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Expansive automorphisms and expansive
endomorphisms of the shift (a survey)

Masakazu Nasu

Abstract: Some major problems on expansive automorphisms and ex-
pansive endomorphisms of onesided and twosided shifts of finite type are
explained, and a quick survey of the results on them which have been ob-
tained by various people is given from the author’s viewpoint.

1. Introduction
A $com$rrvuting system $(X, ¥tau, ¥varphi)$ means an ordered pair of continuous maps

$¥tau$ : $X¥rightarrow X$ and $¥varphi$ : $X¥rightarrow X$ of a compact metric space with

$¥varphi¥tau=’¥tau¥varphi$ .

If $(X, ¥tau, ¥varphi)$ is a commuting system? then $¥varphi$ is called an endomorphism
of the dynamical system $(X, ¥tau)$ ( and hence $¥tau$ is an endomorphism of the
dynamical system $(¥mathrm{A}, ¥varphi)$ $)$ . When $¥varphi$ is a homeomorphism in this definition,
then $¥varphi$ is an automorphism of $(X, ¥tau)$ .

Two commuting systems $(X, ¥tau, ¥varphi)$ and $(X^{¥prime}, ¥tau^{¥prime}, ¥varphi^{¥prime})$ are said to be conjugate
and written by

$(X, ¥tau_{7}¥varphi)¥cong(X^{l}, ¥tau_{7}^{¥prime}¥varphi^{¥prime})$ ,

if there is a conjugacy $¥psi$ : $(X,¥tau, ¥varphi)¥rightarrow(X^{¥prime}, ¥tau_{¥$}^{¥mathit{1}}¥varphi^{¥prime})$ , i.e., a homeomorphism
$¥psi$ : $X¥rightarrow X^{¥prime}$ which gives conjugates $¥psi$ : $(X, ¥tau)¥rightarrow$ $(X, ¥tau^{¥prime})$ and $¥psi$ : $(X¥varphi¥})¥rightarrow$

$(X_{)}¥varphi’)$ between dynamical systems at the same time.
Throughout this article, “conjugacy” and “conjugate” mean“topologi-

cal conjugacy” and “topologically conjugate”. Further, “transitive” means
“topologically transitive’ $f$ (i.e., having a dense forward orbit) and “mixing”
means “topologically mixing”.

Let $A$ be an alphabet (i.e., a nonempty finite set of symbols). Let $A^{¥mathbb{Z}}=$

$¥{(a_{j})_{j¥in ¥mathbb{Z}}|¥mathrm{r}x_{j}¥in A¥}$ be endowed with a metric compatible with the product
topology of the discrete topology on $A$ . Let $¥sigma_{A}$ : $A^{¥mathbb{Z}}¥rightarrow A^{¥mathbb{Z}}$ be defined
by $¥sigma_{A}((a_{j})_{j¥in ¥mathbb{Z}})=(a_{j+1})_{j¥in ¥mathbb{Z}}$ . The dynamical system $(A^{¥mathbb{Z}}¥sigma_{A})¥}$ is called the
full shift over $A$ or the full $N$ -shift if the number of symbols in $A$ is $N$ .

Let $X$ be a closed subset of $A^{¥mathbb{Z}}$ with $¥sigma_{A}(X)=X$ . Let $¥sigma=¥sigma_{A}|X$ . Then
we have a dynamical system $(X, ¥sigma)$ , which is called a subshift over $A$ . Let
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$A^{¥mathrm{N}}=¥{(a_{j})_{j¥in ¥mathrm{N}}|a_{j}¥in A¥}$ be endowed with a metric compatible with the
product topology of the discrete topology on $A$ . Let $¥tilde{¥sigma}_{A}$ : $A^{¥mathrm{N}}¥rightarrow A^{¥mathrm{N}}$ be
defined by $¥tilde{¥sigma}_{A}((a_{j})_{j¥in ¥mathrm{N}})=(a_{j+1})_{j¥in ¥mathrm{N}}$ . The dynamical system $(A^{¥mathrm{N}},¥tilde{¥sigma}_{A})$ is
called the onesided full shift over $A$ or the onesid $ed$ full $N$ -shift if the number
of symbols in $A$ is $N$ . For a subshift $(X, ¥sigma)$ over $A$ , let $¥tilde{X}=¥{(a_{j})_{j¥in ¥mathrm{N}}|$

$¥exists(a_{j})_{j¥in ¥mathbb{Z}}¥in X¥}$ . Then with the onto continuous map $¥tilde{¥sigma}=¥tilde{¥sigma}_{A}|¥tilde{X}$ we have a
dynamical system $(¥tilde{X},¥tilde{¥sigma})$ , which is called a onesid $ed$ subshift over $A$ and is
said to be induced by $(X¥sigma)¥}$ . A subshift $(X, ¥sigma)$ over an alphabet $A$ is called
a subshift of finite type (SFT) if there is a finite set $F$ of words (blocks) over
$A$ such that $¥mathrm{X}$ is the set of all points $(a_{j})_{j¥in ¥mathbb{Z}}$ in $A^{¥mathbb{Z}}$ such that $a_{j}¥ldots a_{j^{¥prime}}¥not¥in F$

for all $j,j^{¥prime}¥in ¥mathbb{Z}$ with $j¥leq j^{¥mathit{1}}$ . A onesid $ed$ subshift of finite type (onesided
SFT) is a onesided subshift induced by an SFT.

$¥circ$ (Hedlund [H], Reddy [R]) Let $X$ be a compact, 0-dimensional metric
space. If $¥tau$ : $X¥rightarrow X$ is an expansive homeomorphism, then $(X, ¥tau)$ is conju-
gate to a subshift. If $¥tau$ : $X¥rightarrow X$ is a positively expansive onto continuous
map, then $(X_{?}¥tau)$ is conjugate to a onesided subshift.

Let $(X, ¥sigma)$ be a subshift over an alphabet $A$ . For $n¥geq 1$ , let

$L_{n}(X)=$ $¥{a_{1}¥ldots a_{n}|¥exists(a_{j})_{j¥in ¥mathbb{Z}}¥in X_{¥mathrm{J}}a_{¥acute{¥mathrm{J}}}¥in A¥}$ .

Let $(X, ¥sigma)$ and $(X^{¥prime}, ¥sigma^{¥prime})$ be subshifts. Let $m_{¥mathrm{I}}n¥geq 0$ . A mapping $¥phi$ : $ X¥rightarrow$

$X^{¥prime}$ is called a block map of $(m, n)-$type or a block map if there is a local rute
$f$ : $L_{m+n+1}(X)¥rightarrow L_{1}(X^{¥prime})$ such that

$¥phi((a_{j})_{j¥in ¥mathbb{Z}})=(b_{j})_{j¥in ¥mathbb{Z}}$ with $ b_{j}=f(a_{j-m}¥ldots a_{j+n})¥forall.j¥in$ Z.

A block map of $(0_{1}0)$ -type is called a 1-block map.

$¥circ$ (Curtis, Lindon and Hedlund [H]) Let $(X, ¥sigma)$ and $(X^{¥prime}¥sigma^{f}))$ be subshifts.
Then a mapping $¥phi$ : $X¥rightarrow X^{¥prime}$ is continuous with $¥phi¥sigma=¥sigma^{¥prime}¥phi$ if and only if $¥phi$ is
a block map.

Therefore in particular, an endomorphism of a full shift is a cellular
automaton (map). We can say that an endomorphism of a subshift is a
cellular automaton over a subshift space.

By the theorem of Hedlund and Reddy, we know that every expansive
automorphism of a subshift is conjugate to a subshift. That is, if $(X_{f}¥sigma, ¥varphi)$

is a commuting system such that $(X, ¥sigma)$ is a $¥mathrm{su}$ shift and $¥varphi$ is an expan-
sive homeomorphism

$f$ then $(X, ¥varphi)$ is conjugate to a subshift. Our problem
is, typically speaking, “What subshift is this?’$f$ This can be interpreted
as the problem of determining the dynamics of a given expansive cellular
automaton over a subshift space.

The following are major problems in this line which have been studied.
(1) To what subshift is an expansive automorphism of an SFT conjugate?
(2) To what onesided subshift is a positively expansive onto endomorphism
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of an SFT conjugate?
(3) To what subshift is an expansive automorphism of a onesided SFT con-
jugate?
(4) To what onesided subshift is a positively expansive onto endomorphism
of a onesided SFT conjugate?

It is convenient to use the notion of “commuting subshifts” as some
people have used. A subshift or a onesided subshift is said to $com$ mute with
another subshift or onesided subshift if there is a commuting system $(X, ¥tau, ¥varphi)$

such that the former is conjugate to $(X, ¥tau)$ and the latter is conjugate to
$(X, ¥varphi)$ .

The following are the kernels of our problems.
(1) Is a subshift commuting with an SFT also an SFT7
(2) Is a onesided subshift commuting with an SFT a onesided $¥mathrm{SFT}^{7}$

.

(3) Is a subshift commuting with a onesided SFT an SFT?
(4) Is a onesided subshift commuting with a onesided SFT also a onesided
SFT?

We will quickly survey from our viewpoint the results on and around
the problems above which have been obtained by various people so far. Of
course we can not cover all the results.

Our viewpoint is mainly that of “textile systems” introduced in [N2].
All people except Nasu have obtained their results on the problems above
without using textile $¥mathrm{systems}_{)}$ but many of their results can be explained by
using textile systems with the benefit of hindsight.

The reader is referred to [Ki] or [LMar] for a comprehensive introduction
to symbolic dynamics, and to [AH] for information on topological dynamics.

2. Textile systems
Let $G$ be a graph. Here a graph means a directed graph which may have

multiple arcs and multiple loops. Let $A_{G}$ and $V_{G}$ denote the arc-set and
the vertex-set, respectively, of $G$ . Let $i_{G}$ : $A_{G}¥rightarrow V_{G}$ a $¥mathrm{nd}t_{G}$ : $A_{G}¥rightarrow V_{G}$

be the mappings such that for arc $a¥in A_{G¥}}i_{G}(a)$ and $t_{G}(a)$ are the initial
and terminal vertices, respectively, of $a$ . Hence the graph $G$ is represented
by $V_{G}¥leftarrow A_{G}i_{G}¥rightarrow V_{G}t_{G}$

. Let $X_{G}$ be the set of all points $(a_{j})_{j¥in ¥mathbb{Z}}$ in $A_{G}^{¥mathbb{Z}}$ such
that $tG(a,j)=i_{G}(a_{j+l})$ for all $¥acute{J}¥in ¥mathbb{Z}$ . Then we have a subshift $(X_{G}, ¥sigma c)$ and
a onesided subshift $(¥tilde{X}_{G},¥tilde{¥sigma}_{G})¥}$ which are called the topological Markov shift
and the onesided topological Markov shift, respectively, defined by $G$ . If $M$ is
a nonnegative integral square matrix and $G$ is the graph such that $M_{G}=M$ ,
then $(X_{M}, ¥sigma_{M})$ and $(¥tilde{X}_{M},¥tilde{¥sigma}_{M})$ denote $(X_{G}, ¥sigma_{G})$ and $(¥tilde{X}_{G},¥tilde{¥sigma}_{G})¥}$ respectively,
where $M_{G}=$ $(¥mathrm{MG}(¥mathrm{U})v))_{u,v¥in V_{G}}$ with $M_{G}(u,v)$ equal to the number of arcs $a$

in $¥mathrm{G}$ starting from $u$ and ending in $v$ .

Topological Markov shifts are SFTs, and SFTs are subshifts which are
conjugate to topological Markov shifts. The relation between onesided topo
logical Markov shifts and onesided SFTs is similar.
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For graphs $¥Gamma$ and $G$ , a graph-homomorphism $h$ of $¥Gamma$ into $G$ , written by
$h$ : $¥Gamma¥rightarrow G$ , is a pair $(h_{A_{3}}h_{V})$ of mappings $h_{A}$ : $A_{¥Gamma}¥rightarrow A_{G}$ ({arc-map) and
$h_{V}$ : $V_{¥Gamma}¥rightarrow V_{G}$ ( vertex-map) such that the following diagram is commutative.

$V_{¥Gamma}¥leftarrow i_{¥Gamma}A_{¥mathrm{I}^{¥tau}}¥rightarrow t_{¥Gamma}V_{¥Gamma}$

$ h_{V}¥downarrow$ $ h_{A}¥downarrow$ $¥downarrow h_{V}$

$V_{G}¥leftarrow i_{G}A_{G}¥rightarrow t_{G}V_{G}$

Agraph-homomorphism $h:¥Gamma¥rightarrow G$ gives 1-block maps ( $h$ : $X_{¥Gamma}¥rightarrow X_{G}$ and
$¥tilde{¥phi}_{h}$ : $¥tilde{X}_{¥Gamma}¥rightarrow¥tilde{X}_{G}$ by

$¥phi_{h}((¥alpha_{¥mathrm{j}})_{j¥in ¥mathbb{Z}})=(h_{A}(¥alpha_{¥mathrm{j}})_{j¥in ¥mathbb{Z}})$ , $(¥mathrm{a}_{j})_{j¥in ¥mathbb{Z}}¥in X_{¥Gamma}$ , $¥alpha_{j}$
$¥in A_{¥Gamma}$ ,

$¥phi_{h}^{¥approx}((¥alpha_{j})_{j¥in ¥mathrm{N}})=(h_{A}(¥alpha_{j})_{j¥in ¥mathrm{N}})$ , $(¥alpha_{j})_{j¥in ¥mathrm{N}}¥in¥tilde{X}_{¥Gamma}$ , $¥alpha_{j}¥in A_{¥Gamma}$ .

A textile system $T$ over a graph $G$ is defined to be an ordered pair of
graph-homomorphisms $p$ : $¥Gamma¥rightarrow G$ and $q$ : $¥Gamma¥rightarrow G$ such that each $¥alpha¥in A_{¥Gamma}$

is uniquely determined by the quadruple $(i_{¥mathrm{F}}(¥alpha), t_{¥Gamma}(¥alpha)¥}pA(¥alpha)$ , $qA(¥alpha))$ . We
write

$T$ $=(p, q : ¥Gamma¥rightarrow G)$ .

We have the following commutative diagram.

$V_{G}¥leftarrow l_{G}A_{G}¥rightarrow t_{G}V_{G}$

$¥uparrow TV$ $ p_{A}¥uparrow$ $ p¥mathrm{v}¥uparrow$

% $¥mapsto i_{¥Gamma}A_{¥Gamma}¥rightarrow t_{¥Gamma}V_{¥Gamma}$

$¥downarrow q_{V}$ $ q_{A}¥downarrow$ $ q¥mathrm{v}¥downarrow$

$V_{G}¥leftarrow i_{G}A_{G}¥rightarrow ¥mathrm{f}_{G}V_{G}$

If we observe this diagram vertically, then we have the ordered pair of graph-
homomorphisms

$V_{G}¥leftarrow i_{G}A_{G}$ $A_{G}¥rightarrow t_{G}V_{G}$

$¥mathrm{f}^{pV}$ $¥mathrm{P}A¥uparrow$ $ p_{A}¥uparrow$ $¥mathrm{P}V¥uparrow$

$V_{¥Gamma}¥underline{i_{¥Gamma}}A_{¥Gamma}$ and $A_{¥Gamma}¥rightarrow t_{¥Gamma}V_{¥Gamma}$ .

$1^{qV}$ $ q_{A}¥downarrow$ $ qA¥downarrow$ $ qV¥downarrow$

$V_{G}¥underline{i_{G}}A_{G}$ $A_{G}¥rightarrow t_{G}V_{G}$

This defines another textile system

$T^{*}=(p^{*}, q^{*} : ¥Gamma^{*}¥rightarrow G^{*})$
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called the dual of $T$ , where $i_{¥Gamma}*=p_{A},t_{¥Gamma^{*}}=q_{A¥}}i_{G}*=p_{V}$ and $t_{G}*=q_{V}$ .

Let $T=(p)q:¥Gamma¥rightarrow G)$ be a textile system. Let $¥xi=¥phi_{p}$ and let $¥eta=¥phi_{q}$ . A
two dimensional configuration $(¥alpha_{ij})_{¥dot{¥mathrm{z}},j¥in ¥mathbb{Z}}$ , $¥alpha_{ij}¥in A_{¥Gamma}$ , is called a testile woven
by $T$ if $(¥alpha_{ij})_{j¥in ¥mathbb{Z}}¥in X_{¥Gamma}$ and $¥eta((a_{i-1,j}^{J})_{j¥in ¥mathbb{Z}})=¥xi((¥alpha_{ij})_{j¥in ¥mathbb{Z}})$ for all $ i¥in$ Z. Let $ U¥tau$

denote the set of all textiles woven by $T$ . Define

$Z_{T}=¥{(¥alpha_{0j})_{j¥in ¥mathbb{Z}}|¥exists(¥alpha_{ij})_{i,j¥in ¥mathbb{Z}}¥in U_{T}¥}$ , $X_{T}=¥{¥xi((¥alpha_{0j})_{j¥in ¥mathbb{Z}})|¥exists(¥alpha_{ij})_{i,j¥in ¥mathbb{Z}}¥in U_{T}¥}$ .

Then we have subshifts $(Z_{T¥}}¥sigma¥tau)$ and $(X_{T}, ¥sigma_{T})$ . We call $(X_{T}, ¥sigma_{T})$ the woof
shift of $T$ and $(X_{T}*, ¥sigma_{T}*)$ the warp shift of $T$ . We also have the onesided sub-
shift $(¥overline{Z}_{T},¥tilde{¥sigma}¥tau)$ and $(¥tilde{X}¥tau,¥tilde{¥sigma}_{T})$ induced by $(Z_{T}, ¥sigma¥tau)$ and $(X_{T)}¥sigma¥tau)$ , respectively.
We say that $T$ is nondegenerate if $(X_{T}, ¥sigma_{T})$ $=$ ($X_{G_{2}}$ a$G$ ). We define onto
maps $¥xi_{T}$ : $Z_{T}¥rightarrow X_{T}$ and $¥eta_{T}$ : $Z_{T}¥rightarrow X_{T}$ to be the restrictions of 4 and $’¥eta$ ,
respectively. If $T$ is onesi $ded¥mathit{1}- ¥mathit{1}$ , i.e., $¥xi_{T}$ is 1-1, then an onto endomorphism
$¥varphi_{T}$ of $(X_{Tj}¥sigma_{T})$ is defined by

$¥varphi_{T}=¥eta¥tau¥xi_{T}^{-1}$ .

If $T$ is 1-1, i.e., both $¥xi¥tau$ and $¥eta¥tau$ are 1-1, $¥underline{¥mathrm{t}}¥mathrm{h}¥mathrm{e}¥mathrm{n}$ $¥varphi¥tau$ is an auto morphism of
( $X_{T}$ , a$¥tau$ ). We also define onto maps $¥overline{¥xi}¥tau$ : $Z_{T}¥rightarrow¥tilde{X}_{T}$ and $‘¥tilde{¥eta}¥tau$ : $¥tilde{Z}_{T}¥rightarrow¥tilde{X}_{T}$ to
be the restrictions of $¥tilde{¥phi}_{p}$ and $¥tilde{¥phi}_{q}$ , respectively, and if $¥tilde{¥xi}_{T}$ is 1-1, we have an
onto endomorphism $¥tilde{¥varphi}_{T}$ of $(¥tilde{X}_{T},¥tilde{¥sigma}_{T})$ by $¥tilde{¥varphi}¥tau=¥tilde{¥eta}_{T}¥tilde{¥xi}_{T}^{-1}$ If $T$ is 1-1, then an
onto continuous map $¥chi¥tau$ : $X_{T}¥rightarrow X_{T^{*}}$ is defined by

$¥chi¥tau(¥xi¥tau((¥alpha_{1¥mathrm{j}})_{j¥in ¥mathbb{Z}}))=¥xi_{T^{*}}((¥alpha_{i1})_{i¥in ¥mathbb{Z}})$ , $(¥alpha_{ij})_{i,j¥in ¥mathbb{Z}}¥in U_{T},$ $¥alpha_{ij}¥in A_{¥Gamma}$ .

The following gives a typical fundamental relation between a textile sys-
tem $T$ and its dual $T^{*}$ .

$¥circ$ ([N2]) Let $T$ be a onesided 1-1 textile system.
(1) $¥varphi_{T}$ is expansive if and only if $T^{*}$ is 1-1.
(2) If both $T$ and $T^{*}$ are 1-1, then

$(X_{T}, ¥sigma_{T}, ¥varphi¥tau)¥cong(X_{T}*, ¥varphi¥tau*, ¥sigma_{T}*)$

through the conjugacy $¥chi¥tau$ .

This implies that if $T$ is a 1-1 textile system with $T^{*}1- 1$ , then the woof
shift $(X_{T}, ¥sigma¥tau)$ and the warp shift $(X_{T}*, ¥sigma¥tau*)$ are commuting subshifts.

For a given expansive automorphis $¥mathrm{m}$

$¥varphi$ of a subshift $(X, ¥sigma)$ , we can easily
construct a 1-1 textile system $T$ such that

$(X_{f}¥sigma, ¥varphi)¥cong(X_{T}, ¥sigma_{T¥}}¥varphi¥tau)$ .

The dynamics of $¥varphi$ is given by $(X_{T}*, ¥sigma_{T}*)$ . However it is not easy in general
to identify this subshift. If $(X_{T}*, ¥sigma¥tau*)$ is an SFT, then we can identify this
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SFT ([N2]). In particular, if $T^{*}$ is nondegenerate} i.e., $X_{T^{*}}=X_{G}*$ , our work
is done. Some “resolving” textile systems have this property.

A graph $G$ is said to be nondegenerate if both $¥prime i_{G}$ and $t_{G}$ are onto. A
graph-homomorphism $h:¥Gamma¥rightarrow G$ is said to be onto if both $h_{A}$ and $h_{V}$, are
onto. An onto graph-homomorphism $h$ : $¥Gamma¥rightarrow G$ between nondegenerate
graphs is said to be ,

$¥Gamma ight$ resolving if for each $u¥in V_{¥Gamma}$ , the restriction of $h_{A}$

on $¥prime i_{¥Gamma}^{-1}(¥{u¥})$ is a bijection onto $i_{G}^{-1}(¥{h_{V}(u)¥})$ . it is said to be left resolving
if for each $u¥in V_{¥Gamma}$ , the restriction of $h_{A}$ on $t_{¥Gamma}^{-1}(¥{v¥})$ is a bijection onto
$t_{G}^{-1}(¥{h_{V}(u)¥})$ .

A textile system $T=$ $(p, q:¥Gamma¥rightarrow G)$ is said to be $LR$ if $p$ is left resolving
and $q$ is right resolving, and $LL$ if both $p$ and $q$ are left resolving.

If a textile system $T$ is $¥mathrm{LR}$ , then $T$ is nondegenerate and $T^{*}$ is $¥mathrm{LR}$ . If $T$

is $¥mathrm{LL}$ , then $T$ is nondegenerate and $T^{*}=$ $(p^{*}, q^{*} : ¥Gamma¥rightarrow G^{*})$ is $q$ -bireso lving,
i.e., $q^{*}$ is both left resolving and right resolving, but $T^{*}$ is not generally
nondegenerate. Every $¥mathrm{LR}$ textile system is easily obtained.

$¥circ$ ([N2]) If $M$ and $N$ are nonnegative integral matrices such that $(X_{M}, ¥sigma_{M})$

and $(X_{N}, ¥sigma_{N})$ are the woof and warp shifts of an $¥mathrm{LR}$ textile system, then
$M$ and $N$ commute. If $M$ and 1V are commuting nonnegative integral ma-
trices, then an $¥mathrm{LR}$ textile system whose woof and warp shifts are $(X_{Mf}¥sigma_{M})$

and $(X_{N}, ¥sigma_{N})_{¥mathrm{J}}$ respectively, is given by a specified equivalence between $¥mathrm{J}¥tilde{/}I¥tilde{N}$

and $¥tilde{N}¥tilde{M}$ (i.e., one-to-one correspondence between the terms of each entry
of $¥tilde{M}¥tilde{N}$ and the terms of the corresponding entry of $¥tilde{N}¥tilde{M}$ ), and vice versa,
where $¥tilde{M}$ denotes the symbolic representation matrix of $M$ .

3. Automorphisms of SFTs
Our study started from the following result:
$¥circ$ (Boyle and Krieger [BoKrl]) If $¥varphi$ is an automorphism of a topological

Markov shift $(X, ¥sigma)$ , then $(X_{¥mathrm{J}}¥varphi¥sigma^{k})$ is conjugate to a topological Markov
shift for all $k$ greater than $l$ $¥geq 0$ such that $¥varphi$ and $¥varphi^{-1}$ a $¥mathrm{re}$ block maps of
$(l_{f}l)- ¥mathrm{type}$ .

A symbolic conjugacy $¥kappa$ : $(X, ¥sigma)¥rightarrow$ $(X^{¥prime}, ¥sigma^{¥prime})$ between subshifts is a con-
jugacy given by just renaming of symbols, i.e., there exists a bijection
$k:L_{1}(X)¥rightarrow L_{1}(X^{¥prime})$ such that $¥kappa$ maps $(a_{j})_{j¥in ¥mathbb{Z}}$ to $(k(a_{j}))_{j¥in ¥mathbb{Z}}$ .

Let $C$ and $D$ be disjoint alphabets. Let $(Z, ¥sigma)$ be a bipartite subshift
with respect to $(C, D)$ , that is, $L_{1}(Z)=C¥cup D$ and for all $(a_{j})_{j¥in ¥mathbb{Z}}¥in Z$ and
for all $j¥in ¥mathbb{Z}$ , $a_{j}a_{j+1}¥in CD¥cup DC$ , where $CD=¥{cd|c¥in C, d¥in D¥}$ . Let
$(Z_{CD}, ¥sigma_{CD})$ and $(Z_{DC}, ¥sigma_{DC})$ be the subshifts over the alphabets $CD$ and
$DC$ , respectively, defined by

$Z_{CD}=¥{(a_{2j}a_{2j+1})_{j¥in ¥mathbb{Z}}|(a_{j})_{j¥in ¥mathbb{Z}}¥in Z, a_{0}¥in C¥}$ ,
$Z_{DC}=¥{(a_{2j}a_{2j+1})_{j¥in ¥mathbb{Z}}|(a_{j})_{j¥in ¥mathbb{Z}}¥in Z, a_{0}¥in D¥}$ .
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The conjugacies $¥zeta_{C,D}^{+}$ and $S_{C,D}$ of $(Z_{CD}, ¥sigma_{CD})$ onto $(Z_{DC}, ¥sigma_{DC})$ defined by

$¥zeta_{C,D}^{+}$ : $(c_{j}d_{j})_{j¥in ¥mathbb{Z}}¥mapsto(d_{j}c_{j+1})_{j¥in ¥mathbb{Z}}$ , $¥zeta_{C,D}$ : $(c_{j}d_{j})_{j¥in ¥mathbb{Z}}¥mapsto(d_{j-1^{C}j})j¥in ¥mathbb{Z}$

are called the forward bipartite conjugacy and the backward $bi^{t}p$artite conju-
gacy, respectively, induced by $(Z, ¥sigma)$ .

Any topological conjugacy $¥phi$ between subshifts has a $¥kappa-$( factorization:
$¥phi=¥kappa_{n},¥zeta_{n}¥kappa_{n-1}¥ldots¥kappa_{1}¥zeta_{1}¥kappa_{0}$ ,

where $¥kappa_{i}$ is a symbolic conjugacy and $¥zeta_{i}$ is a forward or backward bipartite
conjugacy([Nl]).

An automorphism $¥varphi$ of a $¥mathrm{su}$ shift $(X, ¥sigma)$ is said to be forward if it has a
$¥kappa-¥zeta$ factorization with all $¥zeta_{i}$ forward; it is said to be backward if it has a $¥kappa-¥zeta$

factorization with all $¥zeta_{i}$ backward.
Hence, for a $¥mathrm{ny}$ automorphism $¥varphi$ of a subshift $(X, ¥sigma)$ , $¥varphi¥sigma^{n}$ is forward for

all sufficiently large $n$ and $¥varphi¥sigma^{-}$

” is backward for all sufficiently large $n$ .

$e$ ([N2]) If $¥varphi$ is an automorphism of a topological Markov shift $(X, ¥sigma)$ ,
then $¥varphi$ is forward if and only if $¥varphi$ is $LR$ , i.e., there is al-l $¥mathrm{LR}$ textile system
$T$ with $(X_{T}, ¥sigma_{T}, ¥varphi_{T})=(X_{f}¥sigma, ¥varphi)$ .

This implies that every automorphism of a topological Markov shift
$(X, ¥sigma)$ is obtained by an $¥mathrm{LR}$ automorphism of $(X, ¥sigma)$ composed by $¥sigma^{-n}$ for
some integer $n$ .

It also implies that if $¥varphi$ is a forward automorphism of a topological
Markov shift $(X_{M}, ¥sigma_{M})_{3}$ where $M$ is a nonnegative integral matrix, then
there exists a nonnegative integral matrix $P$ commuting with $M$ such that
$(X, ¥varphi^{k}¥sigma^{l})$ is conjugate to $(X_{F^{k}M^{l}}, ¥sigma_{F^{k}M}¥iota)$ for all $k¥geq 0$ and $l$ $¥geq 1$ , and if $¥varphi$

is expansive, then $(X, ¥varphi)$ is conjugate to $(X_{P}, ¥sigma_{P})$ . The matrix $P$ is unique
for $¥varphi$ and explicitly given as follows ([N2]):

Suppose $¥varphi=¥kappa_{n};_{n}¥kappa_{n-1},¥ldots¥kappa_{1}¥zeta_{1}¥kappa_{0}$ is a forward $¥kappa-¥zeta$ factorization. If $n¥geq 1$

and the $¥kappa-¥zeta$ factorization induces self “strong shift equivalence” (cf. [W])

$M=P_{1}Q_{1¥}}Q_{1}P_{1}=P_{2}(Q_{2},$
$¥ldots$ , $Q_{n-}{}_{1}P_{n-1}=P_{n}Q_{n}.$ , $Q_{71}P_{n}=M$ ,

then $P=P_{1}¥ldots P_{n}$ , and if $n=0$ and $¥kappa_{0}$ induces a graph-automorphism
$k=(k_{A¥}}k_{V})$ of the graph $G$ with $M_{G}=M$ , then $P$ is the permutation
matrix corresponding to $k_{V}$ .

Let $X$ be a compact, 0-dimensional metric space. Let $H(X)$ denote the
group of homeomorphisms of $X$ onto itself. Let $E(X)$ denote the set of all
expansive homeomorphisms in $H(X)$ .

Let $¥varphi¥in H(X)$ and let $¥tau¥in E(X)$ with $¥varphi¥tau=¥tau¥varphi$ . Then $¥varphi$ is called an
essentially forward automorphis$m$ of $(X, ¥tau)$ if $(X, ¥tau, ¥varphi)$ is conjugate to some
commuting system $(X_{0}, ¥sigma_{0}, ¥varphi_{0})$ such that $(X_{0¥}}¥sigma_{0})$ is a subshift and $¥varphi_{0}$ is
a forward automorphism of $(X_{0}, ¥sigma_{0})$ . It is known that $¥varphi$ is an essentially
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forward automorphism of $(X, ¥tau)$ if and only if $(X, ¥tau, ¥varphi)$ is conjugate to some
commuting system $(X_{0}, ¥sigma_{0}, ¥varphi_{0})$ such that $(X_{0}, ¥sigma ¥mathrm{o})$ is a subshift and $¥varphi_{0}$ is an
invertible block map of $(0, k)-$type and $¥varphi_{0}^{-1}$ is a block map of $(l, 0)-$type for
some $k$ , $l$ $¥geq 0$ ([N3], Section 6).

Furthermore $¥varphi$ is called an directionally essentially forward automor-
phism of $(X, ¥tau)$ if there are positive integers $n¥mathrm{r}$ and $n$ such that $¥varphi^{m}$ is an
essentially forward automorphism of $(X, ¥tau^{n})$ .

For $¥varphi$ , $¥tau¥in H(X)$ , we write $¥varphi’¥backslash ¥sim¥nu¥tau$ to mean that $¥tau¥in E(X)$ and $¥varphi$ is a
directionally essentially forward automorphism of $(X, ¥tau)$ , and write $¥varphi¥langle¥sim¥backslash ¥theta¥tau$

to mean that $¥varphi-’*¥tau$ and $¥uparrow¥wedge¥sim¥varphi$ .

The following was stated without proof in [N3].
$¥circ ¥mathrm{Let}$

$¥tau$, $¥tau_{1}$ , $¥tau_{2}$ , $¥varphi$ , $¥varphi_{1f}¥varphi_{2}¥in H(X)$ .

(1) If $¥tau¥in E(X)$ , then $¥tau¥sim+¥tau$ .

(2) If $¥tau_{1}¥in E(X)$ and $¥tau_{1}[]+¥tau_{2}$ , then $¥tau_{1}$ $???$¥rangle$

$¥tau_{2}$ .

(3) If $¥tau¥tau_{2}=¥tau_{2}¥tau$ , then $¥tau¥sim*¥tau_{1}$ and $¥tau_{1}¥sim¥backslash +¥tau_{2}$ imply $¥tau¥cdot¥backslash ’*¥tau_{2}$ .

(4) If $¥tau¥in E(X)$ with $¥varphi¥tau=¥tau¥varphi$ , then there is $m¥geq 1$ such that $¥varphi¥tau^{n}’¥sim¥tau$

for all $n¥geq m$ .

(5) If $¥varphi_{1}¥wedge¥sim¥tau_{?}¥varphi_{2}¥sim-¥succ¥tau$ and $¥varphi_{1}¥varphi_{2}=¥varphi_{2}¥varphi_{1}$ and if there are $¥mathrm{m}$ , $n$ $¥geq 0$ with
$¥varphi_{1}^{m}¥varphi_{2}^{n}¥in E(X)$ , then $¥varphi_{1}¥varphi_{2}$ $?*τ.

For $¥tau¥in E(X)$ and for a commutative subgroup $K$ of $H(X)$ with $K$ $¥ni¥tau$ ,
we define

$C_{K}(¥tau)=¥{¥varphi¥in K|¥varphi¥sim¥Leftrightarrow¥tau¥}$

and call $C_{K}(¥tau)$ the directionally essentially forward cone containing $¥tau$ in $K$ .

A directionally essentially forward cone can contain non-expansive home-
omorphisms on the “boundary” of the cone.

The notion of a directionally essentially forward cone is closely related
with that of an “expansive component of 1-frames’’ for a $¥mathbb{Z}^{d}$ action in the
theory “expansive $¥mathrm{subdynamicS}^{)}$

’ of Boyle and Lind $[¥mathrm{BoL}]$ , which extensively
studied the dynamics of commuting homeomorphisms of compact metric
spaces in a different, more comprehensive framework considering not only
“rational directions” but also “irrational directions”.

$¥circ$ $([¥mathrm{N}2],[¥mathrm{N}3])$ If $(X_{¥}}¥tau)$ with $¥tau¥in H(X)$ is conjugate to an SFT and $¥varphi$ is a
directionally essentially forward automorphism of $(X, ¥tau)$ (i.e., $¥varphi¥bigwedge_{¥vee}¥sim¥tau$ ), then
$¥varphi$ is an essentially forward automorphism of $(X, ¥tau)$ .

Therefore, a directionally essentially forward cone containing $¥tau¥in H(X)$

with $(X, ¥tau)$ conjugate to an SFT in a commutative subgroup $K$ of $H(X)$ is
called an essentially forward cone or essentially $LR$ cone containing $¥tau$ in $K$ .

Every expansive homeomorphism in an essentially $¥mathrm{LR}$ cone is cojugate to
an SFT (and every non-expansive homeomorphism has pseudo orbit tracing
property). Hence an essentially $¥mathrm{LR}$ cone is closely related with a “Markov
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component of l-frames’) of Boyle and Lind $[¥mathrm{BoL}]$ , on which we will mention
a few from $[¥mathrm{BoL}]$ in Section 7.

We will continue treating the topic above in Section 5.
Now we state known results on the problem: “Is a subshift commuting

with an SFT is also an SFT?’’

? (D. Fiebig [F]) There is an expansive automorphism $¥varphi$ of a non-
transitive SFT $(X, ¥sigma)$ such that $(X, ¥varphi)$ is not conjugate to an SFT.

Hence now our problem is:

Open problem: Is a subshift commuting with a transitive SFT also an
SFT?

A sofic shift is defined to be a subshift which is the image of an SFT
under a block map. A block map between subshifts is said to be left closing
if it never collapses distinct forwardly asymptotic points ; it is right closing
if it never coilapses distinct backwardly asymptotic points; it is biclosing if
it is left closing and right closing. A sofic shift is said to be almost Markov
if it is the image of an SFT under a biclosing block map $[¥mathrm{BoKr}2]$ .

Recently Mike Boyle has given the following result together with $¥mathrm{impor}¥leftrightarrow$

tant fundamental results in [Bo2] (this paper includes the examples of D.
Fiebig showing the above as Appendix).

? (Boyle [Bo2]) A strictly sofic almost Markov shift cannot commute
with a nonwandering SFT.

4. Endomorphisms of onesided SFTs
? ([N2]) Suppose $¥tilde{¥varphi}$ is an endomorphism of a onesided SFT $(¥tilde{X},¥tilde{¥sigma})$ with

$(¥tilde{X},¥tilde{¥varphi})$ conjugate to a onesided SFT. Then there exists a onesided 1-1, $¥mathrm{LR}$

textile system $T$ with $T^{*}$ onesided 1-1 such that $(¥tilde{X}_{T},¥tilde{¥sigma}¥tau,¥tilde{¥varphi}¥tau)¥cong$ $(¥tilde{X},¥tilde{¥sigma}¥tilde{¥varphi}¥})$ ,
and hence there are commuting nonnegative integral matrices $M$ and $N$ such
that for all $k$ , $l$ $¥geq 0$ , $(k, l)¥neq(0,0)$ , $(¥tilde{X}_{7}¥tilde{¥varphi}¥tilde{¥sigma})kl$ is conjugate to the onesided
topological Markov shift $(¥tilde{X}_{NM}k¥iota,¥tilde{¥sigma}_{N^{k}M}¥iota)$ .

? ( $¥mathrm{K}$ urka [Ku]) If $¥tilde{¥varphi}$ is a positively expansive endomorphism of a transi-
tive onesided SFT $(¥tilde{X},¥tilde{¥sigma})$ , then $(¥tilde{X},¥tilde{¥varphi})$ is conjugate to a onesided SFT.

(This was independently proved by Nasu under the additional condition
that $¥tilde{¥varphi}$ is onto, by using textile systems; see [N3]. See [BoFF] and Section 6
of [BoKi] for Kurka’s proof.)

Boyle, Fiebig and Fiebig [BoFF] gave an example of a positively expan-
sive onto endomorphism $¥tilde{¥varphi}$ of a non-transitive onesided SFT $(¥tilde{X},¥tilde{¥sigma})$ such that
$(¥tilde{X},¥tilde{¥varphi})$ is not conjugate to a onesided SFT.

Two dynamical systems $(X_{1}, ¥tau_{1})$ and $(X_{2}, ¥tau_{2})$ are said to be eventually
conjugate if $(X_{1}, ¥tau_{¥mathrm{l}}^{¥mathrm{n}})$ and $(X_{2}, ¥tau_{2}^{n})$ are conjugate for all sufficiently large $n$ .
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$¥circ$ (Blanchard arxd Maass [BlMaa]) If $¥tilde{¥varphi}$ is a positively expansive endo-
morphism of the onesided full $N$-shift with $N¥geq 1$ , then there exists $J¥geq 1$

such that
(1) $(¥tilde{X},¥tilde{¥varphi})$ is eventually conjugate to the onesided full $J$-shift, and
(2) $J$ and $N$ are divisible by the same primes.

The result (1) above is best in the sense that a positively expansive
endomorphism of a onesided full shift need not be conjugate to a onesided
full shift (Boyle, Fiebig and Fiebig [BoFF]).

The following generalizes the result (1) above.
$¥circ$ (Boyle, Fiebig and Fiebig [BoFF]) Let $M$ and $N$ be nonnegative,

integral $m¥mathrm{x}$ $m$ and $n¥mathrm{x}$ $n$ matrices, respectively. If the onesided topological
Markov shifts $(¥tilde{X}_{M¥}}¥tilde{¥sigma}_{M})$ and $(¥tilde{X}_{N},¥tilde{¥sigma}_{N})$

$¥mathrm{commute}_{7}$ then $M^{m}$ and $N^{¥mathrm{n}}$ have
the same number of distinct columns.

The following is a generalization of (2) of Blanchard-Maass’s result.
$¥mathrm{r}$ Let $M$ and $N$ be irreducible and aperiodic, nonnegative} integral ma-

trices and let $¥lambda_{M}$ and $¥lambda_{N}$ be their spectral radii (Perron eigenvalues) , respec-
tively. If $(¥tilde{X}_{M},¥tilde{¥sigma}_{M})$ and $(¥tilde{X}_{N},¥tilde{¥sigma}_{N})$ commute, then $¥lambda_{M}$ and $¥lambda_{N}$ are algebraic
integers which generate the same algebraic number field, and in the ring of
algebraic integers in this field, the principal ideals (A$M$ ) and (A$N$ ) are divis-
ible by the same prime ideals. In particular} if either one of $¥lambda_{M}$ and $¥lambda_{N}$ is
a rational integer, then both are rational integers which are divisible by the
same rational primes.

$¥circ$ (Boyle, Fiebig and Fiebig [BoFF]) If $¥tilde{¥varphi}$ is a positively expansive endo-
morphism of a mixing onesided SFT $(¥tilde{X},¥tilde{¥sigma})$ , then $¥tilde{¥varphi}$ and $¥tilde{¥sigma}$ have the same
measure of maximal entropy.

5. Automorphisms of SFTs, again
Since the properties of positively expansive endomorphism of onesided

SFTs stated above can come from the properties of $¥mathrm{LR}$ textile systems,
similar results are also obtained for essentially $¥mathrm{LR}$ or essentially forward,
expansive automorphisms of SFTs.

By the result ([N2], Proposition 8.8) that all sufficiently large powers
of an essentially $¥mathrm{LR}$ automorphism of a topological Markov shift are $¥mathrm{LR}$

automorphisms of the shift, or by Theorem 8.6 of $[¥mathrm{BoL}]$ , we have:
$¥circ$ An expansive essentially forward automorphism of a full shift is even-

tually conjugate to a full shift.

It is not known whether in this result “eventually conjugate” can be
replaced by “conjugate” or not. Is an SFT which is eventually conjugate to
a full shift conjugate to the full shift? This is a long-standing open problem
in symbolic dynamics.
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$¥circ$ Let $¥varphi$ be an expansive essentially forward automorphism of a mixing
SFT $(X, ¥sigma)$ . Then $e^{h(¥sigma)}$ an $¥mathrm{d}e^{h(¥varphi)}$ are algebraic integers which generate the
same algebraic number field, and in the ring of algebraic integers in this
field, the principal ideals $(e^{h(¥sigma)})$ and $(e^{h(¥varphi)})$ are divisible by the same prime
ideals, where $h(¥cdot)$ denotes topological entropy. In particular, if either one of
$e^{h(¥sigma)}$ a $¥mathrm{nd}e^{h(¥varphi)}$ is a rational integer, then both of them are rational integers
wbich are divisible by the same rational primes.

$¥circ$ ([N2], Section 10) Let $M$ and $N$ be matrices given by

$M=¥left(¥begin{array}{ll}¥sim 9 & 1¥¥1 & ¥mathrm{l}¥end{array}¥right)$ , $N=¥left(¥begin{array}{lllll}0 & 1 & 1 & 0 & 1¥¥1 & 0 & 0 & 0 & 0¥¥0 & 1 & 0 & 1 & 1¥¥0 & 1 & 0 & 0 & 0¥¥0 & 0 & 1 & 0 & 0¥end{array}¥right)$ .

Then the topological Markov shifts ($X_{M}$ , a$M$ ) and $(X_{N}, ¥sigma_{N})$ commute, but
the spectral radii $¥lambda_{M}$ and $¥lambda_{N}$ of $M$ and $N$ generate different algebraic num-
ber fields. (The characteristic polynomials of $M$ and $N$ are $x^{2}-3x+1$ and
$(x+1)^{2}(x^{3}-2x^{2}+x-1)$ , respectively.)

As far as the author knows, no example of an expansive automorphism
of a full shift which is not conjugate to a full shift has been given.

Open Problem: Let $¥varphi$ be an automorphism of a mixing topological
Markov shift $(X, ¥sigma)$ . Let $K$ be the subgroup of $H(X)$ generated by $¥sigma$ and
$¥varphi$ . Determine all the directionally essentially forward cones in $K$ .

This is closely related with several open problems presented by Boyle
and Lind in their more general framework in Section 9 of $[¥mathrm{BoL}]$ .

6. Endomorphisms of SFTs and automorphisms of onesided SFTs
By using $¥mathrm{LL}$ textile systems, the following was obtained:
$¥circ$ ([N2]) If $(X, ¥tau, ¥varphi)$ is a commuting system such that $(X, ¥tau)$ is cojugate

to a subshift with $¥tau^{n}$ transitive for all $n¥geq 1$ and $(X, ¥varphi)$ is conjugate to a
onesided SFT, then $(X, ¥varphi)$ is conjugate to a onesided full shift.

$¥circ$ ( $¥mathrm{K}¥circ ¥mathrm{u}$ rlea [Ku]) If $(X, ¥tau, ¥varphi)$ is a commuting system with $(X, ¥tau)$ conjugate
to a transitive SFT and $¥varphi$ is positively expansive, then $(X, ¥varphi)$ is conjugate
to a onesided SFT.

(This was independently proved by Nasu under the additional condition
that $¥varphi$ is onto, by using textile systems; see [N3].)

By the two results above we know:
$¥circ$ ([N3]) A onesided subshift commuting with a mixing SFT is conjugate

to a onesided full shift.
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$¥circ$ (D. Fiebig [F]) Kii $¥mathrm{rka}$ ’s result above can be extended to nonwandering
SFTs and any SFT having a wandering point does not have a positively
expansive endomorphism.

Using dimension groups arising in symbolic dynamics, Boyle and Maass
proved :

$e$ (Boyle and Maass [BoMaa]) Let $N¥geq 1$ . An SFT commuting with the
onesided full $¥mathrm{TV}$-shift is eventually conjugate to some full $J$-shift such that
$J$ and $N$ are divisible by the same primes.

Together with this, Boyle and Maass [BoMaa] gave three $¥mathrm{conjectureS}_{¥}}$

two of which have been proved by using $q$-biresolving textile systems.

$¥circ$ ([N5]) The first conjecture of Boyle and Maass is true, that is, a
subshift commuting with a onesided full shift is an SFT.

$¥mathrm{r}$ ([N6]) The third conjecture of Boyle and Maass is true, that is, if a
positively expansive endomorphism $¥varphi$ of a mixing SFT is N-to-one, then
the ‘ieft and right multipiiers” $l_{¥varphi}$ and $r_{¥varphi}$ (developed by Boyle [Bol]) are
rational integers such that all $N$, $l_{¥varphi}$ and $r_{¥varphi}$ are divisible by the same primes,
and in particular, if a prime $p$ divides $N$ , then $p^{2}$ divides $N$ .

Boyle and Maass [BoMaa] also conjectured the following together with
proving the sufficiency of the condition in it:

$¥mathrm{r}$ ([BoMaa] and [N6]) For $J$ , $N¥geq 1$ , the following are a necessary and
sufficient condition for the existence of the full $J$-shift and the onesided full
$¥mathrm{JV}$-shift which commute:

(1) $J$ and $N$ are divisible by the same primes
$f$ and

(2) if a prime $p$ divides $N_{¥}}$ then $p^{2}$ divides $N$ .

The second conjecture of Boyle and Maass has not been settled:

Conjecture (Boyle and Maass [BoMaa]): An SFT commuting with a
onesided full shift is conjugate to a full shift.

As was stated above, the result of Boyle and Maass above was proved
by using dimension groups. In particular, Boyle and Maass proved the part
that an SFT $¥mathrm{co}$ mmuting with a onesided full shift is eventually conjugate to
a full shift, using “bilateral dimension groups’) introduced by Krieger [Kr].
No proof other than their proof has not been known for this part, though
the other part can be recovered by a proof which does not use dimension
groups ([N6]).

$¥mathrm{e}$ (Boyle and Maass [BoMaa]) If $(X, ¥tau, ¥varphi)$ is a commuting system with
$(X,¥tau)$ conjugate to an SFT and $(X, ¥varphi)$ conjugate to a onesided full shift,
then $¥tau$ and $¥varphi$ have the same measure of maximal entropy.
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7. Commuting systems on compact metric spaces
Similar problems to those treated in the preceding sections can be con-

sidered for commuting continuous maps of compact metric spaces which
are not necessarily 0-dimensional, as were done in $[¥mathrm{BoL}]$ and [N4]. In this
section, we mention two results from Section 8 of $[¥mathrm{BoL}]$ without any expla-
nation of the notion and terminology, and mention how much the problems
corresponding to the kernels of our problems stated in Introduction have
been solved.

$¥circ$ (Boyle and Lind $[¥mathrm{BoL}]$ ) If a vector in an expansive component of 1-
frames for a 7 $d$ action is Markov so are all the vectors in the component.

$¥mathrm{n}$ (Boyle and Lind $[¥mathrm{BoL}]$ ) For any two integral vectors in a mixing
Markov component of 1-frames, the homeomorphisms corresponding to the
vectors have the same unique measure of maximal entropy.

As was stated in Section 3, the following problem is open even for the
0-dimensional case.

Open problem (cf. Problem 9.6 of $[¥mathrm{BoL}]$ ): Suppose $(X, ¥tau, ¥varphi)$ is a com-

muting system such that $¥tau$ and $¥varphi$ are expansive homeomorphisms. If $¥tau$ is
transitive and has pseudo orbit tracing property (POTP), then does $¥varphi$ have
POTP?

$¥circ$ ([N4]) Suppose $(X, r, ¥varphi)$ is a commuting system such that $¥tau$ is an
expansive homeomorphism and $¥varphi$ is positively expansive and onto. If $¥tau$ is
transitive and has POTP, then $¥varphi$ has POTP.

As is seen by the first and sixth results stated in Section 6, the follow-
ing problem was solved affirmatively for the 0-dimensional case under the
condition that $¥varphi$

’ is transitive for all $n¥geq 1$ .

Open problem: Suppose $(X, ¥tau, ¥varphi)$ is a commuting system such that $¥tau$ is
positively expansive and onto and $¥varphi$ is an expansive homeomorphism. If $¥tau$

has POTP, then does $¥varphi$ have POTP?
$¥circ$ ([N4]) Suppose $(X, ¥tau, ¥varphi)$ is a commuting system with $¥tau$ and $¥varphi$ positively

expansive and onto. If $¥tau$ is transitive and has POTP, then $¥varphi$ has POTP.

An onto continuous map $¥varphi$ : $X¥rightarrow X$ of a compact metric space is
espansive if there is $¥delta>0$ such that if $(x_{i})_{i¥in ¥mathbb{Z}}$ and $(x_{¥mathrm{i}}^{¥prime})_{i¥in ¥mathbb{Z}}$ are orbits of

$¥varphi$ and the distance between $x_{i}$ and $x_{i}^{¥prime}$ is less than $¥delta$ for all $i¥in ¥mathbb{Z}$ , then
$(x_{i})_{i¥in ¥mathbb{Z}}=(x_{i}^{¥prime})_{i¥in ¥mathbb{Z}}$ .

Finally we mention a result which unifies and generalizes some known
basic results for the 0-dimensional case.

$¥circ$ ([N4]) Let $(X, ¥tau, ¥varphi)$ be a commuting systems with $¥tau$ and $¥varphi$ onto. If $¥tau$

is expansive and has POTP and $¥varphi$ is mixing, then $¥tau$ is mixing.



$8¥mathrm{i}$

Hence in particular, if one of commuting two “subshifts” each of which is
an SFT or a onesided SFT is mixing, then so is the other, as three of the four
special cases of this were proved in [BoKrl], [N2] and [BoFF], separately.
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