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Abstract
The paper addresses a generalized discrete time EMQ (Economic Manufacturing Quantity)
model for a failure-prone manufacturing system consisting of a single machine producing a
single part type. The time to failure of the machine, corrective and preventive repair times
all are assumed to follow arbitrary discrete probability distributions. The proposed model is
formulated based on the net present value (NPV) approach, treating the machine production
rate as (i) predetermined or, (ii) flexible. The criteria for the existence of a local optimal
solution for the NPV model and the long-run average cost model are derived under geometric
repair time distributions, when the production rate is predetermined. A hybridized neural
network (NN) and branch and bound (BB) algorithm is developed for the associated discrete
nonlinear optimization problem when the production rate is treated as flexible. Numerical
examples are provided to determine the optimal production policy numerically and examine its
dependence on the chastic behavior of the system failure and repair. A comparison of the
outcome obtained by time discretization in the corresponding continuous time model to that of
the discrete time model is also made.

1. Introduction
Most of the production planning models typically attempt to derive the optimal production

policy by minimizing the system costs disregarding the impact of machine failure. Yet, an un-
expected machine failure can result loss of revenue due to down time, missed delivery schedules,

poor product quality, lower product yield, cost of repairing and so on. The issue of interdepen-

dence between production and maintenance for a stochastically failing equipment was raised

first by McCaU (1965). Bielecki and Kumar (1988) showed that there exists a range of pa

rameter values describing an unreliable manufacturing system for which zero inventory policy

is exactly optimal even when the production capacity is uncertain. Groenevelt et al. (1992a)

analyzed the impacts of machine breakdown and corrective maintenance on an economic man-
tfacturing quantity (EMQ) model, asuming exponentially distributed inter-failure time and

instantaneous repair time. They showed that the optimal production lot size is greater than

that of the clasical EMQ model. In the subsequent article (1992b), they investigated the i&

sue of safety stocks required to meet a managerially prescribed service level under a simplified

assumption of exponential failure time and randomly distributed repair time. Kim and Hong

(1997) generalized the results of Groenevelt et al. (1992a) amuming arbitrarily distributed

inter-failure time. For general failure and general repair time distributions, Dohi et $al$ (1997)

determined the optimal production policy which can be characterized as an age replenishment

like policy. Makis and Fung (1998) studied the joint effect of process deterioration and machine

breakdowns on the optimal lot size and the optimal number of inspections in a production cycle.

Liu and Cao (1999) developed an unreliable EMQ model where the demand is assumed to be a
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compound Poisson process. Cheung and Hausmann (1997), Dohi et al. (2001) investigated the

joint implementation of preventive maintenance and safety stocks in an unreliable production

environment.
The EMQ models with stochastic machine breakdown and repair have been developed

so far based on continuous failure time distributions. However, the time to failure of a unit

might be discrete in many practical situations. For example, consider the failure of electronic

circuits, switching devices, electromagnetic devices etc. where the time to failure, would be

better measured by the number of cycles to failure rather than the instance of occurrence. So,

it is appropriate to deal such failure events with discrete time failure distributions. Abboud

(2001) modeled an unreliable single machine production-inventory system as a discrete time

Markov chain, assuming geometric failure and geometric repair time distributions.

This article focuses on an EMQ problem for an unreliable manufacturing system in discrete

time setting under a framework in which the time to machine failure, corrective and preventive

times are $\mathrm{a}\mathrm{s}\mathrm{s}$ umed to follow arbitrary discrete probability distributions. In the following sec-
tion, the NPV model with general falure and general repair time distributions in discrete time
setting is presented. The criteria for the existence of a local optimal solution are derived under

geometric repair time distributions when the production rate is predetermined. In Section 3,

the traditional long-run average cost model is derived from the NPV model by taking limita
tion on discount rate. Section 4 deals with the associated discrete nonlinear integer programing
(NIP) problem and development of its solution algorithm. Section 5 is devoted to numerical
illustrations of the lot sizing policy, sensitivity analysis and comparison of the outcome of the

discrete time model and that obtained by time discretization in the correspondin continuous

time modeL Finally, the concluding remarks and future research directions are presented in

Section 6.

2. The NPV Model

Notations:

$n$ $=$ discrete time point, $n=0,1$ , 2, $\cdot$ $\cdot$ . . . .
$P(n)$ $=$ discrete failure time distribution with p.m.fi $\mathrm{P}(\mathrm{n})$

$\overline{\psi}(\cdot)$ $=$ survivor function of the function $\psi(\cdot)$ , :. $e.$ , $\overline{\psi}(\cdot)=1-\psi(\cdot)$

$G_{1}(l_{1})$ $=$ discrete corrective repair time distribution with p.m.f. $g1(l_{1})$ and finite mean
$1/\mu_{1}(>0)$

$G_{2}(l_{2})$ $=$ discrete preventive repair time distribution with p.m.f. $g_{2}(l2)$ and finite mean
$1/\mu_{2}(>0’)$

$d(>0)$ $=$ demand rate
$p(>d)$ $=$ production rate
$c_{0}(>0)$ $=$ setup cost
$c_{1}(>0)$ $=$ corrective repair cost per unit time
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$c_{2}(>0)$ $=$ preventive repair cost per unit time
$c_{t}(>0)$ $=$ inventory holding cost per unit product per unit time
$c_{s}(>0)$ $=$ shortage penalty cost per unit product

$b(0<b<1)=$ discount factor (rate)

Model formulation when the production rate is predetermined:

Consider a single-unit single item production system which starts at time $n$ $=0.$ If the machine

does not fail $11\mathrm{p}$ to a prescribed production time $n_{0}\in(0, \infty)$ then the production is stopped

and preventive repair is carried out to return back the machine to the same initial working

condition before the start of the next production cycle. If, however, the machine fails before

time no, then the corrective repair is started immediately. During $\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}/\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}$repair,

the demands are met first from the accumulated inventory. If the on-hand stock is sufficient to

meet up demands during machine repair then the production process is started only when the

on-hand stock is exhausted. Since the corrective and preventive repair times are assumed to be

random, there is a possibility that the on-hand stock may exhaust before repair is completed.

In such a case, the unsatisfied demands are not met after machine repair and are assumed to

be lost.
During production phase, the increment of on-hand stock level after one discrete time unit is

$p-d.$ For discrete time setting, we assume the production rate $p$ such that $p=kd,$ where $k$ is a

known integer greater than 1. This production demand relationship ensures that the on-hand

stock after a production run or a machine failure will be completely exhausted in some future

time units. Under this assumption, the NPV of the expected inventory holding cost per cycle

is given by

$H_{\mathrm{c}}(n_{0})$ $=$ $c_{t}d[ \sum_{narrow}^{\mathfrak{n}_{0}-1}\{\sum_{i=0}^{n-1}(k-1)ib^{\dot{*}}+\sum_{\dot{l}=n}^{kn}(kn-i)b^{:}\}p(n)+\sum_{n=n\mathrm{o}}^{\infty}\{$ $\sum_{\mathrm{j}=0}^{\mathfrak{n}0-1}(k-1)jb^{j}$

$+f\mathrm{I}$ $(kn_{0}-j)b^{j}\}p(n)]$

Similarly, the NPV of the expected shortage cost per cycle is

$S_{\epsilon}(n_{0})$ $=$ $c_{s}d \mathrm{r}^{1}\sum_{n=0}^{-1}\sum_{l_{1}=(k-1)n+}^{\infty}1l_{1}-(k\cdot\sum_{1=0}^{-1)n-1}b^{\mathrm{k}n+:}g_{1}(l_{1})p(n)$

$+ \sum_{n=n\mathrm{o}}^{\infty}\sum_{l\mathrm{q}=(k-1)n_{\{\}}+1}^{\infty}\sum_{j=0}^{l\mathrm{z}-(k-1)\mathrm{m}-1}b^{\mathrm{k}n\mathrm{o}+j}g_{2}(l_{2})p(n)]$

and the NPV of the expected repair costs for one cycle is

$R_{e}(n_{0})$ $=$ $c_{1} \sum_{n=0}^{\mathfrak{n}_{0}-1}\sum_{l_{1}=0}^{\infty}\sum_{\dot{|}\ovalbox{\tt\small REJECT}}^{l_{1}-1}b^{n+\dot{\iota}}g_{1}(l_{1})p(n)+c_{2}\sum_{n=\mathrm{w}}^{\infty}\sum_{l_{2}\ovalbox{\tt\small REJECT}}^{\infty}\sum_{j=0}^{l_{2}-1}b^{n\mathrm{o}+j}g_{2}(l_{2})p(n)$

Hence the NPV of the expected total cost for one cycle is

$S_{b}(n_{0})=c_{0}+l\mathit{4}_{\mathrm{c}}(n_{0})+S_{e}(n_{0})+R_{c}(n_{0})$ . (1)
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On the other hand, the NPV of one unit cost after one cycle can be obtained as

$\delta_{b}(n_{0})$ $= \sum_{n=0}^{n_{0}-1}[\sum_{l_{1}=0}^{(k-1)n}b^{kn}g_{1}(l_{1})+\sum_{l_{1}=(k-1)n+1}^{\infty}b^{n+l_{1}}g_{1}(l_{1})]p(n)$

$+ \sum_{n=n}^{\infty}‘’[\sum_{l_{2}=0}^{(k-1)n\mathrm{o}}b^{kn_{()}}g2(l_{2})+$
$\sum\infty$

$b^{n_{\mathrm{O}}+l_{2}}g_{2}(l_{2})]p(n)$

$\mathit{1}_{2}=$(Jc-1)n4}1

Therefore, the NPV of the expected total cost over the time horizon $[0, \infty)$ is given by

$TC_{b}(n_{0})= \sum_{n-\triangleleft}^{\infty}S_{b}(n_{0})\{\delta_{b}(n_{0})\}^{n}=S_{b}(n_{0})/\overline{\delta}_{b}(n_{0})$. (2)

Before we proceed further, we make the following plausible assumptions:

(A-1) $\mu_{1}^{-1}\geq\mu_{2}^{-1}$ ;

(A-2) $c_{l}d\leq(1-b)$ . $TC_{b}(n_{0})$ .
Of our interest is to determine the optimal production time $n_{0}^{*}$ which minimizes $TC_{b}(n\mathrm{o})$ . In

order to avoid an unrealistic decision making, we assume that $\underline{n_{0}}\leq n_{0}^{*}\leq\overline{n0}$ where $\underline{n0}$ and $\mathrm{i}$

are the lower and upper bounds of no, respectively.

Optimality under geometrically distributed repair times :

Suppose that the corrective and preventive repair time distributions are both geometric $i.e$ . ,

$g_{1}(l_{1})=\{$
for $l_{1}=0$

$\mathrm{q}\mathrm{i}$: $(1-q_{1})$ , for $l_{1}=1,2,$ 3, $\cdots$ ; $0<q_{1}<1;$

$g_{2}(l_{2})=\{$
for $l_{2}=0$

$q_{2}^{1}0$2-1 $(1-q_{2})$ , for $l_{2}=1,2$ , 3, $\cdots$ ; $0<q_{2}<1_{j}$

and $TC_{1b}(n_{0})$ $=S_{1b}(n_{0})/\overline{\delta_{1b}}(n_{0})$ denote the corresponding NPV of the expected total cost over

an infinite time horizon. Define the numerator of the difference of $TC_{1b}(n\mathrm{o})$ with respect to $0$ ,

divided by the factor $(1-b)\overline{P}(n0-1)$ as $W_{1b}(\mathrm{n}\mathrm{o})$ . Then we have

$W_{1b}(\{))$ $=$ $[ \frac{c_{1}b^{\mathfrak{U}}r(n\mathrm{o})}{1-bq_{1}}+\frac{c_{2}b^{n0}}{1-bq_{2}}\{bG(n_{0})-1\}$ $+ \frac{c_{t}bd}{(1-b)^{2}}\{kb^{n_{0}}(1-b)-b^{k\mathfrak{n}_{0}}(1-b^{k})\}$

$\mathrm{x}G(n_{0})+c_{t}db^{kn_{0}}\{r(n_{0})\frac{q_{1}^{(k-1)n_{11}}}{1-bq_{1}}+G(\mathrm{n}_{\mathrm{O}})\frac{bq_{2}^{(k-1)(n_{()}+1)}}{1-bq_{2}}-\frac{q_{2}^{(k-1)n0}}{1-bq_{2}}\}]\frac{\overline\delta_{b}(\mathrm{n}_{0})}{1-b}$

$-[r(n_{0}) \{\frac{q_{1}^{(k-1)n_{0}}}{1-bq_{1}}-\frac{1-b^{\mathrm{k}}}{1-b}\}+G(n_{0})\frac{b^{k}q_{2}(k-1)(n_{\mathrm{t}\mathrm{t}}+1)}{1-bq_{2}}-\frac{q_{2}^{(k-1)n0}}{1-bq_{2}}+\frac{1-b^{k}}{1-b}]$

$\mathrm{x}b^{kn_{0}}S_{1b}(n\mathrm{o})$ , (3)

where $r(n)=p(n)/\overline{P}(n$ - 1 $)$ is the hazard (failure) rate of the discrete failure distribution

and $G(n)=\overline{P}(n)/\overline{P}(n$- 1 $)$ $=1-r(n)$ . We characterize the optimal production policy in the

following theorem:

Theorem 1. Suppose that the lifetime distribution $P(n)$ is $IFR$ ($incrP_{a}asing$ failure rate). If (i)

$W_{1b}(\mathfrak{B})<0$ and $W_{1b}(\overline{n_{0}})>0$ then there exists at least one (and at most two) local optimal
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solution $n_{0}^{*}(0<\underline{n0}<n_{0}^{*}<\overline{n_{0}}<\infty)$ satisfying $W_{1b}(n_{0}^{*}-1)$ $<0$ and $W_{1b}(n_{0}^{*})\geq 0,$ provided

that the following conditions including the conditions (A-l) and (A-2) hold:

(A-1) $(_{-}*_{1}-14)$ $\{b\Delta r\Phi)-(1-b)r(\overline{\pi_{0}})\}+\frac{\mathrm{c}_{2}(1-b)^{2}}{1-bq_{2}}\geq 0.$

(A-4) $\mathrm{C}(\mathrm{n}\mathrm{o})[b^{(k-1)\overline{\mathrm{r}_{\mathrm{t}}}}’(\frac{1-b^{h}}{1-b})^{2}-k]$ $- \frac{b}{(1-b)^{2}}[k(1-b)-(1-b^{k})b^{(k-1)(\Pi_{1}+1)]}\Delta r(\overline{n0})\geq 0.$

(A-5) $\phi_{b}(q_{1};n_{0}, \overline{\mathrm{n}_{0}})$ $\geq b^{k}q_{2}^{k-1}\phi_{b}(q_{2};\overline{n_{0}},\underline{n_{0}})+q_{2}^{(k-1)\underline{\mathrm{m}}}(1-b^{k}q_{2}^{k-1})^{2}/(1-bq_{2})$ ,

where $\phi b(q;x,y)=q^{(k-1)y}\{r(x)(1-bkk-q1)-\Delta r(y)bkqk-1\}$ /$(1-bq)$ .
(ii) If $W_{1b}(\overline{n_{0}})\leq 0$ then $n_{0}^{*}=\overline{n_{0}}$. On the other hand, if $W_{1b}$Q) $\geq 0$ then $\mathrm{r}\ _{0}^{\mathrm{s}}=\infty$ .

Proof. Since Ar(n) $=-(\mathrm{i}\mathrm{i})$ and $0<q_{1}$ , $q2<1,$ it can be shown that when $P(n)$ is IFR,
$\Delta W_{1b}(n_{0})>0$ for all $n_{0}\in$ $\underline{\mathrm{I}n_{0}},\overline{n_{0}}$] under assumptions (A-I)-(A-5). Hence the proof of the first
part of the theorem is straightforward. For the second part, if $W_{1b}(\overline{n0})\leq 0$ then $TC_{1b}(n\mathrm{o})$ i8
decreasing in the interval $\mathrm{E},\overline{n_{0}}$] and therefore, $n_{0}^{*}=\overline{n0}$. On the other hand, if $W_{1b}\mathrm{L}n\emptyset$) $\geq 0$

then TCib(no) is increasing in the interval $\llcorner n_{0},\overline{n0}$] and therefore, $n_{0}^{*}=\underline{n0}$ . Hence, the proof is

completed.

3. The Long-run Average Cost Model

Using THospital’s rule, the long-run average cost in the steady state $C(n0)$ can be obtained as

$\lim_{\wedge 1}\{(1-b)\cdot$ $TC_{b}(\mathrm{n}v)\}=S(n\mathrm{o})/T(n\mathrm{o})=C(n\mathrm{o})$, (4)

where the mean time length of one cycle is

$\prime \mathit{1}’(n_{0})$ $=$ $\sum_{n=0}^{\mathrm{m}-1}[\sum_{l_{1}=0}^{(k-1)n}kng_{1}(l_{1})+\sum_{l_{1}=(k-1)n+1}^{\infty}(n+l_{1})$g1 $(l_{1})]p(n)$

$+ \sum_{n=n_{\mathrm{O}}}^{\infty}[\sum_{l_{2}=0}^{(k-1)n_{\mathrm{O}}}kn0g2(l_{2})+\sum_{l_{2}=(k-1)n_{(}’+1}^{\infty}(n_{0}+l_{2})g2(l_{2})]p(n)$ (5)

and the expected cost per cycle is

$V(\mathrm{n} )$ $=$ $c_{0}+c_{1} \mu_{1}^{-1}\sum_{n=0}^{|\mathrm{t}_{\{)}-1}p(n)+$ $c_{2}\mu_{2}^{-1}$ $\sum_{n=n\mathrm{o}}^{\infty}g_{2}(l_{2})p(n)+\frac{c_{1}d(k-1)k}{2}[\sum_{nH}^{n_{\mathrm{O}}-1}\mathrm{z}^{2}p(n)$

$+ \sum_{n\subset n_{\mathrm{O}}}^{\infty}n_{0}^{2}p(n)]+c_{\delta}d\{$ $\sum_{n=0}^{n_{\mathrm{O}}-1}\sum_{\mathrm{t}_{1}=(k-1)n+1}^{\infty}\{l_{1}-(k-1)n\}g_{1}(l_{1})p(n)$

$+$ $\mathit{5}$ $\sum_{l_{2}=(k-1)’ \mathrm{w}’+1}^{\infty}\{l_{2}-(k-1)\mathrm{n}_{0}\}g_{2}(l_{2})p(n)]$ (6)

Optimality under geometrically distributed repair times:

For the geometric repair time distributions defined in in the previous section, $1\mathrm{e}\mathrm{t}\prime \mathit{1}_{\acute{1}}$(no), $V_{1}$ (no)

denote the mean time length of a cycle and the expected cost per cycle, respectively. Let
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$W_{1}(n_{0})$ denote the numerator of the difference of $C_{1}(n_{0})=V_{1}(n_{0})/T_{1}(n_{0})$ divided by the factor
$\overline{P}(n_{0}-1)$ . Then we have the following theorem:

Theorem 2. Suppose that the failure time distribution $P(n)$ is $IFR$, and that the conditions
(A-l), (A-2) as $barrow 1$ and the following conditions hold for the haza$rd$ rate $r(n)$ .
(A-6) 1-r(n0) $-(\overline{n0}+3/2)\Delta r(\overline{n0})\geq 0.$

(A-7) $\phi(q_{1}; \underline{n_{0}},\overline{n_{0}})\geq q_{2}^{k-1}\phi(q_{2};\overline{n_{0}},n_{0})+q_{2}^{(k-1)\underline{n0}}(1-=q_{2}^{k-1})^{\mathit{2}}/(1-q)$. $k=2,3,4$, $\cdots$ .
where $\phi(qjX, y)=q^{(k-1\rangle y}\{r$(x) $(1-q^{k-1})-\Delta r(y)q^{k-1}\}/(1-q)$ .
(i) If Wi(no) $<0$ and $W_{1}(\overline{n0})>0$ then there exists at least one (at most two) local optimal

solution $n_{0}^{*}(0<\underline{n0}<n_{0}^{*}<\overline{n_{0}}<\infty)$ satisfying $W_{1}(n_{0}^{*}-1)<0$ and $W_{1}(n_{0}^{l})\geq 0.$ The

corresponding minimum expected cost $C_{1}(n_{0}^{*})(=V_{1}(n_{0}^{*})/T_{1}(n_{0}^{*}))$ satisfies the inequality $\Phi(\mathrm{n};-$

$1)<$ Ci(no) $\leq\Phi(n_{0}^{\mathrm{r}})$, where

$\Phi(n)$ $=$ $[r(n) \{\frac{c_{1}}{1-q_{1}}-\frac{c_{2}}{1-q_{2}}+\frac{c_{s}}{1-q_{1}}q_{1}^{(k-1\rangle n}\}+\frac{c_{i}d(k-1)k}{2}(2n+1)G(n)$

$+ \frac{c_{l}d}{1-q_{2}}\{G(n)q_{2}^{(k-1)(n+1)}-q_{2}^{(k-1)n}\}]/[r(n)\{kn+\frac{q_{1}^{(k-1)n}}{1-q_{1}}\}$

$+G(n) \{k(n+1)+\frac{q_{2}^{(k-1)(n+1)}}{1-q_{2}}\}-kn-\frac{q_{2}^{(k-1)n}}{1-q_{2}}]$ (7)

(i) If Wi(no) $\leq 0$ then $n_{0}^{*}=\overline{\mathrm{n}\mathfrak{v}}$. On the other hand, if $W_{1}\mathrm{L}n\mathrm{o}$) $\geq 0$ then $n_{0}^{*}=\underline{n_{0}}$.

Proof. The proof is omitted for brevity.

Remark. Under geometric failure, $\mathrm{a}\mathrm{s}\mathrm{s}$ umption (A-6) is trivially true and assumption (A-7) is

clearly validated when $q_{1},q_{2}arrow$a 1.

4. The NPV Model with Flexible Production Rate
Suppose that $p=kd,$ where $k$ , an integer $>1,$ is a decision variable Then the associated

nonlinear integer programing (NIP) problem can be formulated as follows:
NIP :
$\min$ $Z$ (x)
$\mathrm{s}.\mathrm{t}$ . $h_{t}$ (x) $\geq b_{:}$ , $i=1,2,3$ ;
$\mathrm{x}$ $=[n0, k]$ , $n_{0},k$ : integer;
where $Z$ (x) $\equiv TC_{b}(n0,k)=S_{b}(n0,k)/\overline{\delta_{b}}(n0, k)$

and { $\mathrm{r}(\mathrm{x})\equiv$ -no, $h_{2}(\mathrm{x})\equiv n0$ , $h_{3}(\mathrm{x})\equiv k,$ $b_{1}\equiv-$”0, $b_{2}\equiv$ g, $b_{3}\equiv 2.$

For solving the above NIP we develop a hybridized neural network (NN) and branch and bound
(BB) algorithm. First we consider that the NIP problem has no integer restrictions, because
the neural network technique is an approximate method suitable for continuous values, i.e., we
solve the nonlinear programing (NP) problem. We construct the energy function based on the
penalty function method for solving the NP problem. The penalty function method transforms

the constrained optimization problem into the unconstrained optimization one. In order to
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solve the NP problem, we construct the following energy function:

$\mathrm{E}(\mathrm{x},\mathrm{m})=-2(\mathrm{x})$ $+7$ $[ \sum_{i=1}^{3}([b_{i}-h_{\dot{\mathrm{t}}}(\mathrm{x})]_{-})^{2}+([n_{0}]_{-})^{2}+$ $\mathrm{C}1k]-)^{2}]$ , (8)

where $m>0$ is penalty parameter and $[y]_{-}= \min\{0, \mathrm{y}\}$ . Minimization of $E(\mathrm{x},m)$ leads to

the following system of ordinary differential equations:

$\frac{d\mathrm{x}}{dt}=-\mu$ $\nabla_{x}B’(\mathrm{x},m)$ ,

where $\mu(\geq 0)$ is called learning parameter. In the following algorithm, we state the overall

procedure for solving the NIP.

Hybridized $NN$ and $BB$ algorithm :

Step 1. Construct the energy function $\mathrm{A}’(\mathrm{x}, m)$ based on penalty function method.
Step 2. Using gradient method obtain the system of ordinary differential equations.

Step 3. Set the parameter $m$, $\mu$ and the initial values of $n_{0}$ and $k$ .
Step 4. Using NDSolve function in Mathematica solve the system of ordinary differential

equations. Using Plot function in Mathematica draw the graph of the dynamic

convergence process.

Step 5. From the NP solution, examine whether $n_{0}^{*}$ and $k^{*}$ are both integers or not. If they

are both integers then they give the best solution. Stop. Otherwise, go to Step 6.
Step 6. Choose one variable, say no, whose value is not integer and make two separate

problems with known integer value of $n_{0}$ as no $\mathrm{W}$ [$n_{0}^{*}\rfloor$ and $n_{0}$ $\geq\lceil D\mathit{3}.$

Step 7. Solve these problems using the NN method and choose the solution which provides

the minimum cost.

Step 8. Repeat Step 5 and if needed, Step 6 to find the best feasible solution of the NIP.

5. Numerical Examples

We consider the negative binomial failure distribution with shape parameter 2 and geometric re-

pair time (corrective and preventive) distributions with parameters $q_{1}$ and q%. The p.m.f. of the

negative binomial failure time distribution is given by $p(n)=ndq_{0}^{n-1}$ , $n=0,1,2,3$ , $\ldots\ldots;0<$

$p_{0}<1$ , $q_{0}=1-$ $\mathrm{J}70$ . First we find the optimal results when $p$ is predetermined i.e. $k$ is a

known integer $>1.$ We take the parameter values as $d=90$ , $k=2,$ $c_{i}=0.5,c_{\partial}=1.25$ , $c_{0}=$

1500, $c_{1}=200$ , $\mathrm{c}_{2}=100$ , $q_{1}=0.4,$ $q_{2}=0.2$ , $b=0.9$ , $\underline{n0}=3,$ $\overline{n0}=8.$

Tables 1 presents the dependence of the optimal production policy on the parameter $\mathrm{P}0$

in the NPV and average cost models. Note that as $m$ increases, the MTTF (mean time to

failure) decreases and hence the expected cost rate increases gradually. Table 2 shows that

the NPV of the expected total cost is almost insensitive to changes in value of the preventive

repair cost parameter $c_{2}$ while a low impact on the expected cost rate is observed for changes

in the value of the corrective repair cost parameter $c_{1}$ . The asymptotic behavior of the NPV
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function $Tc_{1b}(n\mathrm{o})$ is reflected in Table 3. When $k$ is treated as a decision variable, the optimal

results obtained by the hybridized NN and BB algorithm are found to be superior to those of

the model with inflexible production rate, see Table 4.

Ta nfl $\mathrm{c}$

$\mathrm{a}1$

$\ovalbox{\tt\small REJECT}_{59}^{33}533333n_{0}\mathrm{e}1$

Table 2 Dependence of the optimal production policy on the parameters

an 5

$\ovalbox{\tt\small REJECT}_{5}^{44}R*45$6

$66\sim$

$55$

Ta 3 $\mathrm{s}\mathrm{y}$ 5

$\ovalbox{\tt\small REJECT}_{9}^{66}99$

Ta al $\mathrm{e}1\mathrm{w}$
$1\mathrm{S}$ red ed fi $\mathrm{x}$

$\ovalbox{\tt\small REJECT}_{65}^{1\mathrm{S}\mathrm{X}11\mathrm{s}\mathrm{e}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{m}}mn_{0}3334463533483353$
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We now make an attempt to derive approximately the production policy for discrete time setting
from the continuous time model. For this, note that the negative binomial failure distribution
defined at the beginning of this section corresponds to the continuous time gamma distribution
(shape parameter 2) $\mathrm{F}(\mathrm{t})=1-(1+ \mathrm{u}_{0}t)\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{C}^{-\mathrm{S}}t)$, $\mu_{0}>0.$ Further, the mean value $2/p_{0}$

for the negative binomial distribution corresponds to the mean value $2/\mu 0$ for the gamma
distribution. Utilizing this correspondence and $\exp(-\beta t)=b^{t}$ , i.e., ($\mathit{3}=ln(1/b)$ , we consider
the continuous time model with gamma failure distribution (shape parameter 2) and uniform
repair time distributions:

$U_{1}(s_{1})=\{$
$n_{1}[perp]\epsilon$ , $0\leq s_{1}$ $\leq n_{1}$

1, $s_{1}$ $>n_{1}$ ,

$U_{\mathit{2}}(s_{2})=\{$ $;$ ’
$0_{\mathit{8}_{2}>n_{2}}\leq s_{\mathit{2}}\leq,n_{2}$

and derive the approximate policy by time discretization. The data are taken as $d=90,$ $k=$

$2_{\}}c_{i}=0.5,$ $c_{s}=1.25$ , $c0=$ 1500, $c1=200$ , $c2=100,$ $=12,$ $n_{2}=8$ , $b=0.9$ , $no=3,$ $\%=8.$

Table 5 exhibits that time discretization from the outcome of continuous time model results a
remarkable difference in terms of the failure rate and lot sizing decision.

Table 5 A comparison of the results of discrete optimization and those of discrete time
approximation from the continuous time NPV model

ntinuo $\mathrm{t}\cdot \mathrm{e}-$ model Di ar $\mathrm{e}$
$\mathrm{t}$

.
$\mathrm{e}$ appro.mation

$($ $)$ $t_{0}^{*}$ $TC_{b}(t_{0}^{*})$
$*$

$T\underline{C_{b}(}*)$

0.1 .033 3679.32 5 3679. 7
0.2 4.23 3904.15 4 3908. 4
0.3 3.720 4114.99 4 4121.00
0.4 .336 42 9.57 3 4310.79
0.5 3.044 4459.04 3 59.25
0.6 2.814 4596.96 3 4600.55
0.7 2.628 4716.91 3 4731.01
0.8 2.474 4821.95 3 4849.03
0.9 2.343 4914.59 $3^{1}$ 454.36

Di rate opt–zation
$n_{0}^{*}$ $TC_{b}(n_{0})$

$6$ 3600.54
5 3752.54
5 39 .18
5 4162.6
4 87.20
4 4607.69
3 4818.91

$3^{\uparrow}$ 5020.73
3} 5215.24

\dagger indicates $n_{0}^{*}=n0$

6. Concluding Remarks

In this paper, we have modeled a general EMQ problem with stochastic machine breakdown

and repair in a discrete-time framework. The NPV of the expected total cost function is derived

under general discrete failure and discrete repair time distributions. Both the discounted cost

criteria and long-run average cost criteria for the existence of a local optimal solution are
derived under geometric repair time distributions. From the numerical study we have observed

that (i) the NPV approach is superior to the long-run average cost approach and (ii) time

discretization from the continuous time model results a remarkable difference in the lot sizing
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policy in comparison to that of the actual discrete time optimization. In developing the model,

we have assumed that a failure, if occurs during a production phase, can be detected immediately
and perfectly. However, this may be unrealistic in some real manufacturing systems. Moreover,
for discrete time setting, we have taken the production-demand ratio as an integer greater than

1. Future research could be carried out to relax these assumptions. Another direction may be

to extend the model for the system with multiple machines.
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