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1 Introduction
The equator on $S^{2}$ has the least length among all its images under area
bisecting deformations. This is a well-known theorem by Poincare and a
special case of isoperimetric inequality for closed curves on $5\mathrm{y}2$ . This theorem
stands in the intersection of symplectic geometry and Riemannian geometry.
In fact, we can interpret ( $S^{2}$ , the area form) as a symplectic (K\"ahler) mani-
fold and the equator as a minimal Lagrangian submanifold. Moreover, area
bisecting deformations of the equator are nothing but Hamiltonian deforma-
tions. Therefore, the above theorem has the feature that some symplectic
assumptions give rise to a Riemannian result.

Considering $5^{2}$ as $\mathbb{C}P^{1}$ and the equator as a real form $ilP^{1}\subset \mathbb{C}P^{1}$ , it is
natural to generalize Poincare’s theorem to the case $\mathbb{R}P^{n}\subset$ CPn. In 1990,
Y.-G. Oh [5] and B. Kleiner actually obtained the following theorem (see also
[2] $)$ :

Theorem 1 (Kleiner-Oh). The standard real for$rm\mathbb{R}P^{n}\subset \mathbb{C}P^{n}$ has the
least volume among all its images under Hamiltonian isotopies.

A minimal Lagrangian submanifold with such a property is said to be
Hamiltonian volume minimizing.

In this article, we show that the product of equators in $5^{2}(1)\cross S^{2}(1)(\cong$

$Q_{2}(\mathbb{C}))$ is also Hamiltonian volume minimizing. More precisely,

Theorem 2 (IOS [4]). Let $L:=\mathrm{S}^{1}(1)\cross$ Sl(l) be a totally geodesic La-
grangian torus in $(S^{2}(1)\cross S^{2}(1),\omega_{0}\oplus\omega_{0})$ , where $\omega_{0}$ denotes the standard
K\"ahler form of $5^{2}(1)\cong \mathbb{C}P^{1}$ . Then for any Hamiltonian diffeomorphism

$/\in \mathrm{H}\mathrm{a}\mathrm{m}(S^{2}\cross S^{2})$ , we have

$\mathrm{v}\mathrm{o}\mathrm{l}(\phi(L))\geq$ vol(L).
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Moreover, if $\mathrm{v}\mathrm{o}\mathrm{l}(\phi(L))=\mathrm{v}\mathrm{o}\mathrm{l}(L)$ holds, then there exists an isometry $g$ of
5 $(1)$ $\cross$

$5^{2}$ $(1)$ such that $\phi(L)=gL.$

In section 2, we review some standard notions from symplectic geometry.
In section 3, we explain an unified method of proving the Hamiltonian

volume minimizing properties of real forms in Hermitian symmetric spaces
of compact type and pose a conjecture in terms of integral geometry.

In section 4, we prove the conjecture in section 3 (Conjecture 4) in the
case $\mathrm{S}^{1}(1)\cross$ $5^{1}$ $(1)\subset S^{2}(1)\cross S^{2}(1)$ and establish its Hamiltonian volume
minimizing property and the uniqueness modulo isometric group actions.

2 Lagrangian submanifolds and their Hamil-
tonian deformations

Let $(M,\omega)$ be a $2n$-dimensional closed symplectic manifold with symplectic
2-form $\omega$ and $L$ be an $n$-dimensional closed submanifold of $M$ . Then $L$ is
said to be Lagrangian if $\omega|_{L}=0.$ Hamiltonian isotopies of $(M, \omega)$ are defined
as follows. If a smooth function $F$ : $M\cross[0,1]arrow \mathbb{R}$ is given, then we can
uniquely define the vector field $X_{t}$ on $M$ for each $t\in[0,1]$ such that

$\omega(X_{t},$.) $=dF(\cdot,t)$ .
Therefore, we have the flow $\{\phi_{t}\}_{\mathrm{t}\in[0,1]}$ of diffeomorphisms on $M$ defined by
the differential equation

$\frac{d}{dt}\phi t(x)=X_{\iota}(\phi_{t}(x))$

with initial condition $\phi_{0}=idM.$ The time 1-map $\phi_{1}$ of this flow is called a
Hamiltonian diffeomorphism. The set of all Hamiltonian diffeomorphisms is
denoted by Ham(M, $\omega$). We can check that Ham(M, $\omega$) is a subgroup of the
identity component $\mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}_{0}(M)$ of the diffeomorphism group of $M$ .

By definition, a Hamiltonian diffeomorphism $\phi$ of $M$ preserves the sym-
plectic structure $(i.e., \phi^{*}\omega=\omega)$ . Therefore, if $L$ is a Lagrangian submanifold
of $M$ , then $\phi(L)$ is also Lagrangian.

In the next section, we restrict our attention to K\"ahler manifolds to in-
troduce the volume functional on the space { $\phi(L)|6$ $\in$ Ham(M, $\omega$ )}.

3 Lagrangian intersection theorem, Poincar\’e
formula and Hamiltonian volume minimiz-
ing property

Let $(M,\omega, J)$ be a closed connected K\"ahler manifold. Trivial examples of
Hamiltonian volume minimizing Lagrangian submanifolds are special La-
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grangian submanifolds in Ricci-flat Kahler manifolds. In fact, they are cali-
brated submanifolds and homologically volume minimizing. But, in general,
it is difficult to check whether a minimal Lagrangian submanifold $L$ in $M$ is
Hamiltonian volume minimizing or not, if $L$ is not a calibrated submanifold.
One method we use here is a combination of Lagrangian intersection the-
orems in symplectic geometry and Poincare formulas in integral geometry.
This method was first pointed out by Oh and Kleiner.

From now on, we restrict our interest to the case where $(M, \omega, J)$ is a
Hermitian symmetric space of compact type. It is an important example of
K\"ahler-Einstein manifolds with positive Ricci curvature.

Let $\mathrm{r}$ be a canonical involution on $M$ . Then

$L:=$ Fix $\tau$

is a totally geodesic Lagrangian submanifold in $M$ (which is called a real for$rm$

of $M$). It seems worthwhile to verify the Hamiltonian volume minimizing
property for such a pair $(M, L)$ .

For such a case, a Lagrangian intersection theorem has already established
by Oh ( $[8],[6]$ and [7]).

Theorem 3 (Oh). Let $(\mathrm{M},\mathrm{u})$ be a compact symplectic manifold such that
there exists an integrable almost complex structure $J$ for which the triple
$(M, \omega, J)$ becomes a compact Hermitian symmetric space. Let $L=$ Fix $\tau$

be the fixed point set of an anti-holomorphic involutive isometry $\mathrm{r}$ on $M$ .
Assume that the minimal Maslov number of $L$ is greater than or equal to
2. Then for any Hamiltonian diffeomorphism $\phi$ of $M$ such that $L$ and $\phi(L)$

intersect transversely, the inequality
$\dim L$

$\beta(L\cap\phi(L))\geq$ $1$ $\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}H_{i}(L,\mathbb{Z}_{2})$ (1)
$i=0$

holds.

Here we have to explain the minimal Maslov number of $L$ . For any smooth
map of pairs rp : $(D^{2}, \partial D^{2})arrow(M^{2n}, L^{n})$ , we have a unique trivialization of
the pull-back bundle $w^{*}TM\mathit{4}$ $D^{2}\cross \mathbb{C}^{n}$ as a symplectic vector bundle up to
homotopy. This defines a map from 5 $\cong\partial D^{2}$ to

$\Lambda(\mathbb{C}^{n}):=$ {$L|L$ : Lagrangian plane in $\mathbb{C}^{n}$ }.

Using a well-known Maslov class $\mu\in H^{1}(\Lambda(\mathbb{C}^{n}), \mathbb{Z})\cong \mathbb{Z}$, we can define

$I_{\mu,L}(w):=\mu(\partial D^{2})\in \mathbb{Z}$.
This is called the Maslov index of w. We can show that $I_{\mu,L}$ defines a hom0-
morphism on $\pi_{2}(M,$L) and is invariant under Hamiltonian isotopies of M.
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The minimal Maslov number $\Sigma_{L}$ of the Lagrangian submanifold $L$ in $M$ is
defined as the positive generator of the subgroup

$\{I_{\mu,L}(w)|w:(D^{2},\partial D^{2})arrow(M,L)\}$

of Z.
Here, we state our conjecture.

Conjecture 4 (IOS). Let $(M, \omega, J)$ be a Hermitian symmetric space of corn-
pact type. Let $L=$ Fix $\mathrm{r}$ be the fixed point set of a canonical involution $\tau$

on $M=G/K$ . If any second variation of the volume functional at $L$ on the
space $\{\phi(L)|6\in Ham(M,\omega)\}$ is non-negative, then we have

Cvol $(L)_{\mathrm{V}\mathrm{O}}1(N) \geq\int_{G}\#(Lq_{g}(N))d\mu(g)$

where

$C= \frac{(\sum \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}H_{*}(L,\mathbb{Z}_{2}))\mathrm{v}\mathrm{o}\mathrm{l}(G)}{\mathrm{v}\mathrm{o}1(L)^{2}}$

.

for any Lagrangian submanifold $N$ .
The assumption that any second variation of the volume functional at $L$

on the space { $\phi(L)|\phi\in$ Ham(M, $\omega)$ } is non-negative is, of course, a nec-
essary condition for $L$ to be Hamiltonian volume minimizing. A minimal
Lagrangian submanifold satisfying such a property is said to be Hamiltonian
stable. Hamiltonian stabilities of all real forms in compact irreducible Hermi-
tian symmetric spaces are completely determined by Amarzaya-Ohnita ([1]).
This is another reason why we investigate real forms in compact Hermitian
symmetric spaces.

Proposition 5. Under the same assumption as Conjecture 4, if Conjecture
4 is true, then the totally geodesic Lagrangian submanifold L $=$ Fix r with
$\Sigma_{L}\geq 2$ in $(G/K,\omega,$J) is Hamiltonian volume minimizing.

Proof. By Theorem 3 and Conjecture 4, we have

$C\mathrm{v}\mathrm{o}\mathrm{l}(L)\mathrm{v}\mathrm{o}\mathrm{l}(\phi(L))$ $\geq$ $\int_{G}\#(L\cap g\circ\phi(L))d\mu(g)$

$\geq$ $7_{G} \sum_{i=0}^{\dim L}$ rankH: $(L, \mathbb{Z}_{2})d\mu(g)$

$\dim L$

$=\mathrm{v}\mathrm{o}\mathrm{l}(G)$ I $\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}H\dot{.}(L,\mathbb{Z}_{2})$

$=C\mathrm{v}\mathrm{o}\mathrm{l}(L)^{2}.\cdot=.0$
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Hence,

$\mathrm{v}\mathrm{o}\mathrm{l}(\phi(L))\geq$ vol(L).

$\square$

$S^{1}(\mathrm{l})\subset \mathrm{I}\mathrm{n}$

th
$S^{2}\mathrm{e}$n(elx)t $\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}S^{2}(1).$

’ we prove the above conjecture in the case $5\mathrm{X}(1)\mathrm{x}$

4 Poincare formula for Lagrangian surfaces
in a product of 2-spheres

Here we review the generalized Poincare formula in Riemannian homogeneous
spaces obtained by Howard [3].

Let $U$ be a finite dimensional real vector space with an inner product, and
$V$ and $W$ vector subspaces of dimensions $p$ and $q$ in $U$ , respectively. Take
orthonormal bases $v_{1}$ , ..1 , $v_{p}$ and $w_{1}$ , . . $l$ , $w_{q}$ of $V$ and $W$ , and define

$\sigma(V,W)=||v_{1}\wedge\cdot$ .. $\Lambda v_{p}\Lambda w_{1}\Lambda$ ... $\Lambda w_{q}||$ ,

which is the angle between $V$ and $W$ .
Let $G$ be a Lie group and $K$ a closed subgroup of $G$ . We assume that $G$

has a left invariant Riemannian metric which is also invariant under elements
of $K$ . This metric induces a $G$-invariant Riemannian metric on $G/K$ . We
denote by $0$ the origin of $G/K$ . For $x$ and $y$ in $G/K$ and vector subspaces $V$

in $TX\{G/K$ ) and $W$ in $T_{y}(G/K)$ , we define $\sigma_{K}(V,W)$ , the angle between $V$

and $W$ , by

$\sigma_{K}$ (V, W) $=7$ $\sigma((dg_{x})_{\mathit{0}}^{-1}V,dk_{o}^{-1}(dg_{y})_{\mathit{0}}^{-1}W)d\mu_{K}(k)$

where $g_{x}$ and $g_{y}$ are elements of G such that $g_{x}o=x$ and $g_{y}o=y.$

Theorem 6 (Howard). Let $G/K$ be a Riemannian homogeneous space and
assume that $G$ is unimodular. Let $N$ and $L$ be submanifolds of $G/K$ with
$\dim N+\dim L\geq\dim(G/K)$ . Then

7 $\mathrm{v}\mathrm{o}\mathrm{l}(N\cap gL)d\mu_{G}(g)=\int_{N\mathrm{x}L}x_{K}$ (T”N, $T_{y}^{[perp]}L$) $d\mu(x,y)$

holds.

The linear isotropy representation induces an action of $K$ on the Grass-
mannian manifold $GP(T\mathit{0}(G/K))$ consisting of all $p$ dimensional subspaces in
the tangent space TO(G/K) at $0$ in a natural way. Although $\sigma_{K}(T_{x}^{[perp]}N,T_{y}^{[perp]}L)$
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is defined as an integral on $K$ , we can consider that it is defined as an in-
tegral on an orbit of $K$-action on the Grassmannian manifold. So $\sigma_{K}(\cdot, \cdot)$

can be regarded as a function defined on the product of the orbit spaces of
such $K$-actions. In the case where $G/K$ is a real space form, $\sigma_{K}(T_{x}^{[perp]}N, T_{y}^{[perp]}L)$

is constant since $K$ acts transitively on the Grassmannian manifold. This
implies that the Poincare formula is expressed as a constant times of the
product of the volumes of $N$ and $L$ . In general, such $K$-actions are not tran-
sitive. However, if we can define an invariant for orbits of this action, which
is called an isotropy invariant, then using this we can express the Poincare
formula more explicitly.

Next, we define isotropy invariants for surfaces in $S^{2}\cross S^{2}$ and give an
explicit Poincare’ formula for its Lagrangian surfaces.

Let $G$ be the identity component of the isometry group of $S^{2}\cross S^{2}$ , that
is, $G=$ 50(3) $\cross$ 50(3). Then the isotropy group $K$ at $\mathit{0}=$ (pup2) in $S^{2}\cross S^{2}$

is isomorphic to 50(2) $\cross$ 50(3), and $S^{2}\cross S^{2}$ is expressed as a coset space
$G/K$ . Assume thet $G$ is equipped with an invariant metric normalized so
that $G/K$ becomes isometric to the product of unit spheres. We decompose
the tangent space $T_{o}(G/K)$ as

$T_{o}(G/K)=T_{p_{1}}(S^{2})\oplus T_{p2}(S^{2})$ .
We take orthonormal bases $\{e_{1}, e_{2}\}$ and {e3, $e_{4}$ } of $T_{p_{1}}(S^{2})$ and $T_{p_{2}}(S^{2})$ , re-
spectively, then a complex structure on $T_{o}(G/K)$ is given by

$Je_{1}=e_{2}$ , $Je_{2}=-e_{1}$ , $Je_{3}=e_{4}$ , $Je_{4}=-e_{3}$ .

We consider the oriented 2-plane Grassmannian manifold $\tilde{G}_{2}(T_{o}(G/K))$ .
Take an origin $V_{o}:=$ span{ei, e2} and express $\tilde{G}_{2}(T_{o}(G/K))$ as a coset space

$\tilde{G}_{2}(T_{o}(G/K))=SO(4)/$(SO(2) $\cross$ $5O(2)$ ) $=:G’/K’$ .

Now we study the $K$ action on $\tilde{G}_{2}(T_{o}(G/K))$ and define isotropy invari-
ants. In this case the actions of $K$ and $K’$ on $\tilde{G}_{2}(T_{o}(G/K))$ are equivalent
by Ad : $Karrow K’$ . Therefore it suffices to consider the orbit space of the
isotropy action of $\tilde{G}_{2}(T_{o}(G/K))$ . It is well known that the orbit space of the
isotropy action of a symmetric space of compact type can be identified with
a fundamental cell of a maximal torus. Hence we can define the isotropy
invariant by a coordinate of a maximal torus. We denote by $\mathrm{g}’$ and $\mathrm{f}’$ the Lie
algebra of $G’$ and $K_{:}’$ respectively. Then we have a canonical decomposition
$\mathrm{g}’=\mathrm{t}’\oplus \mathrm{m}_{:}’$ where

$\mathrm{m}’=\{$ $(-\iota XO$ 5 ) |X $\in M_{2}(\mathbb{R})\}$

We take a maximal abelian subspace $a’$ of $\mathrm{m}’$ as follows:

$a’=\{$ $(-tXO$ y ) | X {3 $\theta_{2}0$ ), $\theta_{1},\theta_{2}\in \mathbb{R}\}$
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Then the set of positive restricted roots of $(\mathfrak{g}’, \epsilon’)$ with respect to $a’$ is

$\Delta=\{\theta_{1}+\theta_{2},\theta_{1}-\theta_{2}\}$ .

So we have a fundamental cell C of $a’$ :

$C=\{\mathrm{Y}=(\begin{array}{ll}O X-^{t}X O\end{array})$ |X $=(_{0^{1}}^{\theta}$ 0 ), $0\leq\theta_{1}-\theta_{2}\leq\pi 0\leq\theta_{1}+\theta_{2}\leq\pi\}$

Thus the isotropy invariants in this case are given by $\theta_{1}+\theta_{2}$ and $\theta_{1}-\theta_{2}$ . It
is easy to see that the geometric meaning of $\theta_{1}-\theta_{2}$ is the Kahler angle of
2-dimensional subspace Expy of $T_{o}(G/K)$ . On the other hand, there is the
other complex structure $J’$ which is defined by

$J’e_{1}=e_{2}$ , $J’e_{2}=-e_{1}$ , $J’e_{3}=-e_{4}$ , $J’e_{4}=e_{3}$

on $T_{o}(G/K)$ . We can also check that $\theta_{1}+\theta_{2}$ is the Kahler angle of ExpY
with respect to $J’$ .

Using these isotropy invariants we obtain the following formula from The-
orem 6.

Theorem 7 (IOS [4]). Let $N$ and $L$ be Lagrangian surfaces in $S^{2}\cross S^{2}$ .
We assume that $L$ is a product of curves in $5^{2}$ . Then toe have

$\int_{G}\beta(L$
”

$gN)d \mu(g)=4\mathrm{v}\mathrm{o}\mathrm{l}(L)\int_{N}$ length(Ellip($\sin^{2}\theta_{x}$ ,cos2 $\theta_{x}$ )) $d\mu(x)$ ,

where $2\theta_{x}-\mathrm{v}\mathrm{r}/2$ is the Kahler angle of $T_{x}^{[perp]}N$ with respect to $J’$ and Ellip(a, $\beta$)
denotes an ellipse defined by

$\frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\sqrt{}^{2}}=1.$

Theorem 7 yields the following immediately.

Corollary 8. Let $N$ and $L$ be surfaces of $S^{2}\cross S^{2}$ . Suppose that $N$ is La-
grangian and $L$ is a product of curves in S2. Then the following inequality
holds:

$\int_{SO(3)\mathrm{x}SO(3)}\#(L\cap gN)d\mu(g)\leq 16\mathrm{v}\mathrm{o}\mathrm{l}(N)\mathrm{v}\mathrm{o}\mathrm{l}(L)$ . (2)

Moreover the equality holds if and only if the Lagrangian surface N is also
a product of curves in $5\mathrm{t}^{2}$ .

Proof of Theorem 2. Let $L:=S^{1}(1)\cross S^{1}(1)$ . Since $\Sigma_{L}=2$ and

$\frac{\Sigma_{i=0}^{2}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}H\dot{.}(L,\mathbb{Z}_{2})\mathrm{v}\mathrm{o}1(SO(3)\cross SO(3))}{\mathrm{v}\mathrm{o}1(L)^{2}}=\frac{4\cdot(8\pi^{2}\cdot 8\pi^{2})}{(4\pi^{2})^{2}}=16,$
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the Lagrangian submanifold $L$ is Hamiltonian volume minimizing by PropO-
sition 5.

Suppose that $\mathrm{v}\mathrm{o}\mathrm{l}(0(\mathrm{L}))=\mathrm{v}\mathrm{o}\mathrm{l}(L)=4\pi^{2}$ . In this case, by the proof of
Proposition 5, inequality (2) must satisfy the equality. So $\phi(L)$ must be a
product of closed curves $l_{1}$ and $l_{2}$ in $5^{2}(1)$ . If one of these curves is not
area bisecting, we can reduce the volume of $\phi(L)=l_{1}\cross l_{2}$ by a HamiltO-
nian diffeomorphism $\tilde{\phi}\in \mathrm{H}\mathrm{a}\mathrm{m}(S^{2})\cross \mathrm{H}\mathrm{a}\mathrm{m}(S^{2})\subset$ Ham($S^{2}\cross$ S2) in view of
the isoperimetric inequality on $5^{2}(1)$ . This contradicts that $L$ is HamiltO-
nian volume minimizing. Hence, $l_{1}$ and $l_{2}$ are area bisecting. Consequently,
closed curves $l_{1}$ and $l_{2}$ must be great circles by the isoperimetric inequality.
Therefore, the Hamiltonian diffeomorphism $\phi$ is nothing but an isometry $g$

of $S^{2}(1)\cross S^{2}(1)$ . $\square$

References
[1] A. Amarzaya and Y. Ohnita, Hamiltonian stability of certain minimal

Lagrangian submanifolds in complex projective spaces, Tohoku Math. J.
55 (2003), 583-610.

[2] A. B. Givental, The Nonlinear Maslov index, London Mathematical s0-

ciety Lecture Note Series 151 (1990), 35-43

[3] R. Howard, The kinematic formula in Riemannian homogeneous spaces,
Mem. Amer. Math. Soc, N0.509, 106 (1993).

[4] H. Iriyeh, H. Ono arrd T. Sakai, Integral geometry and HamiltO-
ntan volume minimizing property of a totally geodesic Lagrangian
torus in $S^{2}\cross S^{2}$ , Proc. Japan Acad., 79, Ser. A (2003), 167-170.
$\mathrm{a}\mathrm{r}\mathrm{X}\mathrm{i}\mathrm{v}:\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{D}\mathrm{G}/0310432$ .

[5] Y.-G. Oh, Second variation and stabilities of minimal lagrangian sub-
manifolds in Kdhler manifolds, Invent. Math. 101 (1990), 501-519.

[6] Y.-G. Oh, Floer cohomology of Lagrangian intersections and pseudO-
holomorphic disks, I, Comm. Pure Appl. Math. 46 (1993), 949-993.

[7] Y.-G. Oh, Addendum to “Floer cohomology of Lagrangian intersections
and pseudO-holomorphic disks, I”, Comm. Pure Appl. Math. 48 (1995),
1299-1302.

[8] Y.-G. Oh, Floer cohomology of Lagrangian intersections and pseudO-
holomorphic disks, III: Arnold-Givental Conjecture, The Floer Memorial
Volume, Birkhauser, Progress in Math. 133 (1995), 555-573.


