
Discrete Optimal Testing/Maintenance Policy in a Software
Development Project

林坂弘一郎, 土肥正

Koichiro Rinsaka and Tadashi Dohi

Department of Information Engineering, Graduate School of Engineering,
Hiroshima University, Japan

1 Introduction
It is important to determine the optimal time when software testing should be stopped and when the
system should be delivered to a user or a market. This problem, called optimal softw are release problem,
plays a central role for the success or failure of a software development project. Okumoto and Goel [1]
assumed that the number of software faults detected in the testing phase is described by an exponential
software reliability model based on a non-homogeneous Poisson process (NHPP) [2], and derived an
optimal software release time which minimizes the total expected software cost. Koch and Kubat [3]
considered the similar problem for the other software reliability model by Jelinski and Moranda [4]. Bai
and Yun [5] calculated the optimal number of faults detected before the release under the Jelinski and
Moranda model. Many authors formulated the optimal software release problems based on different
model assumptions $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ several software reliability models $[6, 7]$.

It is difficult to detect and remove all faults remaining in a software during the actual testing phase,
because exhaustive testing of all executable paths in a general program is impossible. Once the software
is released to users, however the software failures may occur even in the operational phase. It is common
for software developers to provide maintenance service during the period when they are still responsible
for fixing software faults causing failures. In order to carry out the maintenance in the operational phase,
the software developer has to keep a software maintenance team. At the same time, the management
cost in the operational phase should be reduced as much as possible, but at the same time the human
resources should be utilized effectively. Although the problem which determines the maintenance period
is important from the practical point of view, only a very few authors paid their attention to this problem.

Kimura et al. [8] considered the optimal software release problem in the case where the software
warranty period is a random variable. Pham and Zhang [9] developed a software cost model with both
warranty and risk. They focused on the problem for determining when to stop the software testing
under a warranty contract. However, it is noted that the software developer has to design the warranty
contract itself and often provides the posterior service for users after software failures. Dohi et al. [10]
formulated the problem for determining the optimal software warranty period which minimizes the total
expected software cost under the assumption that the debugging process in the testing phase is described
by an NHPP. Sandoh and Rinsaka [11] considered the design problem of a maintenance service contract
by regarding as the Stackelberg game between a software agent and a software user. Since the user’s
operational environment is not always same as that assumed in the software development phase, however,
the above literature did not take account of the difference between two different phases.

Several reliability assessment methods during the operational phase have been proposed by some
authors $[12, 13]$. Rinsaka and Dohi [14] developed a continuous time model for designing the optimal
testing and maintenance periods, where the difference between the software testing environment and the
operational environment are reflected.

In this paper, we focus on the optimal software $\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}/\mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}$ problem considered in Rinsaka
and Dohi [14], and develop a stochastic model in discrete circumstance, where the difference between the
software testing environment and the operational environment can be characterized by an environment
factor (see Okamura et al. [13]). More precisely, the total expected software cost is formulated via the
discrete NHPP type of software reliability models [16, 17, 18]. In the special case with the geometric
fault-detection time distribution, we derive analytically the optimal testing period (release time) which
minimizes the total expected software cost under a milder condition. We call the time length to complete
the operational maintenance after the release a planned maintenance limit, and also derive the optimal
planned maintenance limit which minimizes the total expected software cost. In numerical examples with
real data, we calculate numerically the joint optimal $\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}/\mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}$ policy, combined by testing
period and planned maintenance limit.

数理解析研究所講究録 1409巻 2005年 1-9

2 Model Description
First, we m ake the following assumptions on the software fault-detection process:

(a) In each time when a software failure occurs, the software fault causing the failure can be detected
and removed immediately.

(b) The number of initial faults contained in the software program, N_{0} , is given by the Poisson dis-
tributed random variable with mean i (>0) .

(c) The time to detect each software fault is independent and identically distributed nonnegative dis-
crete random variable with probability mass function p_{i} $(i= 0, 1, 2, \cdots)$ and probability distribution
function $P(i)= \sum_{k=1}^{i}p_{k}$, where $0\leq p_{l}\leq 1$ and $0\leq$ P(i) $\leq 1.$

Let $\{N_{i}, i=1,2, \cdots\}$ be the cumulative number of software faults detected up to time i . From the
above assumptions, the probability mass function of N_{i} is given by

Pr$\{N_{i}=ml\}$ $=$
$\frac{\{\omega\sum_{k_{-}^{-}1}^{i}p_{k}\}^{m}}{m!}e^{-\omega\sum_{k=1}\mathrm{p}k}\dot{.}$

$=$ $\frac{\{\omega P(i)\}^{m}}{m!}e^{-\omega P(i)}$ $m=0,1,2$, \cdots . (1)

Hence, the stochastic process $\{N_{i}, i=1,2, \cdots\}$ is equivalent to a discrete time NHPP with mean value
function $\omega P(i)$.

Suppose that a software testing is started at time $i=0$ and terminated at time $i=n_{0}(\geq 0)$. After
completing the software testing, the software product is released to a user or the market. The time length
of software life cycle $n_{L}(>0)$ is a known constant in advance and is assumed to be sufficiently larger
than n_{0} . More precisely, the software life cycle is measured from the point of time n_{0} . The software
developer is responsible to the maintenance service for all the software failures that may occur during the
software life cycle under a maintenance contract. We suppose that the project manager decides to break
up the maintenance team at time $n_{0}+$ tty for reduction of the operational cost to keep it, btit a large
amount of debugging cost during $(n_{0}+nW, n_{0}+n_{L}]$ may be needed if the software failure occurs. Let
n_{W} be the planned maintenance limit denoting the time length to complete the operational maintenance
after the release a planned maintenance limit. Further, we define the following cost components

$\mathrm{c}0$ (>0) : cost to remove each fault in the testing phase,

$cw(>0)$: cost to remove each fault before the planned maintenance limit,

$c_{L}(>0)$: cost to remove each fault after the planned maintenance limit,

$k0(>0)$: testing cost per unit of time,

$k_{W}(>0)$: operational cost to keep the maintenance team per unit of time.

In the following section, we formulate the total expected software cost by introducing the above cost
factors in testing and operational phases. We derive the discrete optimal software testing period n_{0}^{*} or
the discrete optimal planned maintenance limit n_{W}^{*} which minimizes the total expected software cost at
the end of the software life cycle. Then, we calculate the joint optimal policy (n_{0}^{**}, n_{W}^{**}) combined by
both testing period and planned maintenance limit.

3 Total Expected Software Cost
We formulate the total expected software cost which can occur in both testing and operational phases.
In the operational phase, we consider two cost factors; the maintenance cost due to the software failure
and the operational cost to keep the maintenance team.

From Eq.(l), the probability mass function of the number of software faults detected during the
testing phase is given by

$\mathrm{P}\mathrm{r}\{N_{n_{0}}=m\}=\frac{\{\omega P(n_{0})\}^{m}}{m!}e^{-\{dP(}n_{0})$ (2)

It should be noted that the operational environment after the release may differ from the debug-
ging environment in the testing phase. This difference is similar to that between the accelerated life
testing environment and the normal operating environment for hardware products. We introduce the
environment factor $a(>0)$ which represents the relative severity in the operational environment after
the release, and assume that the times in the testing phase and the operational phase have a proportional
relationship. Namely, the time length n in the operational phase corresponds to $a\cross n$ in the testing
phase. Under the above assumption, $a=1$ means the equivalence between the testing and operational
environments. On the other hand, $a>1(a<1)$ implies that the operational environment is severer
(looser) than the testing environment. Okamura et al $[13]$ apply this technique to model the operational
phase of the software, and estimate the software reliability through an example in the actual software
development roject. The probability mass function of the number of software faults detected before the
planned maintenance limit is given by

$\mathrm{P}\mathrm{r}\{N_{n\mathrm{o}+n_{W}}-N_{n_{0}}=m\}=\frac{\{\omega\{P(n_{0}+[an_{W}])-P(n_{0})\}\}^{m}}{m!}e^{-\omega\{P(n_{0}+[an_{W}])-P(n\mathrm{o})\}}$, (3)

where, $[\cdot]$ is the Gaussian integer.
Similarly, the fault-detection process of the software after the planned maintenance limit is expressed

by

$\mathrm{P}\mathrm{r}\{N_{n_{0}+n_{L}}-N_{n_{0}+n_{W}}=m\}$

$=$ $\frac{\{\omega\{P(n_{0}+[an_{L}])-P(n_{0}+[an_{W}])\}\}^{m}}{m!}e^{-\mathfrak{l}d}\{P(\mathrm{y}\mathrm{r}_{0}+[a\mathrm{v}\mathrm{z}_{L}])-P(n\mathrm{o}+[an_{W}]\rangle\}$. (4)

From Eqs.(2), (3) and (4), the total expected software cost is given by

$C(n_{0}, n_{W})$ $=$ $\mathrm{k}\mathrm{o}\mathrm{n}\mathrm{o}+$ $cou)P(no)+kwnw$ $+c_{W}\omega$ $\{P(n0+[anw])- P(\mathrm{n}\mathrm{o})\}$

1- $c_{L}\omega\{P(n_{0}1-[an_{L}])-P(n_{0}+[anw])\}$. (5)

4 Determination of the Optimal Policies
In this section we derive the optimal testing period n_{0}^{*} or the optimal planned maintenance limit n_{W}^{*}

which minimizes the total expected software cost incurred to the software developer at the end of software
life cycle. Suppose that the time to detect each software fault obeys the geometric distribution

$p_{i}=b(1-b)^{i-1}$ (6)

with parameter $b(0<b<1)$. In this case, the total expected software cost in Eq.(5) becomes

$C(n_{0}, n_{W})$ $=$ $k_{0}n_{0}+c_{0}\omega\{1-(1-b)^{n0}\}$ $+kwnw$ $+c_{W}\omega\{(1-b)^{n_{0}}-(1-b)^{n_{\mathrm{O}}+[an_{W}]}\}$

$+c_{L}\mathrm{u}$ $\{(1-b)^{n_{0}+[an_{W}]}-(1-b)^{n_{\mathrm{O}}+[an_{L}]\}}$. (7)

We make the following assumptions:

(A-I) a is positive and an integer value,

(A-II) $c_{L}>cw$ $>c_{0}$,

(A-III) $c_{W}\{1-(1-b)^{an_{L}}\}>c_{0}$,

(A-IV) $c_{W}\{1-(1-b)^{an_{W}}\}+c_{L}\{(1-b)^{an_{W}}-(1-b)^{an_{L}}\}>$ c0.

Define

$Q(nw)=k_{0}+\omega b\{c_{0}-c_{W}(1-(1-b)^{an_{W}})-c_{L}((1-b)^{anw}-(1-b)^{an_{L}})\}$. (8)

Then the following result provides the optimal software testing policy which minimizes the total expected
software cost.

Theorem 1: When the sof tware fault-detection time distribution follows the geometric distribution
with parameter $b(0<b<1)$, under the assumptions (A-I) to (A-IV), the optimal sof rware testing period
(release time) which minimizes the total expected software cost is given as follows:

(1) If $Q(nW)<0,$ then there exist (at least one, at most two) finite optimal software testing periods
(release times) $n_{0}^{*}(>0)$.

(2) If $Q(n_{W})\geq 0,$ then the optimal policy is $n_{0}^{*}=0$ with

$\mathrm{C}(\mathrm{n}0, n_{W})=kwnw$ $+c_{W}\omega\{1-(1-b)^{an_{W}}\}+cL\omega\{(1-b)^{an_{W}}-(1-b)^{an_{L}}\}$. (9)

Furthermore, the following result provides the optimal planned maintenance limit which minimizes
the total expected software cost.

Theorem 2: When the software fault-detection time distribution follows the geometric distribution
with parameter $b(0<b<1)$, under the assumptions (A-I) and (A-II); the optimal planned maintenance
lirnit which minimizes the total expected software cost is given as follows:

(1) If $k_{W}\geq$ ($c_{L}-$ cw)u{1--(1-b)a} $(1-b)^{n_{0}}$, then the optimal policy is $n_{W}^{*}=0$ with

$\mathrm{C}(\mathrm{n}0, n_{W}^{*})=$ konQ $+c_{0}\omega$ {$1-(1-$ b)a} $+c_{W}\omega\{(1-b)^{n_{0}}-(1-b)^{n_{0}+an_{L}}\}$. (10)

(2) If $k_{W}<(\mathrm{c}_{L} \mathrm{c}\mathrm{w})\mathrm{u}$ {$1-(1-$ b)a} $(1-b)^{n0}$ and $k_{W}>$ ($c_{L}-$ cw)u{1--(1-b)a} $(1-b)^{n_{0}+a(n_{L}-1)}$,
then there exist (at least one, at most two) optimal planned maintenance limits $n_{W}^{*}(0<n_{W}^{*}<n_{L})$

which minimizes the total expected software cost.

(3) If $k_{W}\leq$ ($c_{L}-$ cw)u{1--(1-b)a} $(1-b)^{n\mathrm{o}+a(n_{L}-1)}$, then we have $n_{W}^{*}=nL$ with

$\mathrm{C}(\mathrm{n}0, \mathrm{n}\mathrm{w})=\mathrm{k}\mathrm{o}\mathrm{n}\mathrm{Q}+c_{0}\omega$ {$1-(1-$ b)a} -lJcw$n_{L}+cw\omega\{(1-b)^{n_{0}}-(1-b)^{n_{0}+an_{L}}\}$. (11)

5 Numerical Examples
Based on 351 software fault (41 week) data observed in the real software testing process [19], we calculate
numerically the optimal testing period n_{0}^{*} and the optimal planned maintenance limit n_{W}^{*} which minimize
the total expected software cost. Further, we compute the joint optimal policy (n_{0}^{**}, n_{W}^{**}) minimizing
$C(n_{0}, n_{W})$. For the software fault-detection time distribution, we apply three probability distributions;
geometric, negative binomial and discrete Weibull distributions. The probability mass functions for
negative binomial and discrete Weibull are given by

$p_{i}=($ $h+h$ z -21) $b^{h}(1-b)^{i-1}$, (12)

and
$p_{i}=b\dot{\cdot}h-b^{(\mathrm{z}+1)^{h}}$ (13)

respectively, where $h\geq 0.$ For negative binomial and discrete Weibull distributions, we consider the case
of $h=2.$

Suppose that the unknown parameters in the software reliability models are estimated by the method
of maximum likelihood. Then, we have the estimates $(\hat{\omega},\hat{b})=$ (413.305, 0.0451012) for the geometric
model, $(\hat{\omega},\hat{b})=$ (364.234, 0.116255) for the negative binomial model and $(\hat{\omega},\hat{b})=$ (351.871, 0.996436)
for the discrete Weibull model. Figure 1 shows the actual software fault data and the behavior of
estimated mean value functions. Since the environment factor a is a subjective parameter which should
be estimated from the past development track record, we assume that the value of a is known. For the
other model parameters, we assume: $k_{0}=2.0,$ $k_{W}=1.0$, $c_{0}=5.0$, $c_{W}=10.0$, $c_{L}=50.0$ and $n_{L}=200.$

Table 1 presents the dependence of environment factor a on the optimal testing period n_{0}^{*} when
$nW=20.$ As the environment factor monotonically increases, $i.e$., the operational circumstance tends
to be severe, it is observed that the optimal testing period n_{0}^{*} and its associated minimum total expected
software cost $C(n_{0}^{*}, 20)$ decrease for both geometric and negative binomial models. For the discrete
Weibull model, since it is estimated that the software fault is hardly discovered after the release as shown

5

400

350 \sim .--.------.--------,

300
$.’\dotplus,\dotplus,,\cdot.\dotplus^{\dotplus,’},\sim$

$.j^{j’}$

.

250
$\vee\wedge-$ ’.’ $\ell+$

200
e $\prime\prime\prime.’.\cdot+’+$

150 $l^{J’}.\dotplus^{+}\cdot$

$!’$

$\mathrm{i}00$ $,+.\cdot’$
. Actual $+$

Geometric –
50 Ne ative –

$,.*\prime\prime,+.\cdot$

.
eibull $\ldots.----$

00 $\mathrm{i}0$ 20 40 50
i

Figure 1: Behavior of actual software fault data and estimated mean value functions.

Table 1: Optimal software testing period for varying environment factor.

Geometric Negative Weibull
a n_{0}^{*} $C(n_{0}^{*}, 20)$ n_{0}^{*} $C(n_{0}^{*}, 20)$ n_{0}^{*} $C(n_{0}^{*}, 20)$

0.50 122 2375 65 1990 41 1867
0.75 119 2367 62 1983 40 1865
1.00 115 2359 59 1977 39 1865
1.25 111 2352 57 1973 39 1865
1.50 $10\underline{8}$ 2345 56 1971 39 1865
2.00 101 2333 54 1967 39 1865
3.00 93 2315 53 1966 39 1865

Table 2: Optimal planned maintenance limit for varying environment factor.

Geometric Negative Weibull
a nW $\mathrm{C}(41,\mathrm{n}\mathrm{f}\mathrm{c})$ $n_{W}^{*}-$ $C(41, n_{W}^{*})$ n_{W}^{*} $C(41,n_{W}^{*})$

0.50 176 2648 62 2050 12 1863
0.75 128 2615 48 2028 81859
1.00 103 $\overline{2584}$ 38 2016 81856
1.25 88 2564 32 2008 81855
1.50 74 2549 28 2003 61854
2.00 59 2530 22 1996 51852
3.00 42 2509 16 1988 41850

Table 3: Optimal testing $\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{d}/\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{d}$ maintenance limit for varying environment factor.

Geometric Neg tive Weibull
a $n_{()}^{*}$ n_{W}^{**} $C(\circ**,n_{W}^{**})$ $\overline{n_{0}^{**}}n_{lV}^{**}-$ $C(n_{0}^{**},n_{W}^{**})$ $0**$ n_{W}^{**} $C(n_{0}^{**}, W**)$

0 . 0 131 0 2372 3 0 1986 47 0 1859
0.75 108 40 236 64 16 1983 42 -8 1858
1.00 99 4 23 260 -19 1977 42 7 1856
1.25 94 44 2343 57 20 1973 41 8 1855
1.50 93 40 2335 57 16 1970 41 6 1854
2.00 90 34 2324 56 14 1966 41 5 1852
3.00 88 27 2312 55 11 1960 40 4 1850

in Fig.1, it is observed that the optimal testing period is strongly influenced by varying environment
factor.

Table 2 shows the dependence of environment factor a on the optimal planned maintenance limit n_{W}^{*}

in case of $n_{0}=41.$ It is found that the optimal planned maintenance limit n_{W}^{*} and the corresponding
minimum total expected software cost $C(41, n_{W}^{*})$ decrease as the environment factor monotonically
increases. This tendency can be explained as follows: The residual faults in software are detected and
removed at the early stage in the operational phase as the operational environment becomes more severe.
Then, the possibility that the software failure occurs in the latter stage of the operational phase may
become small. Hence, the implication in which the software developer keeps the maintenance team
becomes smaller toward the end of the life cycle.

Table 3 examines the dependence of environment factor a on the joint optimal policy (n_{0}^{**}, n_{W}^{**})

combined by testing period and planned maintenance limit. Figure 2 illustrates the behavior of the
expected cost for the geometric model when $a=$ 2.00. It is observed from Table 3 that the optimal
testing period n_{0}^{**} decreases as the environment factor monotonically increases, but, the monotonicity
of the optimal planned maintenance limit n_{W}^{**} is not observed. It is also seen that the minimum total
expected software cost $C(n_{0}^{**}, n_{W}^{**})$ decreases as the environment factor monotonically increases.

Tables 4, 5 and 6 present the dependence of the software reliability model parameter b on the joint
optimal policy (n_{0}^{**}, n_{W}^{**}) . It is observed that the optimal testing time, optimal planned maintenance
limit and its associated minimum total expected software cost decrease as the fault detection becomes
easier.

6 Concluding Remarks
In this paper, we have assumed that the software developer was responsible to the maintenance service
for all the software failures that occur during the software life cycle under the maintenance contract. In
order to carry out the maintenance service in the operational phase, the software developer has to keep
a software maintenance team. At the same time, the management cost in the operational phase has to
be reduced as much as possible, but human resources should be utilized effectively. We have called the
time length to complete the operational maintenance after the release the planned maintenance limit,
and have controlled it in terms of cost-benefit analysis. We have developed the discrete model which
represents the difference in the software execution environment during testing and operational phases,
using the same method as the continuous-time-based reliability assessment modeling in the operational
phase proposed by Okamura et al $[13]$. Based on the discrete NHPP we have formulated the total
expected software cost incurred to the software developer at the end of software life cycle. The optimal
testing period (release time) and optimal planned maintenance limit which minimize the total expected
software cost have been derived. Then, throughout the numerical examples, we have discussed the joint
optimal policy combined by testing period and planned maintenance limit.

Table 4: Optimal testing period $/\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{d}$ maintenance limit for geometric software reliability model with
varying parameter b.

$\mathrm{G}\overline{\mathrm{e}\mathrm{o}}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}$

b n_{0}^{**} n_{W}^{**} $C(n_{0}^{**},n^{**})$

0.042 37 2340
0.043 36 2335
0.044 35 2330
0.045 35 2325
0.046 34 2320
0.047 33 2315
0.048 32 2311

Table 5: Optimal testing $\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{d}/\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{d}$ maintenance limit for negative binomial software reliability
model with varying parameter b .

Negative
b n_{0}^{**} n_{W}^{**} $C(n_{0}^{**}, n_{W}^{**})$

0.08 77 22 2025
0.09 70 19 2004
0.10 64 17 1987
0.11 59 15 1973
0.12 54 14 1961
0.13 50 13 1951
0.14 47 12 1942

Table 6: Optimal testing $\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{d}/\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{d}$maintenance limit for discrete Weibull software reliability model
with varying parameter b.

Weibull
b

n_{0}^{**} n_{W}^{**} $C(n_{0}^{**}, n_{W}^{**})$

0.999 10 1926
0.998 7 1880
0.997 6 -1880
0.996 5 1847
0.996 4 1838
0.994 4 1832
0.998 4 1827

8

Figure 2: Behavior of the total expected software cost for geometric software reliability model $(a=2.00)$.

References
[1] K. Okumoto and L. Goel, “Optimum release time for software systems based on reliability and cost

criteria,” J. Sys. Software, vol. 1, pp. 315-318, 1980.

[2] A.L. Goel and K. Okumoto, “Time-dependent error-detection rate model for software reliability
and other performance measures,” IEEE Trans. Reliab., vol. R-28, no. 3, pp. 206-211, 1979.

[3] H.S. Koch and P. Kubat, “Optimal release time of computer software,” IEEE Trans. Software Eng.,
vol. SE 9, no. 3, pp. 323-327, 1983.

[4] Z. Jelinski and P.B. Moranda, “Software reliability research,” Statistical Computer Performance
Evaluation, (W. Freiberger ed.), pp. $465\triangleleft 84$, Academic Press, New York, 1972.

[5] D.S. Bai and W.Y. Yun, “Optimum number of errors corrected before releasing a software system,”
IEEE Trans. Reliab., vol. R-37, no. 1, pp. 41-44, 1988.

[6] W.Y. Yun and D.S. Bai, “Optimum software release policy with random life cycle,” IEEE Trans.
Reliab., vol. R-39, no. 2, pp. 167-170, 1990.

[7] T. Dohi, N. Kaio and S. Osaki, “Optimal software release policies with debugging time lag,” Int. J.
Reliab., Quality and Safety Eng., vol. 4, no. 3, pp. 241-255, 1997.

[8] M. Kimura, T. Toyota and S. Yamada, “Economic analysis of software release problems with war-
ranty cost and reliability requirement,” Reliab. Eng. & Sys. Safe., vol. 66, no. 1, pp. 49-55, 1999.

[9] H. Pham and X. Zhang, “A software cost model with warranty and risk costs,” IEEE Trans. Com-
put., vol. 48, no. 1, pp. 71-75, 1999.

[10] T. Dohi, H. Okamura, N. Kaio and S. Osaki, “The age-dependent optimal warranty policy and its
application to software maintenance contract,” Proc. 5th Int’l Conf. on Probab. Safe. Assess, and
Mgmt. (S. Kondo and K. Furuta, eds.), vol. 4, pp. 2547-2552, University Academy Press Inc., 2000.

9

[11] H. Sandoh and K. Rinsaka, “Maintenance service contract model for software,” Proc. of the First
Western Pacific and Third Australia-Japan Workshop on Stochastic Models in Engineering, Tech-
nology and Management, Christchurch, New Zealand, pp. 466-475, 1999.

[12] J. Musa, G. Fuoco, N. Irving, D. Kropfl and B. Juhlin, “The operational profile,” Handbook of
Software Reliability Engineering, (M.R. Lyu ed.), pp. 167-216, McGraw-Hill, New York, 1995.

[13] H. Okamura, T. Dohi and S. Osaki, “A reliability assessment method for software products in oper-
ational phase – proposal of an accelerated life testing model –,” Electronics and Communication
in Japan, Part 3, vol. 84, pp. 25-33, 2001.

[14] K. Rinsaka and T. Dohi, “Optimal $\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}/\mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}$ design in a software development project,”
Electronic Proc. of Fourth International Conference on Mathematical Methods in Reliability -

Methodology and Practice, Santa Fe, New Mexico, USA, 2004.

[15] A.A. Abde-Ghaly, P.Y. Chan and B. Littlewood, “Evaluation of competing software reliability
predictions,” IEEE Trans. Software Eng., vol. SE-12, no. 9, pp. 950-967, 1986.

[16] S. Yamada and S. Osaki, “Discrete software reliability growth models,” Applied Stochastic Models
and Data Analysis, vol. 1, pp. 65-77, 1985.

[17] T. Kitaoka, S. Yamada and S. Osaki, “A discrete non-homogeneous error detection rate model for
software reliability,” Transactions of the Institute of Electronics and Communication Engineers of
Japan, vol. E69, pp. 859-865, 1986.

[18] H. Okamura, A. Murayama and T. Dohi, “EM Algorithm for $\mathrm{d}\mathrm{i}\mathrm{s}$-crete software reliability models: a
unified parameter estimation method,” Proceedings of 8th IEEE International Symposium on High
Assurance Systems Engineering, pp. 219-228. IEEE CS Press, 2004.

[19] A.P. Nikora and M. R. Lyu, “Software reliability measurement experience,” Handbook of Software
Reliability Engineering, (M. R. Lyu ed.), pp. 255-301, McGraw-Hill, New York, 1995.

