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Rotating Navier-Stokes Equations in R3
with Initial Data Nondecreasing at Infinity:
The Ekman Boundary Layer Problem

Jirgen Saal

Darmstadt University of Technology

Abstract

This is a survey article of the results obtained in (8] by Y. Giga, K. Inui, A. Mahalov,
S. Matsui, and me. There, existence and uniquness of local-in-time solutions for the
Ekman boundary layer problem is proved.

1 Introduction

We study the initial value problem for the three-dimensional Navier-Stokes equations with
Coriolis force in a half-space R and time interval (0, T):

8U + (U - V)U + Qes x U + veurl?U = —Vp, V- U =, (1.1)
U(tim)l-'I:s:O = (Ul(ta 33), Uz(t,a:), U3(t7$))lws=0 = (0’0’0)’ (1'2)
U(t,.’l«'),t=0 = Uo(.’l,') (13)

where & = (z1, 29, 23), U(t,z) = (U1, U2, Us) is the velocity field and p is the pressure. In
Egs. (1.1) e3 denotes the vertical unit vector and € is a constant Coriolis parameter (£ is
twice the frequency of rotation). Egs. (1.1)-(1.3) are the 3D Navier-Stokes equations written
in a rotating frame. The initial velocity field Uq(z) depends on three variables z, 3 and
z3. We require the velocity field U(¢,z) to satisfy Dirichlet (no slip) boundary conditions
on the plane {z3 = 0}.
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Ekman spiral is the famous exact solution (time-independent) of the nonlinear prob-
lem (1.1)-(1.2). It describes rotating boundary layers in geophysical fluid dynamics (atmo-
spheric and oceanic boundary layers). The boundary layer in the theory of rotating fluids
known as the Ekman layer is between a geostrophic flow and a solid boundary at which the
no slip condition applies. In the geostrophic flow region corresponding to large x5 (far away
from the solid boundary at z3 = 0), there is a uniform flow with velocity Uy, in the z; direc-
tion. Associated with Uy, there is a pressure gradient in the z, direction. The Ekman spiral
solution in Ri matches this uniform velocity for large z3 with the no slip boundary condition
at 23 = 0. The corresponding velocity field U (z3) : UP(23) = (U (z3), UE(23),0) depends
only on the vertical variable z3:

T3

UE(23) = Uy, (1 —eF cos(%a-)) , UP(23) = Upe™ sin(=2), (1.4)

where § is the rotating boundary layer (Ekman layer) thickness:

5= (395) 7 (1.5)

The corresponding pressure field pZ(z;) depends only on ; and it is given by
P (22) = —QWeo22. (1.6)

Clearly, the nonlinear term in (1.1) is zero for U = U®(z3) and, therefore, (UZ(z3), p&(z3))
which is called ‘Ekman spiral’ is an exact solution of the full nonlinear problem. Remarkable
persistent (stability) of the Ekman spiral in atmospheric and oceanic rotating boundary
layers has been noticed in geophysical literature. We note that the velocity field satisfies
lim UP(z3) = (Uw,0,0), (1.7)

T3—>+400

and that the velocity field corresponding to the Ekman spiral solution is bounded as
|UE(23)]| < 2U . (1.8)

Since the Ekman spiral has velocity field nondecreasing at infinity, it is essential in the
mathematical theory of geophysical rotating boundary layers to study solvability of (1.1)-
(1.3) for initial data in spaces of functions nondecreasing at infinity.

We write

U(t, 21, 23, 23) = UE(x3) + V(t, 21, 29, 23), p(t, z1,22,23) = p°(22) + q(t, 21, Z3,73). (1.9)
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Since the Ekman spiral is an exact solution of the full nonlinear problem, the vector field
V(t,z1, T2, 73) satisfies the following equations

E
&V + (V- V)V + (UE(z3) - V)V + \/3%{; + Qes x V 4+ veurl’V =-Vgq, (1.10)
3
V-V=0,
V(t,a:)!%:o = (Vl(tam):‘/?(t’x)’ VB(taz))IZ:FO = (07070)’ (1'11)
V(t,ﬂ?)'t:o = Vo(m) (112)

Let J be the matrix such that Ja = es X a for any vector field a. Then

0 -1 0
J=(1 0 o}. (1.13)
0 0 0

Let P be the Helmholtz projection operator on R3. We define the Stokes operator A by
A(v)v = vPicurl’v = —vP Av (1.14)
on solenoidal vector fields v. The operator P, can be represented by
P,.f=rPEf. (1.15)

Here, r is the restriction operator to the half space and P is the Helmholtz projection operator
in the whole space, defined by

P = {P;}ij=123 Pij=d;+ RiR;; (1.16)

R;(j = 1,2,3) are the scalar Riesz operators %(—A)—1/2 with the symbols %, e.g. [21].
Besides, the operator E is defined as follows:

For a function h(z) on R3 we define an extended function e*h by

_ J (=) if 3 > 0,
(*h) () = {ih(m*) <0 (1.17)

where z* = (21,2, —3) for = = (z1,2,23) € RZx R.
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For a vector field f(x) = (f!, f?, f3) on R% we define an extended vector field Ef by

tf for1 <i<2
i—th component of (Ef)(z) = (e fa) (z) for . =5
(e f)(z) fori=3.
That is, Ef = diagle™, et,e™] (T f), here diag represents a diagonal matrix, 7 f is the trans-
posed vector field of f.
We transform (1.10)-(1.12) into an abstract operator differential equation for V

Vi+ AV +QSV +CgV+ P, (V-V)V =0, (1.18)
V=0 = Vo,
where
S=P,JP,, CEV=P, ((UE(:ca) V)V + %%I:) (1.19)

and we have used P4JV = P, JP,V on solenoidal vector fields. The main difference
between the problem in a half-space R} with the problem in R? is that the Stokes operator
A and the operator S = P.JP, do not commute in R} and there is an additional ‘Ekman
operator’ Cg in Egs. (1.18). We consider initial data Vo(z) for Egs. (1.18) in spaces of
solenoidal vector fields nondecreasing at infinity in z;, ;. The consideration of solutions
not decaying at infinity in z,, z, is essential in the development of rigorous mathematical
theory of the Ekman rotating boundary layer problem. In view of (1.7) it is natural to
consider vector fields V which belong to L,, 1 < p < +o0 in z3.

The first step in the analysis of the nonlinear problem (1.10)-(1.12) is to show that the
corresponding linear problem generates a semigroup in appropriate spaces. Note that the
L,, 1 < p < 400 case is usually simpler than the L., case due to the fact that Riesz
operators are bounded operators in L, but not in L,. We recall that for @ = 0 (non-
rotating case) Green’s function of the Stokes operator in R® and RY (half space) belong
to L;(R®) implying that the corresponding operator generates a semigroup in L (R?) and
Loo(R3). On the other hand, for Q # 0 Green’s function of the (Stokes + Coriolis) problem
even in R® does not belong to L;(R®). Moreover, it behaves as |z~ for large || and the
corresponding integral operator is not a bounded operator in L., (R?). One needs to restrict
initial data on a subspace of Lo,(R®). Similar situation of unboundedness in L.,(R?) (for
horizontal z,, z, planes) holds for the linear (Stokes+Coriolis) problem in a half space.
One needs to restrict initial data on a subspace of L.(R?) where Riesz’ operators and,
consequently, the operator P,JP are bounded. The natural space for this purpose for
initial data Vg is the space X = B&’I(Rz; LP(Ry)). Here By, ; is the homogeneous Besov




space. It contains almost periodic functions in z;, z; and the Riesz operators are bounded
in this space. We study local (in time) unique solvability of the rotating Ekman Navier-
Stokes equations in R3 under the condition that the initial velocity Vo € B, , (R? LP(R4)).
2 < p < +o0o. For the linear problem (Stokes + Coriolis) we employ the solution formula
derived in [6] for the Stokes resolvent in terms of the resolvent of the Dirichlet Laplacian and
certain remainder terms. Detailed information on the linear problem (Stokes + Coriolis +
Ekman operators) is then used to construct (local-in-time) mild solutions to the full nonlinear
rotating Navier-Stokes equations in R}. To derive the estimates for the linear part we will
employ theory for E-valued Besov spaces, where E is a Banach space. The main ingredient
will be an operator-valued version of Mikhlin’s multiplier result. Among other things it will
be the basis for an operator-valued H*-calculus for the Laplacian on E-valued Besov spaces,
which serves as a useful tool in estimating the formulas for the Helmholtz projection and
the resolvent of the Stokes operator. The generation result for the Stokes operator and a
standard perturbation argument will then lead to the generation result for the full linear
operator (Stokes+Coriolis+Ekman).

Note that we do not expect the solutions of the nonlinear equations to be an element of
the space of initial data B&‘I(R‘z; LP(R4)). This is essentially due to the fact that normal
derivatives act merely on the L? part of the space BQO,I(RQ; L*(R,)) (see Remark 3.8). To
overcome this problem we applied the contraction mapping principle in the larger space
BUC(R? L?(R.)). The unboundedness of the Helmholtz projection in that space is handled
by using a splitting of the term P,0; in a term with pure normal derivative and terms
containing only tangential derivatives and Riesz operators. This leads to the slightly technical
Section 3.2.

In the subsequent sections we will be brief in details, in particular with the proofs of our
results. For detailed versions of the proofs see [8].

In order to get a space of functions instead of equivalence classes we use an alternative def-

inition of the homogeneous Besov spaces and denote them by B"ﬁ,q(R""l; L*(R;)) (see Defini-
tion 2.1). By B&,I’U(Rz; L?(R,)) we denote the solenoidal part of Bgo,l(llv; LP(R)) defined as

the image of the Helmholtz projection P, (observe that P is bounded on B&,I(Rz; LP(Ry))
according to Corollary 2.9). Our main result reads as

Theorem 1.1. Let 2 < p < co. For each v € B&,I’U(Rz; LP(R,)) there exists To > 0 and a
unique (mild) solution v of (1.18) such that

v € BC([0,To); BUC,(R% LP(Ry)))

and

t'/2Vv e BC((0,To); BUC,(R% LP(R.))).
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2 Basic ingredients

In this section we define E-valued homogeneous Besov spaces and provide the required basics
for the treatment of the linear and nonlinear problems in the subsequent sections.

Usually the homogeneous Besov space B:,Q(R“) is defined as a space of equivalence classes,
see e.g. [22], where it is defined as a subspace of Z’(R"), the topological dual of

Z(R") :={f € S(R"): D*f(0) = 0, a € N3},

(see also [3] for an equivalent definition). The space Z/(R") can be identified with S’(R™)
modulo all polynomials in R", where §'(R") denotes the dual of the Schwartz space S(R").
This leads to the fact that elements of the equivalence classes in Bflq(R") have different
derivatives in general. Therefore it is not appropriate to construct solutions of a concrete
PDE in such a space. In such a situation it is desirable to have a space of functions, which
motivates the alternative definition given below.

Recall that a Littlewood-Paley decomposition is given by a family of functions ¢; € S(R™)
satisfying Ejez.$j(£) =1 for £ € R™\ {0}, where ¢;(£) := ¢o(277€) and 0 # ¢o € S(R™) such
that suppggo C {1/2 < |¢| < 2}. Moreover, for a Banach space E, we denote by §'(R™; E) the
space of all E-valued linear continuous functionals on S(R"), i.e. §'(R™; E) := L(S(R"); E).
Note that then ;

S(R% E) — LY(R™ E) — S'(R% E), q€[1,00].

Definition 2.1. Let E be a Banach space, 1 < r,q < 00, s € R, and {¢;};ez a Littlewood-
Paley decomposition. If

either s<n/r or s=n/r and ¢=1, (2.1)

then the E-valued homogeneous Besov space Bf,q(R“; E) is defined by

B} (R™ E) = {f € 8'(R% E) : | fllgy ,wmmy < 00, f= )&+ fin S'(RHE)}, (22)
JEZ

: 1/ . .-
where || f Be (RmE) '™ (zjez(2”|]¢j * f ILr(Rn;E))q) ’. On the other hand, if E is addition-
ally the dual space of a Banach space F', s € R, 1 < r,q < o0, and

either s>n/r or s=n/r and q#1, (2.3)

we set

B} (R™ B) := (B7%,(R™ F)). (2.4)




Remark 2.2. (1) Definition 2.1 relies on the fact that under condition (2.1) the series
Y jez $i * f converges in S'(R™ E) for f € S'(R™; E) with ||flg; ®mg) < 00. For B = C
a proof of this fact can be found in [3], [13]. We omit the proof here, since the one given
in [13] directly transfers to the E-valued case. Note that || f|| Bz (RmE) < O is 1ot sufficient

for the convergence of 3~ .z ¢; * f in §'(R™ E), if the parameters s,7,¢ satisfy the inverse
condition (2.3). Therefore we used definition (2.4) in that case. Also note that the first ones
who made use of definition (2.2) in the case E = C for the space B, ;(R") related to the
Navier-Stokes equations were O. Sawada and Y. Taniuchi in [18] and O. Sawada in [17].

(2) By standard arguments it can be easily shown that B;"Q(R”; E) is a Banach space.
(3) Demanding f to have the representation f = Y .. ¢; * f ensures, that (E-valued)
constants are not element of b:’go’l(}R“; E). This yields the continuous imbedding

B, ,(R™ E) — BUC(R™ E).
(Observe that ||cl|g0  (gmp) = 0for c € E!)

(4) In this work we do not make use of Bf’q(R"; E) for r,q, s satisfying (2.3) with r = 1 or
g = 1. Therefore we skipped a proper definition of those spaces.

(5) In the scalar-valued case E = C for all values of the parameters s,r, g as in Definition 2.1
the space B (R") is isomorphic to B} (R"), see [3], [13].

The embedding in Remark 2.2 (3) is of crucial importance for estimating the nonlinear
term in Section 3.2. But, since the Helmholtz projection P, is expected to be unbounded in

BUC(R? L?(R4)), we also need to employ the larger space Bgo’oo (R% LP(R.)), which admits
the boundedness of P,. For this purpose we define

BUC(R™ E) := {f e BUC(R% E): f = Y _¢; » f in §'(R™ E)}.
JEZ
Since the series .5 ¢; * f converges in S'(R"; E) for f € BUG(R™; E) this space is well-

defined and it is isomorphic to BUC(R™; E) modulo constants. An essential ingredient for
the calculations in Section 3.2 will be

Lemma 2.3. Let n € N, E be the dual of a Banach space F'. Then
B, ,(R™ E) < BUC(R™ E) « B, . (R™ E).

Proof. The first embedding is clear. The second one follows easily by the definition of the
space By, (R™; E). O

In order to obtain densely defined generators the next Lemma will be useful.



Lemma 2.4. Let E be a Banach space, 1 < p < o0, and s,r,q be as in condition (2.1).
Then

(i) {u € B: (R% E): D*u € B! (R E), a € Ng} < B: (R E).

(ii) By o(R™ Nyew, WHP(R)) S B, (R™Y; 2(R)).

(i) {u € B: (R™%; I7(R)): D*u € B2 (R™; [*(R)), o € Ng} < B (R L7(R)).
Proof. This foilows by applying standard mollifier arguments. O

The following operator-valued Mikhlin type multiplier result is fundamental for the treat-
ment of the linearized equations in Section 3.1. Its proof is based on results in [1] and is
given in [8].

Theorem 2.5. Let N € N. Let E, s € R, 1 < p,q < oo be as in Definition 2.1. Furthermore,
let m € CN*Y(R™\ {0}, L(E)) such that

= Il D= < oo. 2.5
Il prce) Ia?slf?’ﬁlgeﬁgl\){o}lfl 1D*m (&)l e(z) < o0 (2.5)

Then F~'mF is a bounded operator on B;,q(RN; E) and we have
”f.'lm-FHL(B;,_q(RN;E)) < Cllm||mE), (2.6)

where C = C(n) > 0 is independent of p,q,s and m.

We call m : R™\ {0} = L(E), satisfying the assumptions of Theorem 2.5, an operator-
valued multiplier on B; (R"; E). Easy examples of operator-valued multipliers are given by
scalar-valued multipliers, i.e. functions m : R™\ {0} — C that satisfy the assumptions of
Theorem 2.5 with £ = C. Indeed, by the identification m = m - I, where I is the identity
on E, it is easy to verify that m is also an operator-valued multiplier.

In the sequel we will also make use of the following type of an operator-valued H-
calculus.

Definition 2.6. Let N € N, ¢ € (0,7). Let E, s € R, 1 < p,q < oo be as in (2.1).
A sectorial operator A in B} (R"; E) is said to admit an operator-valued H*-calculus on

B;‘q(RN; E) if there exists a Cy > 0 such that

1B(A) )l c(s; ,@mimy) < CollbllLo(z ey (2.7)
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for all h € H® (S5 Ka(E)) := {h : S5 = KA(E) : h bounded and holomorphic}, where
Ka(E) = {T € L(E) : T+ A)™ = (A + A)™'T, A€ p(—A)}. (2.8)
The angle
#5,(A) :=inf{¢ € (0,m) : thereisa Cy > 0 such that (2.7) holds}

is called the (operator-valued) H®-angle of 4 in B: ,(R"; E).

Remark 2.7. (a) It is clear that the definition above extends to arbitrary E-valued Banach
spaces.

(b) Denote the class of all operators A admitting an operator-valued H*-calculus as above
by Hg,(B: ,(RY; E)). Setting E = C we see that an operator A € HE, (B (RN, E)) in
particular admits a scalar H*-calculus, i.e. A € H(B; (RN)).

(c) By abstract results it follows that A € ”HS’F(B;M(RN; F)) implies A* € ng(B;,q(RN; E))
with ¢ < ¢ for s € [0,1].

Note that for

|2°

h € H(Z;Ka(B)) = {h € H?(Zgi Ka(B)  [h(leer < Oy oyae

, 2 € 24,,
for some C, s > 0}

the operator h(A) is defined by
* — _1__ —_— -1
h(A) = 57 /l:h()\)()\ A)THd),

where I is the path ' := {re®; 00 > r > 0} U{re ;0 < r < oo} for 6 € (0, ¢), passing from
ooe® to coe . This representation explains the restriction of the values of the functions
h to the subalgebra K4(E). Otherwise there would be a second, possibly different, way to
define h(A), namely by the integral

1

h(A) = 271'7/ r

(A= A)"th(A)dA.

This differers from the scalar-valued case, where these two definitions always coincide. Thus,
in order to obtain a compatible definition for the operator-valued case it is reasonable to use
this restriction.
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By the additional decay in 0 and oo it is obvious that h(A) € E(B";,q(RN; E)) for h €
H3°(24;Ka(E)). To define h(A) for arbitrary h € H®(Z4;K4(E)) we take z = g(z) :=
z/(1 4 2)* € HE(X4; K4(E)) and set

h(A) := (hg)(A)g(A)™*

initially defined on D(A) N R(A). Since the convergence lemma (see [4]) is still true for
operator-valued holomorphic functions (see [10]), as in the scalar-valued case it suffices to
prove (2.7) for all h € H{*(X4; K4(E)) in order to obtain the validity of (2.7) for all ~ €
H>(X4; K4(E)). For a more comprehensive introduction to operator-valued H®-calculi we
refer to [12] and [10], for the scalar-valued case see [4] and [5].

Examples of operators that admit an operator-valued H*-calculus on B"f,q (RY; E) are in
order.

Proposition 2.8. Let N € Nand B, s € R, 1 < r,q < o0 be as in (2.1). The Laplacian —A
in BY (RY; E) with domain D(—A) = {u € B: (RM;E): D*u € B (RY;E),c € N}, |a| <
2} admits an operator-valued H®-calculus on Bs‘q(RN; E) with H*®-angle >, =

r

Proof. Note that the sectoriality of —A in B,f’q(RN; E) with spectral angle ¢_o = 0 is
an immediate consequence of Theorem 2.5 and Lemma 2.4 (i). Indeed, it follows from the
well-known fact that FA(A — A)™! = A(X + |¢]?)7! satisfies the scalar Mikhlin conditions
also for |a| < N + 1 (instead of |a| < [N/2] 4+ 1)!) and for all A € %,_,,, and arbitrary
Yo € (07 7T)' .

Now let ¢ € (0,7) and h € HS®(X4; K4(F)). T&king Fourier transform yields

Fh(-A)= o~ /F RONF( — (=AY~ dx = h(l - ).

By copying the proof for scalar-valued h verbatim, simply replacing absolute value | - | by
the operator norm || - ||¢(g) it can be shown that £ — A(|€|?) satisfies the Mikhlin condition
of Theorem 2.5. This yields the assertion. d

By the preparations above we are in the situation to give an elegant proof of the bound-
edness of the Helmholtz projection on B; (R™"!; L?(R,)).

Corollary 2.9. Letn € N, 1 < p < 0. Let s € R, 1 < r,q < oo be as in Definition 2.1.
The Helmholiz projection P, is bounded on B: (R™1; LP(R,)).

Proof. We use the representation

P, =r(I+ RRV)E
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as given in (1.15) and (1.16). Obviously r € £(Bﬁ,q(R"‘1;LP(R)),B;“M(R"*;L”(R+))) and
FE e ﬁ(B;‘,q(R“‘l; LP(R4)), B2 (R™1; LP(R))). It remains to prove the boundedness of R =
(Ry,...,R,) on B,f’q(]R”"l; LP(R)). For j =1,...,n — 1 we write formally

R; = 0;(=A)7? = Bih(- A,
where R} := 9;(—A")"1/? is the tangential Riesz operator and
h:%4 = K_a(LP(R)), h(z):=[2(z— A2

for some ¢ € (0,7) and A, := 02. Theorem 2.5iea.si1y yields R} = F~! {%}[1] F €

ﬁ(B'go,q(R“‘l; LP(R))), since I%T satisfies the scalar Mikhlin conditions. Furthermore, from
well-known resolvent estimates for the Laplacian —A, on L?(R) we obtain

lz(z = An) Meewy < Cor 2 € By

This implies h € H®(S4,K_a(LP(R))) and therefore h(—A') € L(B: (R*}; L*(R))) by
Proposition 2.8, which proves the boundedness of R, for 7 =1,...,n — 1.
In the case j = n we directly write R, = g(—A') with

9: 8 = K_ar(LP(R)), g(2) = 8a(z — An) 72

Again by well-known estimates for the operator —A, we deduce g € H*(Z4; K_ar(L?(R)))
implying R, € L(BY, ,(R**; LP(R))) and the proof is complete. O

As another consequence of Proposition 2.8 and Remark 2.7 (c) we obtain the following
further example of an operator admitting an operator-valued H*-calculus. It will turn out
to be the key-ingredient in the proof of the resolvent estimates of the Stokes operator in
Theorem 3.1.

Corollary 2.10. Let N € Nand E, s € R, 1 < r,q < oo be as (2.1). The Poisson
operator |V| := (—A)Y? admits an operator-valued H®-calculus on B (RY; E) with H>-
angle ¢r§l = 0.
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3 Local existence for the nonlinear problem with initial
data in BY | (R%* LP(R,)) for 1 < p < oo

00,l,0

3.1 Linear problem

In this section we consider the linear problem

E
0:P — vVA® + Qe; x B + (UE(.’Eg) . V)@ + (I)gaaU =-Vr, V.® =0, (3.1)
I3
‘I)(tax)lz‘s=0 = (070’0)’

‘ Q(t, x)lt-_-o = Qo(.’l)

in R} x (0,00). After applying the Helmholtz projection P, the above equation (3.1) can
be written in operator form as follows

where A is the Stokes operator in a half-space, S = P, JP is the Coriolis operator in R,
and Cg is the Ekman operator. Most of the results below are stated in arbitrary dimen-
sion n > 2. Only if the Ekman operator comes into play we restrict dimension to the case
n = 3. Since the results here are based on the results in Section 2 the proof works simul-
taneously in all homogeneous Besov spaces Bﬁ,q(R"_l; L?P(R.)) as defined in Definition 2.1.

Hence, for simplicity we put X := B: (R""%; LP(Ry)) and X, := B:_ (R™% LP(Ry)) :=

q,0

P+B:q(R"‘1; L?P(R.)) and start by stating the generation result for the Stokes operator

A = Agp = -UvPLA,
D(A) = D(Ap)n X,
= {u€X:D€ X,aeNg,|a| <2,ulerr =0} NX,,

where Ap denotes the Dirichlet-Laplacian in X and o € NP is a multiindex. By a standard
perturbation argument we will show afterwards that also

AE‘ = A+P+JP++CE
D(Ag) = D(A)

is the generator of a holomorphic semigroup on X,.
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Theorem 3.1. The Stokes operator A is the generator of a bounded holomorphic semigroup
on X,. In particular, for each o there is a Cy, such that we have the resolvent estimates

2
STIMFIVEEO A+ A) o) € Cps A € Brege (3.3)

k=0
If 5,7, q satisfy condition (2.1) the semigroup is strongly continuous.

The proof of this result requires some preparations. First let us recall a suitable repre-
sentation for the solution of the Stokes resolvent problem

()\ — A)u +Vp = wuy in Ri,
(SRP)u,,» V-u = 0 in RE,
u = 0 in R"1L

In [6] (see also[16]) it was shown that u = (A 4+ A)~'ug can be represented as
W = (A=Ap)lug— Ry,
u" = (A —Ap) lug + v,

where R’ denotes the tangential Riesz operator and the Fourier transform of the remainder
v is given by

e—w(!fil)xﬂ — e_‘lg,lz"

'{’(517 xﬂ) =

0o —w(|¢'))s an EI 3)d GRn
€ u b 8, ’wn b
e (Ee)ds, (6] €RG
where w(|¢']) = /X + |¢'|*. Furthermore, the Fourier transform of the related pressure p is
given as
i€ WD+ g

P 2) = [ = LiE

In order to estimate these formulae we follow the arguments in [16], i.e. we will prove

IVrlix < Clifllx. (3.5)

Then, by plugging over Vp to the right hand side of (SRP)y, it can be regarded as a
resolvent problem for the Dirichlet-Laplacian with data ug — Vp. The estimates for the
solution of this problem, which are proved first, in combination with (3.5) then yields the
assertion. The essential ingredient for estimating the formulae for u and p in [16] is the H*-

calculus for the tangential Poisson operator |V'| := (=A/)Y/2 = F~1{|¢|]F on L¢(R"!). The

/ e-—w(|f’|)s,&6(§l’ (I?n)dS, (E’ mn) (= R:_ (34)
0
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corresponding ingredient in the situation considered here will be the stronger property of
an operator-valued H*-calculus for |V’| on vaq(RN ; LP(R4)) as provided in Corollary 2.10.
This is due to the fact that here we have to deal with E-valued spaces in contrast to [16].

As a further application of Proposition 2.8 we start with the desired resolvent estimates
for the Dirichlet-Laplacian Ap. The proof follows by similar methods as in the proof of
Corollary 2.9. Therefore we omit the details here.

Proposition 3.2. Let ¢o € (0, 7). There is a C,, > 0 such that the Dirichlet-Laplacian Ap
with domain D(Ap) = {u € X : D*u € X,a € NJ,|a] < 2,ulory = 0} admits the resolvent

estimates
2

YTV~ Ap) Mlexy € Cror A € Srege

k=0

With the above preparations in hand we can turn to the proof of the generation result
for the Stokes operator.

Proof. (of Theorem 3.1)
First we show that A is densely defined if s, r, g satisfy condition (2.1). Parallel to Proposition
3.2 it can be proved that A with its domain

D(8) = {u € By (R™™ IP(R)) : D*u € B, (R™™ IP(R)), o € N, |o] < 2}

is the generator of a bounded holomorphic semigroup on Bﬁ,q(R"‘l;LP(R)). Thanks to
Lemma 2.4 (iii), D(A) is dense in Bﬁ,q(R"‘l; LP(R)), hence this semigroup is strongly con-
tinuous, which implies

AA=A)Tf o f, in B2 (R™S LP(R)) if A — oo.

In view of

(A=Ap)T ' f=r(A-A)le f,

where 7 is the restriction on R%, e~ the extension by odd reflection as defined in (1.17), we
obtain also for the Dirichlet Laplacian

MA=Ap)'f = re f=f inB: (R LP(Ry)) if X = oo.
By the representation

AMA+ Agrg) ™ f = A(A = Ap)TH(f = Vp(N)
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it therefore remains to show
Vp(A) 20 in XifA— oo

to obtain D(A) to be dense in X,, provided s, , ¢ fulfill (2.1). This will be done in Lemma 3.4
below.
To prove the resolvent estimates (3.3) we regard (SRP),,,» as the problem

{ (A=A

u

up— Vp in RY,
0 in R"%

Proposition 3.2 yields

2
Z M2 V2 *ul|x < Copllto — Vpllx, A € Sresy-

k=0

So, if we can show
Vollx < Cyolluollx, X € Zgeyy,

the proof of Theorem 3.1 is complete. But this is an immediate consequence of the next
lemma for § = 0. O

For later purposes we state the estimate for the pressure in a more general form. To this
end define the operator S(A) by

S(Nuo := Vp, ug € X, (3.6)
where p is given by formula (3.4).

Lemma 3.3. Let oy € (0,7), 1 < p < o0, and § € [0,1/p']. Then there is a constant
C = C(8, o) such that

C
i)\|5/2’

V1Sl < A€ Sy (3.7)

Proof. Fix o € (0,7) and & € [0,1/p']. Let ¢ € (0,40/4) and define for f € LP(Ry),

(ha(2)f)(zn) = (1 + ‘_"Tz‘;}) 71t on /:o e f(s)ds, z€ T4, T, > 0.

Then, by representation (3.4) we see that |V'|72(S()\)uo)" can be written as
IV'[78(S(A\)uo)™ = =R’ - bA(IV')ug, o € X.
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We already know that R’ € £(X). Therefore, in view of Corollary 2.10, it remains to show
that hy € H®(Z4; L(LP(R4))) with the upper bound given in (3.7). But for f € L?(R,) we

have

Z < —wi{zZ)s
lrr(2) fllery) < l(“-_) 2 Ile‘”"llm(m)/o e £(s)|ds

w(2)

< c 4 (1 " ;(.3) 78 o2 | e [ Fll 2oy
15
<¢C <1 + w(z) ) w(zz) Iw(lz)l‘SHf”LP(RﬂL).

Our choice ¢ € (0,0/4) (which is possible in view of ¢, = 0) implies the existence of a
c1 = ¢1(po) > 0 such that Rew(z) > c1(/|A| + |2]|) for A € Tr—yo, z € Ly. Then, it easily

follows

w(z)

1 C
< Yo
lw(2)[ = |Aer2
Hence, since 6 € [0,1/p'], i.e. ;% -6 >0,

< Cpyy AEEp_gy, 2 € Xy,

and

A€ Eﬂ_wo, zc 24"

Coo
PA(2) | ey < l_/\‘l%’ A€ Brogys 2 € Ly,

Employing Corollary 2.10 we finally may conclude

n—1

IR - ma(IV"Dusllx < C Y I1Ra(IV" sl x

J=1

V17 (S(\uo)"llx

< Collballze=(zgicr@ey lluollx
< C¢o||“0“X> A€ E’Ir—qpo, ug € X.

By the equality
ifl A

VR S
15 = > = ——6," y
* lﬁ'llgp i

we have

IV (S(Vuo) = —R|V'|7°(S(N)uo)"™.
Again in view of R’ € L(X), we see that the corresponding estimate for |V/|~(S(X)uo)’ is
reduced to the just proved estimate for |V/|75(S(\)uo)". Hence, the proof is complete. 0O




Lemma 3.4. Let r,q,s,p be as in Lemma 2.4. Then
SA)f—-0 inX if A =50

for f € X,.

Proof. The proof of Lemma 3.3 for § = 0 shows that we can obtain an estimate as
IS £llx < CI(=AN* (A = A7V f||x.
The operator on the right hand side can be written as
(~AY(A = A = (3 4 (~A)°)(A = A) (AT + (=477

with a = 1/2p’. Now, in view of Proposition 2.8, (A* + (—A’)*)(A — A’)~® is bounded on
X, even with an upper bound independent of X\. Moreover, since the sectoriality of —A’ in
X, implies also (—A’)* to be sectorial in X, (with ¢(—arje = 0), we have

(=AN* (e +(=AN)'f =50 if o— o0
for f € X,. Consequently
IS Sfllx < Cl (=AY (A% 4 (—AVEYflx 50 i A= o0
for f € X,. O

The boundedness of the operator P, on X and of the Ekman spiral solution U now
allows us to employ a standard perturbation argument for proving the generation result for
the full linear operator Ag. More precisely we have

Theorem 3.5. Let ¢o € (0,7/2]. There are constants K1 = Ki(po) > 0, Ko = Ka(po) > 1
such that for wo = wo(wo) 1= 2K, max{1, [Ki(Q + ||UZ||1,.0)]?} we have

21r——tpo g p(_(AE + LUQ))

and
2

Z l)‘lk/zllvz—k(’\ + Agp+ U-’O)"IHL(X) < C%’ AE zﬂ'—wm

k=0
for some Cy,, > 0. Hence, Ag is the generator of a holomorphic Co-semigroup with growth
bound wa , < wo(m/2).



Proof. Set B := QP,JP, + Cg. For wy > 0 the resolvent of Ag + wy = A + B + wg can

be written as
A+ w+A+B) '=A+wo+A) T +BA+w+A) ™ (3.8)

Next we estimate [|B(A + wo + A)~Y||(x). Since U depends only on z, we obtain
ICE(A +wo+ A) ey < C (HUEllooHV(/\ +wo + A) 7 leex)

s nanUEuwnu+wo+A)-1nqx>)
Co

< ¥
T VA4 wol

where we applied (3.3). This implies by the boundedness of P, on X

0% [0, A +wol 2 1,

1
IBA+wo+A) ey < Co (QH(A +wo+ A) e + ——HUElll,oo>

VA + wol
K
< e (04 U |1oo)y, A+ wo| 21, (3.9)
\/!/\+UJOI

where K; = K(po) depends on upper bounds for ||P,|z(x) and [|A(A + A)7!|zx) only.
Note that there is a constant K; = K;(pg) > 1 such that |X+wp| > K;'wp for all XA € .y,
and wp > 0. Now we set wp := 2K, max{1, [K;(Q + ||U?||1)]?}. Then we may employ the
Neumann series obtaining

IVE(A + (wo + A + B)) || c0x)
< IVE +wo + A) el + B + wo + A) 7 lex)

c oo 1/217
< _____Z W
- ’A + U.J()I(Z_k)/z pard 2](2[/\ + WOI
< C 1
= A4 wel@R/21 — (1/2)1/2
< ——-—C—— A€ By, k€{0,1,2},

X £ wo| P72’

where we applied again estimate (3.3) for the Stokes operator A. O
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3.2 Nonlinear problem - local existence

We start with some Lemmata stating useful estimates we will need in order to estimate the
nonlinear term. Exemplary we will give the proof of some of the statements. The first one
is already proved in [7].

Lemma 3.6. Let n € N and o > 0. Then there ezists Cy = C(a) > 0 such that
(1) H(—A)aGt(x)”B(ll,l(Rn) <Ct™® fOT t>0,

where G; denotes the heat kernel, and

(2) H("A)aemeBgo‘l(Rn) < Ct_a”f”}égom(kn) for t>0.

Lemma 3.7. Assume 1 < qg<p< oo, d€(0,1/2].
(1) It holds

Hempajf”zégo,l(kn-l;m(m))

< 0(5)t—6-% ) (HfHBgo'w(R"—l;Lq(R.,.)) + HV'f|[Bgo,w(kn-l;m(m)))
forj=1,...,n—1 and anyt > 0.
(2) ||€"220, fl|poo ®r—1iL0(R 1)) < Ct=5 35 3)|| fllwr.oo @rrwraqryy) for any t > 0.
(3) 110;€"2 fllgg, , @n-tLr(m4)) < Ctih %—%)Hf”Bgom(R"—l;Lq(R.,.))
forj=1,...,n—1and anyt > 0.
(4) 1180622 fll oo @mrszamyy) < Ct 338 || po@n-sizam ) for any t > 0.
Remark 3.8. (a) Due to the fact that J, acts on the third component (L? part) there is
no regularizing effect in that case, i.e. we cannot expect to generalize the estimates (2) and
4) to
@ BY, (R™% LY(R,)) = By 1 (R* L7(R+))
as (1) and (3).
(b) The properties of the Dirichlet Laplacian Ap we use in the proof of Lemma 3.7 are

known also for the Neumann Laplacian Ay. Hence all assertions of Lemma 3.7 are valid for
Apn as well.

Proof. (1) Since d; for 1 < j <n—1, —A’, and €**’ act only on the tangential direction
we have

16420, fllgs, , @n-rzray = D I 16 % €220 flromylle@ny

k=-o0

= Y (=4 e gy x 4220;(—A) 7 fly| oo

k=—o00
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Here, ¢ = ¢i(z1, 2;) for all k € Z. Multiplying 1 = 3,5 di*, it follows from 20 (g% f) =
&1 * €20 f that

||etAD8jf||Bgo,1(nzn—1;Lp(R+)) = Z || 1e* éx * ¢y * €429, f,||oo
kl€ezZ,|k-1|<2
= > (=) e e x €20 (% 8;(—A) 7 £) ol lco-
kIEZ,|k~1|<2

Then vector-valued Young's inequality yields (see page 13 in [1])

|,etADajf|'B&‘I(Rn—l;LP(RH) S
S Z ||(_A/)setA’¢kIlLl(Rn—-l;R)HCtAD.n(¢I * aj(—A,)_sf)IILW(Rﬂ—l,LP(R+)).
KJEZ,|k-1]<2

Hence, we obtain

164205 £11 s, , (Rn-1:204) <
< SILGISHEMD’"(QSI*aj(—A’)—6f)||L°°(R"—1;LP(R+))Z Y =AY e Gl wn-rimy

k€EZ 1€, [k—1|<2
=5 Sllelgllem”’"(@*31(—13')"51” s @e-rze@y)) Y 1(—A) 2 e |1 mr-rm).
kezZ '

The L? — Li-estimate of the operator etAo.m

i1 1
€42 (g1 % )llzwmezsmey = || 12270 % Hlplloo < CHETD] 1% flylloo

yields

On the other hand, it follows from Lemma 3.6 (1) that

Z||(—A')_aemlfﬁkf|L1(R"-1;R) = Z”(_A/)—sat(m/)*¢k“L1(R"“1;JR)

keZ keZ
(=& Gu(e) I3y, nesy < O

Thus we conclude

IA

—s-=ifi_ L - :
16420, fl1 g5, @n-tzrryy < Ct*72G p)SIuE [10% 5= A Fllp=@n-rey)
’ €

e
-

= 53 )||aj(—A')-1/2(—A’)%'5flIsgg,w(nn—l;L«(n+>>
_s-1f1 1 1
< ot 33|~ AN *fllss, .. ®e-nza®) (3.10)
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where we used R € L(BS (R™1; LI(R,))) for the tangential Riesz operator R =
(=A% in the last inequality. By Proposition 2.8 the operator (_A')%—5(1 — A2
is bounded on B2 . (R"'; L(Ry)). Moreover, by general results for fractional pow-
ers of sectorial operators we know that the norms ||(1 — A")Y/2 . llgs, . ®n-1;Le(ry)) 20d

I o, wr-1,20®y)) T+ [|(—An2. s, . ®n-1L9(r,) 2Te equivalent. This implies

1_ 1_ - -
(=AY fllge, @r-ramyy = (=A)7 F1-ANTA(1-A) 1/2f||Bg°,°°(R"-1;Lq(R+))
<C (1]f“3go,w(R""1;Lq(R+)) + “(‘—A,)l/zf“léga,m(R"—l;Lq(R+))) .

Combining this with (3.10) it remains to show
(=AY fllg, . @r-rzomsy < CIV' Fllsg, . mr-tLamy)):

But this estimate fol.lows easily from the representation (—A’)!/? = Z;‘;ll R0; by applying
once again R € L(BY, ,(R*™; L{(R,))). a

By using the lemma above we can estimate terms of the form 9;e"*?P. f for 1 < j < n.
The main problem occuring here is to handle the term with normal derivative 0,. The idea
is to split P,8, into a normal derivative term without Riesz operators and terms including
only tangential derivatives and Riesz operators.

Lemma 3.9. Let 1 < g<p< oo and § € (0,1/2]. Then for 1 < j < n we have

_s-Li(L_L
(1) lletADP+ajf|]Lw(Rn—x;Lp(R+)) < Cst d 2(? p)|lfllWl,oo(Rn—l;Wl,q(R+)), t>0,
1(1

~1l_1(i_ 1
(@) 118e22P, fllpm@eizrryy) S CtFEED| fllpemeszamay, >0

Proof. In the case that 1 < j < n — 1 we have e'*2P,;f = e!Ar9,P, f. On the other
hand, by Corollary 2.9 the operator P, is bounded on B&,W(R""I;LP(RQ). Hence, by
Lemma 3.7 (1) we have

“etADP+ajf||Bg°,1(lR"—1;LP(R+)) <
1 1

_s-ifi_1L
< Ct PANN (“f”Bgo,w(R"-l;Lq(Rﬂ) + ‘|V’f”Bgoym(Rn_1;Lq(R+))) , t>0, (311)

yielding (1) for 1 € 7 < n — 1 in virtue of Lemma 2.3. For j = n we use the following
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splitting of P1+d, f:
P.o.f = (3.12)

= ra((Ef),0) + 5;‘ rd; R(R.(Ef)) +

=1

rPES,f = rPo,Ef

n—1

r(V,0)RE(Ef)* — Y rd;R;Ru(Ef)"en

i=1

n—1
= 8Qof+ ) 8,Q;f

J=1
=: I+11,
where the operators Qg, Qi, ..., Q,-; are defined by
(3.13)

Qog = r((Eg)';O) = (¢',0), .
Qig = rR(Ro(Eg)) + rR2(Bg)e; — rR;Ra(Bg)eny j=1,0.,m— 1. (3.14)

Here we denote by e; the unit vector whose j-th component is 1 and Rk = (Rih,...,R.h)

for scalar function h. To derive (3.12) we used the facts that
‘ n—1
OnRj = 0,0;(—A)? = 8;0.(=A)Y?*=9;R, for1<j<n, and R:=-1- Z R:.
j=1

By the boundedness of r, E and in view of R € L(BS, .. (R™"; L(R))) this implies that Q; €
L(BY (R*LLI(R,))),j=1,...,n—1. Applying Lemma 3.7 (2) to I and Lemma 3.7 (1)

to IT then yields
122 P 10 fll oo @10 () <

n—1

€42 0. Qo fllzoo@n—r2om ) + D I|6tAD3ijf||Bg°'l(mn—1;m(n+))

=1

~§=i{1_1
S Ct ] 2(q P li”QofllWl,oo(Rn—l;Wl,Q(R_”)

n—1
1 D[ (LY PR ——

j=1
< Ct“;‘%(%‘%)llwam(R"-‘;Wl"'(R”)‘




Lemma 3.10. Let ¢o € (0,7), 2 < p < 00. There is a C = Cy, > 0 such that

0 10 =800 Sl 0 < Mﬁ_ 1l _qzory
@) 190~ 80)"S(0] s on < M_C___ TP
@ 1B A0) SOl < g s, ooy

———— oooo(
A |

for X € Xn_y,, A 21, f € Bgo,w(Lp/z)'

The next proposition contains the crucial estimates that allow us to construct solutions
in the space BUC(R?; L?(R4)). Note again that due to the fact mentioned in Remark 3.8 (a)
we are not able to carry out the iteration in the space BY, 1(R% LP(R4)).

Proposition 3.11. Let 2 < p < oo, g € (0,7/2), § € (0,1/4), and wo = wo(o) as in
Theorem 3.5. There exist C = C(po,d) > 0 and wy > wo such that

_f_ s
| Vet AP 9, f Lo muromy) < Ct7 55 09| fllwnm mewinragy) (3.15)
jgr t ZL({),C(%?I(I),/IZ;,(I& 3—-)}1,2,3, f € BUC(R%L W P/A(R,)) := {u € BUC(R?% LP/*(Ry)) :
u e ’ P + .

Proof. For simplicity we omit the R notation in the spaces, i.e. we write Wh*(L?) =
Whe(R% LP(R,)), L=(LP) = L*(R% LP(R;)) and so on in the sequel. We will prove the
corresponding estimates for the resolvent of Ag, i.e.

C
,\‘I‘E‘L*'S(l 22 | Fllw, 00 (W1p/2) (3.16)

VA + wi + Ag) T P10, fllneze) < '

for j=1,2,3,£=0,1, A\ € £,_y,, and f € WH(W#/2). Then (3.15) easﬂy follows by the

represent ation

e~ tAEtw1) g}r-{/e—tA(A+w1 +AE)-1d)\.
r

Now fix ¢o € (0,7/2) and set p := A+ w;. Observe that the resolvent of the Stokes operator
A can be written as

(6 +A)" = (u—Ap) (I - S(w)), (3.17)
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where S(u) is defined as in (3.6). Thus, according to (3.8) the resolvent of Ag is represented
as

(u+Ap)™ = (u—Ap) (I - S(W)I+B(u+A)"™

Let us first consider the easier case of tangential derivatives. Since §; commutes with P
and all parts of Ag for 7 = 1,2, in this case we have

I+ AE)'P L0, fll Lo (e
= Cll(s — Ap)7'0;(I = S(W)I + B(u + A)17'Py fllgo  (1s)

= FII% (H(I — ST +B(p + A) 7Py fllgo, o2y

+02= SN+ Bl )P g o

C
< mr_g:;“f“wm(mz), (3.18)

where we applied Lemma 3.7 (1) as well as the boundedness of S(u), [I + B(u + A)71]72,
and P, in the space B «(LP?) given by Lemma 3.3, by w; > wp and our choice of wp
(see Theorem 3.5), and Corollary 2.9, respectively. Applymg Lemma 3.7 (3) instead of
Lemma 3.7 (1) we can obtain in an analogous way

_ Coo .
10:(s + Ap)"'PL0; f| oo (zr) < i lf_L 10; Fll Lo (zo12) (3.19)
p] 2 2p

for:=1,2and j =1,2,3.
The case of normal derivatives is more involved. Here we employ Neumann series and
use the representation of the form

(4 + Ag)” Z(/HA [B(u+A)~.

k=0
In order to estimate this expression we need
Lemma 3.12. There are constants K = K(po) > 0 and w; > wo such that

- k
“(,U, + A)—l [B(ﬂ + A)'I]kP+a3f”L°°(LP) < m{{_&;} (\/ii) Hf”WI,OO(Wl,p/Z) (320)




106

for all f € BUCH (W%, p—wi € Bp_yo, k=0,1,2,..., and
, . K 1)*
18s(pe + A) ' [B(u + A) PO, fllpeore) < —1—1 1z \ 75 ) Mllwiemwren (3.21)
uli=5 \v2
for all f € BUCH(W'P/?), y—w € Ty, 1 =1,2,3, k=0,1,2,... .

Proof. The assertion follows by induction over k. The proof is very technical, but for the
single steps we basically use the same methods as in the proofs of the previous Lemmata,
i.e. employing Besov spaces in the case of terms including tangential derivatives or S(A), or
using the splitting of P,0s. ) a

We complete the proof of Proposition 3.11. From (3.20) we immediately conclude

1 : = __T%0 1 ¢
(e + Ag)~™ P+asf”L°°(LP) < E -L-a (\/—) ”f”wl.oo(Wi,p/a)
k=0 |1l

C
— 1 I lwremrer)

[l
On the other hand (3.21) implies

) C 1 k
“83(” + AE)_IP‘Fa'f”Lm(LP) S 1":)_1_ (—) “f“wl,oo(wl,plz)
’ 2 h-F \ V2

C
< L lwsm wriorey
M
for j = 1,2,3. Combining these two inequalities with (3.18) and (3.19), estimate (3.16) and
thus the assertion of Proposition 3.11 follows. ]

Theorem 1.1 is now essentially a consequence of Proposition 3.11 and the contraction
mapping principle applied on v = Fv with

t
Fu(t) := e A8y, — / e~(t=)A2P _ div(v(s) ® v(s))ds

0
in the space :
Xrx={vE€E BC((O,T);BMC,(]Rz; LP(R); | vllxy < K}
with norm
vl x, := sup |[v]lzeoze)(s) + sup s/?|[Vo||pooze)(s)-
0<s<T 0<s<T
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We omit the proof here and refer to [8] for the details. We just remark that there remains
one difficuly concerning the continuity of the solution, i.e. the fact that we can construct
the solutions in BC((0, T'); BUC,(R? L?(R.))) instead of L>>((0,T); BUC,(R? LP(R.)) only.
Note that e *£ is not even expected to be bounded on BUC,(R? L?(R,))). Essentially the
continuity is a consequence of estimate (3.16) and representation

1
e~HitAs)p 9, = 5 e — (w1 + Ag))T'PLOdN, j=1,2,3,1>0,
r
which is valid even on BUC,(R?; LP(R,))), since {e **£},5, is the generator of a holomorphic
semigroup on the larger space BY, (R? LP(Ry)). '

©0,00,0
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