
a higher order Painleve equation by this method: One difficulty is that the above
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Figure 20 : Saturated Stokes geometry of $(ffl)_{3}$ .

classification (of the types) of crossing points of Stokes curves in a saturated Stokes
geometry may not be complete in general, and another one is that infinitely many
virtual turning points may appear for higher order Painlev6 equations (except for the
Painleve-I hierarchy). Both difficulties originate from the fact that the underlying
Lax pair has several simple turning points and consequently there exist nontrivial
period integrals $\oint\sqrt{Q_{0}}$ S. Among them the second difficulty is more serious; as in
the case of higher order linear equations, how to deal with infinitely many redundant
virtual turning points is an important open problem.
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Figure 21 : Complete Stokes geometry of $(ffl)_{3}$ .

References
[AKT] T. Aoki, T. Kawai and Y. Takei: New turning points in the exact WKB

analysis for higher order ordinary differential equations, Analyse alg\’ebrique
des perturbations singuliferes, I; M\’ethodes r\’esurgentes, Hermann, 1994, pp.
69-84.

[BNR] H. L. Berk, W. M. Nevins and K. V. Roberts: New Stokes’ line in WKB
theory, J. Math. Phys., 23(1982), 988-1002.

[GP] P.R. Gordoa and A. Pickering: Nonisospectral scattering problems: A key
to integrable hierarchies, J. Math. Phys., 40(1999), 5749-5786.



101

[KKNT] T. Kawai, T. Koike, Y. Nishikawa and Y. Takei: On the Stokes geometry
of higher order Painleve’ equations, RIMS Preprint No. 1443, 2004.

[KT1 T. Kawai and Y. Takei: WKB analysis of Painlev6 transcendents with a
large parameter. $\mathrm{I}$ , Adv. Math., 118(1996), 1-33.

[KT2] –: Algebraic Analysis of Singular Perturbations, Iwanami, Tokyo,
1998. (In Japanese. An English translation is to be published by A.M.S.)

[K] N. A. Kudryashov: The first and second Painlev? equations of higher order
and some relations between them, Phys. Lett. $\mathrm{A}$ , 224(1997), 353-360.

[KS] N. A. Kudryashov and M. B. Soukharev: Uniformization and transcen-
dence of solutions for the first and second Painlev6 hierarchies, Phys. Lett.
$\mathrm{A}$ , 237(1998), 206-216.

[N1] Y. Nishikawa: WKB analysis of $ffl_{\mathrm{I}^{-}}P_{\mathrm{I}V}$ hierarchies, Master Thesis, Kyoto
Univ., 2003. (In Japanese.)

[N2] –: Towards the exact WKB analysis of $ffl_{\mathrm{I}^{-}}ffi$ hierarchies. Preprint.

[NT] Y. Nishikawa and Y. Takei: On the structure of the Riemann surface in
the Painleve’ hierarchies. In Prep.

[S1] S. Shimomura: Painleve’ property of a degenerate Gamier system of (9/2)-
type and of a certain fourth order non-linear ordinary differential equation,
Ann. Scuola Norm. Sup. Pisa, 29(2000), 1-17.

[S2] –: On the Painlev! I hierarchy, RIMS K\^oky\^uroku, No. 1203, 2001,
pp. 46-50.

[S3] A certain expression of the first Painleve’ hierarchy, preprint.

[T] Y. Takei: Exact WKB analysis, and exact steepest descent method. –
A sequel to “algebraic analysis of singular perturbations” -, Sugaku,
55(2003), 350-367. (In Japanese. Its English translation will appear in
S\^ugaku Expositions.)


